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Abstract: Error management theory is a theory of considerable scope and emerging

influence. The theory claims that cognitive biases do not necessarily reflect flaws in

evolutionary design, but that they may be best conceived as design features. Unfor-

tunately, existing accounts are vague with respect to the key concept of bias. The

result is that it is unclear that the cognitive biases that the theory seeks to defend are

not simply a form of behavioral bias, in which case the theory reduces to a version

of expected utility theory. We propose some clarifications and refinements of error

management theory by emphasizing important distinctions between different forms

of behavioral and cognitive bias. We also highlight a key assumption, that the capac-

ity for Bayesian beliefs is subject to constraints. This assumption is necessary for

what we see as error management theory’s genuinely novel claim: that behavioral

tendencies to avoid costly errors can rest on systematic departures from Bayesian

beliefs, and that the latter can be adaptive insofar as they generate the former.

Key words: error management theory; cognitive biases; behavioral biases; expected

utility theory.
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1 Introduction

An influential theory in the recent evolutionary psychology literature is error man-

agement theory (Haselton, 2007; Haselton et al., 2009; Haselton and Buss, 2000,

2003; Haselton and Nettle, 2006). Proponents of error management theory argue

that biologically evolved systems of decision and judgment reveal a general en-

gineering principle. Namely, when one type of error is consistently more costly

than others, behavior that suppresses the rate at which individuals commit the more

costly error will be favored. This principle is true even though the total number of

errors may be higher than they are in the case where individuals commit all types of

error at the same rate. To illustrate the general engineering principle, consider the

winnower, a farm implement designed to separate grains of wheat from chaff. The

winnower works by using a blower to blow away the less dense and unwanted chaff,

while the heavier wheat falls out the bottom. A winnower can be viewed as making

two types of error – it can blow away wheat and it can fail to blow away chaff. If the

former type of error is more costly, the operator can set the blower speed so that the

winnower blows away wheat less often than it fails to blow away chaff, and this is

optimal even though a higher speed would reduce the overall error rate. In essence,

the operator’s task is not to minimize errors, but rather to minimize costs.

Error management theory has been used to explain diverse phenomena, includ-

ing but not limited to phenomena associated with auditory perception, human courtship,

food preferences, and interracial aggression. The error management perspective,

moreover, appears to be a fertile source of novel empirical predictions. Our inten-

tion is to propose some clarifications and refinements of the theory. Although we

are impressed by its simplicity, scope and power, we argue that existing accounts are

vague with respect to a key concept: the notion of a bias. Error management theory

is explicity a theory of cognitive bias. According to the theory, cognitive biases

do not necessarily reflect flaws in evolutionary design, but may be best conceived

as design features. Our concern is that the theory does not adequately distinguish
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between cognitive biases and behavioral biases. Below we discuss different con-

ceptions of bias in an effort to clarify the subtleties associated with this important

issue.

2 Behavioral biases

We begin by describing two types of behavioral bias. These biases are behavioral

in the sense that identifying them does not require access to the internal (e.g. cog-

nitive) states of the agent. The first conception is trivial and simply captures the

notion of a statistical tendency or inclination. Put abstractly, given N possible be-

haviors, a trivial behavioral bias exists when the probability distribution over these

N behaviors is not uniform. For example, if in a given period of time an individual

can engage in one of two possible behaviors, say choosing heads or tails, a trivial

behavioral bias exists if over many periods the individual chooses heads more often

than tails or vice versa. To use a second example that has become a staple of the

error management literature, a male in a singles bar has two options with respect to

the females he encounters. He can approach them or not. If over time he approaches

females more often than not, or vice versa, he once again shows a trivial behavioral

bias.

Our second conception of a behavioral bias is more interesting and incorporates

the notion of an error. In order to motivate the idea, imagine that the world can take

one of N possible states, and agents can exhibit one of N possible behaviors. States

of the world are independently determined each period, and a one-to-one mapping

between states of the world and optimal behaviors characterizes payoffs. Specifi-

cally, if the world is in state x, the optimal behavior is b. For any b′ "= b, b′ is a

sub-optimal behavior given state x, and we will call it an “error” because it results

in a lower payoff than b. Altogether, N(N − 1) types of error are possible. On our

definition, behavior exhibits an interesting bias if over a sufficiently large number

of periods the empirical distribution over these N(N − 1) possible errors is not ap-
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proximately uniform. If someone calls “heads” when the coin is tails more often

than she calls “tails” when the coin is heads, or vice versa, she displays an inter-

esting behavioral bias. A man in a bar can approach women who are not attracted

to him, yielding slaps in the face, and he can fail to approach women who are at-

tracted to him, yielding missed opportunities. If slaps in the face outnumber missed

opportunies, or vice versa, he displays an interesting behavioral bias.

Notably, behavior that is trivially biased may not be interestingly biased. Nor

is behavior that is trivially unbiased necessarily interestingly unbiased. Consider a

man who approaches 50% of the women he encounters and hangs back shyly the rest

of the time. His behavior is unbiased by our first, trivial, definition. Nonetheless, if

the man in question is George Clooney, then his behavior may be extremely biased

by our second, interesting, definition. Missed opportunities may vastly outnumber

slaps in the face. Indeed, behavior can even be trivially biased in one direction

and interestingly biased in the other direction. If George Clooney is an incorrigible

womanizer, he may approach women at a high rate but, given his charms, still have

more missed opportunities than slaps in the face.

3 Cognitive biases

We now consider two conceptions of cognitive bias. As with our first conception of

behavioral bias, our first conception of cognitive bias is trivial. Given N possible

states of the world, a trivial cognitive bias exists when an individual’s subjective

probability distribution over these N states is not uniform. Our roving male in

the singles bar has a trivial cognitive bias if he believes that a certain female is

more likely to accept his advances than to reject them or vice versa. The reason

this conception of a cognitive bias is so trivial is that the biased belief in question

may be justified by the evidence. In particular, justified beliefs based on reliable

information about the state of the environment will be non-uniform, and thus they

will count as trivially biased. Debonair characters fully cognizant of their charms
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will count as cognitively biased on this trivial conception, as will unattractive men

with no illusions about their limited appeal to females. Notably, however, extremely

small departures from uniform beliefs can in principle generate extreme behavioral

biases of both types, trivial and interesting.

Our second conception of cognitive bias is more interesting than the first. In

the everyday sense of the word, a “bias” refers to a particular tendency or incli-

nation, but especially one that merits reproach in some way. Our definition of an

interesting cognitive bias captures this idea insofar as it involves violations of a ra-

tional standard. By our definition, interesting cognitive biases obtain when beliefs

depart systematically from those of an agent with Bayesian beliefs. Such a cogni-

tively biased individual does not have beliefs that are theoretically optimal given the

available information. Moreover, the individual’s beliefs depart from the theoretical

optimum in a systematic, rather than random, fashion.

4 The minimum necessary belief

To clarify the relationship between interesting behavioral biases and the cost asym-

metries so widely discussed in error management theory, we develop a simple binary

model similar to that found in Haselton and Nettle (2006). The decision maker faces

one of two possible situations. We refer to these situations as “states” of the deci-

sion maker’s environment. The decision maker can make one of two choices. One

choice is best in one environmental state, while the other choice is best in the other

environmental state. Accordingly, the decision maker can be wrong in two possi-

ble ways. The costs of these two types of error are not equal, and this is why the

decision maker’s problem involves a cost asymmetry. Aside from this cost asymme-

try, the other relevant part of the problem is the decision maker’s subjective beliefs

about which environmental state actually obtains.

The intuition. To capture the intuition behind the model, consider Mr. Clooney

again. When Mr. Clooney encounters a woman, he faces one of two environmental
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states. Either the woman will be receptive to any advances from Mr. Clooney, or

she will not. If receptive, the error Mr. Clooney can make is hanging back and

missing a fitness-enhancing opportunity. If not receptive, the error Mr. Clooney can

make is approaching her anyway and receiving a slap in the face. A lost mating

opportunity costs more than a slap in the face. Importantly, Mr. Clooney’s objective

is emphatically not to minimize the probability of an error, but rather to minimize

the expected error cost. That means he should make choices in a way that lead him

to miss an opportunity less often than they lead him to receive a slap in the face.

Equivalently, the belief Mr. Clooney requires that the woman will be receptive be-

fore he approaches her is weaker than the belief he requires that she will slap him in

the face before he hangs back. For example, maybe the cost asymmetry is such that

Mr. Clooney will approach a woman if he thinks she will be receptive with prob-

ability 0.25 and unreceptive with probability 0.75. If the cost asymmetry is even

stronger, he requires an even weaker belief that the woman will be receptive before

approaching her. As the following model shows, this reduction in the required be-

lief responds very dramatically to increases in the cost asymmetry. None of this,

however, requires Mr. Clooney to have an interesting cognitive bias. Imagine an

extreme case in which Mr. Clooney only requires the belief that a woman will be

receptive with probability 0.01. If 2% of the women in the world are receptive to Mr.

Clooney’s advances, and he knows this fact with perfect accuracy, he will approach

every woman he meets and receive slaps in the face 98% of the time. His behavior

may appear exotic and even astonishing, but we do not need an interesting cognitive

bias to explain it. He’s doing exactly what a payoff maximizer with Bayesian beliefs

would do.

The model. Let the environment take one of two states, where X ∈ {0, 1} specifies

the state according to P (X = 1) = p. For either environmental state, the decision

maker makes a choice, C ∈ {0, 1}. Table 1 shows how payoffs depend on the

realized state of the environment and the decision maker’s behavior.

7



[Table 1 about here]

The function π : {0, 1} → R assigns an expected payoff (e.g. expected fitness) to

each behavior. The expected payoff of choosing C = 0 is

π(0) = (1− p)b− pd, (1)

and the expected payoff of C = 1 is

π(1) = −(1− p)c + pa. (2)

Now assume the decision maker does not necessarily choose the behavior that max-

imizes the expected payoff. She does, however, choose the behavior that maximizes

expected payoffs with a probability that increases as the difference in expected pay-

offs associated with the two possible behaviors increases. This captures the idea

that choices may be noisy but still sensitive to expected payoffs. If, for example, the

expected payoffs associated with the two choices are similar, behavior will be more

like flipping a coin than when the expected payoffs are very far apart. One can im-

plement this idea in various ways (Camerer, 2003), and the choice is not critical for

our purposes. We choose the logit transformation. Specifically, for some λ ∈ R+,

P (C = 1) =
exp{λπ(1)}

exp{λπ(0)} + exp{λπ(1)} (3)

=
1

1 + exp {λ [π(0)− π(1)]} (4)

=
1

1 + exp
{
λ(b + c)

[
(1− p)− p

(
a+d
b+c

)]} . (5)

The quantities λ(b + c), p, and (a + d)/(b + c) are all non-dimensional (unit free),

and this shows us that three non-dimensional parameter combinations control choice

probabilities. The parameter combination λ(b + c) is simply a measure of how sen-

sitively choice probabilities respond to differences in the values of π(0) and π(1).
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When λ(b + c) is small, decision making is very noisy. When large, the decision

maker almost always makes the choice that maximizes the expected payoff. More

importantly, depending on the state of the environment and the realized payoff ma-

trix, the cost of an error is either b + c or a + d. To see this, assume that the

environment is in the zero state, and so X = 0. If the decision maker makes an

error (i.e. C = 1), she pays c and loses the b she would have gotten had she not

made an error. This yields a total cost of b+c. Similar reasoning shows that the cost

of an error when X = 1 is a + d. Expression (5) indicates that (a + d)/(b + c) is

the relevant measure of cost asymmetry in the binary settings that figure so promi-

nently in error management theory. Because this asymmetry will appear repeatedly,

we will call it z. By assumption (see Table 1), z > 1, which simply means we are

restricting attention for the moment to cases involving a real asymmetry.

One approach to showing how cost asymmetries lead to interestingly biased

behavior is to identify the minimum beliefs an agent must have before choosing

the behavior that avoids the more costly error with a probability greater than some

specified threshold. Call this threshold CT . To focus on the case in which even a

weak belief that X = 1 leads to a strong tendency to choose C = 1, assume that

CT > 1/2. In other words, because avoiding the more costly error requires the

decision maker to choose behavior 1, we are asking how high p needs to be before

she chooses behavior 1 with a probability that exceeds CT . In this case, the decision

maker exhibits a trivial behavioral bias that favors C = 1. With a bit of algebra, one

can show that the individual chooses such that P (C = 1) > CT so long as

p >

(
1

1 + z

) {
1− 1

λ(b + c)
ln

(
1− CT

CT

)}
. (6)

Call the quantity on the right-hand side of this inequality g(z). Taking derivatives,

9



the result is

dg

dz
=
−

{
1− 1

λ(b+c) ln
(

1−CT
CT

)}

(1 + z)2
< 0 (7)

d2g

dz2
=

2
{

1− 1
λ(b+c) ln

(
1−CT

CT

)}

(1 + z)3
> 0. (8)

This result shows that, if we focus on the case in which agents show a sufficiently

strong behavioral tendency to avoid the costly error (i.e. P (C = 1) > CT ), then

the minimum belief that X = 1 required to produce this behavioral tendency is a

convex decreasing function of the cost asymmetry (Figure 1).

[Insert Figure 1 about here]

In particular, the minimum belief decreases as the asymmetry increases because

the first derivative (7) is negative when z > 1, which is true by assumption. The

decrease is convex because the second derivative (8) is positive when z > 1. Alto-

gether, this tells us that the belief can be arbitrarily weak so long as the asymmetry

is sufficiently large. Moreover, the fact that the minimum necessary belief decreases

in a convex fashion illustrates the power of cost asymmetries. We do not typically

need a dramatic cost asymmetry to generate a large behavioral tendency because

the biggest marginal effects are associated with small asymmetries. As shown in

Figure 1, the difference between no asymmetry and a relatively small asymmetry

will often be huge, while the difference between the same small asymmetry and a

huge asymmetry will often be comparatively small.

5 A profusion of cognitive pathways

To develop the link between cognition and behavior further, we would like to expand

the model above. Our reading of the error management literature suggests to us that

researchers often take an interesting behavioral bias as evidence for an interesting
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cognitive bias (see section 6 below). Here we show that inferences about even trivial

cognitive biases are underdetermined by evidence of an interesting behavioral bias.

The intuition. The basic idea is to decompose cognition into various possible mech-

anisms that could produce behaviors favored by selection. In particular, we consider

a relatively simple case with three parts. The first part is the decision maker’s belief

that he is making a decision for which cost asymmetries obtain. Second, the deci-

sion maker thinks the asymmetry, if it obtains, has a specific magnitude. Finally,

the decision maker has a belief that, if an asymmetry obtains, the environment is

actually in the state in which she can make the more costly error.

For example, perhaps in certain social settings (on the red carpet at the Academy

Awards, say) Mr. Clooney considers slaps in the face, because of the extreme em-

barrassment caused, just as costly as missed opportunities. In these social settings,

he does not face a cost asymmetry. In other social settings, however, slaps in the

face are less costly than missed opportunities, and he does face a cost asymmetry.

In any given social setting, as a result, Mr. Clooney has some beliefs about whether

he faces the former type of social setting or the latter. Mr. Clooney also thinks that a

cost asymmetry, if present, has a particular magnitude. Maybe he thinks that missed

opportunities, when in the relevant social settings, are 10 times as costly as slaps

in the face. Moreover, when in social settings of either sort, Mr. Clooney also has

some belief that a given woman will respond positively to his advances. These are

the three parts of Mr. Clooney’s decision making we consider. The model below

addresses the case in which an increase in the rate at which Mr. Clooney approaches

women is advantageous. In this case, given the three cognitive mechanisms we con-

sider, there are infinitely many ways to accomplish the required behavioral change.

This is an example of how inferences about cognition can be radically underdeter-

mined when one observes an interesting behavioral bias.

The model. Specifically, assume the decision maker considers one of two possible

payoff matrices, one with a cost asymmetry and the other without. As detailed

in Table 2, the payoff matrix that denotes the map from the space of choices by
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environments to payoffs takes one of these two forms, M ∈ {0, 1}, where P (M =

1) = q.

[Table 2 about here]

If matrix 0 holds (i.e. M = 0), then no cost asymmetry obtains. If matrix 1 holds

(M = 1), then we have the same cost asymmetry characterized by z that we consid-

ered in Section 4. With this kind of uncertainty about the actual payoff structure of

the decision-making situation, the expected payoff of choosing C = 0 is

π(0) = (1− p){(1− q)b + qb} + p{(1− q)(−c)− qd}, (9)

and the expected payoff of C = 1 is

π(1) = (1− p){(1− q)(−c)− qc} + p{(1− q)b + qa}. (10)

Analogous to the simpler model above (equations (3) - (5)), choice probabilities

take the form

P (C = 1) =
exp{λπ(1)}

exp{λπ(0)} + exp{λπ(1)} (11)

=
1

1 + exp
{
λ(b + c)

[
(1− 2p + pq)− pq

(
a+d
b+c

)]} . (12)

Choice probabilities now depend on four non-dimensional parameter combinations,

λ(b + c), p, q, and (a + d)/(b + c). We would like to focus on three of these (z, p,

and q), so we denote P (C = 1) = f(z, p, q). Given that z > 1 by assumption, one
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can show that

∂f

∂z
=

λ(b + c)pq exp {λ(b + c) [(1− 2p + pq)− pq (z)]}
[1 + exp {λ(b + c) [(1− 2p + pq)− pq (z)]}]2

> 0 (13)

∂f

∂p
=

λ(b + c)(2 + q(z − 1)) exp {λ(b + c) [(1− 2p + pq)− pq (z)]}
[1 + exp {λ(b + c) [(1− 2p + pq)− pq (z)]}]2

> 0 (14)

∂f

∂q
=

λ(b + c)p(z − 1) exp {λ(b + c) [(1− 2p + pq)− pq (z)]}
[1 + exp {λ(b + c) [(1− 2p + pq)− pq (z)]}]2

> 0. (15)

Although expressions 13 - 15 look formidable, all we really care about is the fact

that all three partial derivatives are unambiguously positive. Because these deriva-

tives tell us how the function changes in response to our three cognitive variables,

the result tells us that we have three separate cognitive mechanisms for increasing

the decision maker’s tendency to avoid the more costly error. If selection favors a

behavioral modification of this sort, then we have a profusion of cognitive pathways.

An increase in the perceived payoff asymmetry given that one exists (i.e. z), an in-

crease in the belief that the environment is in the state where a costly error is possible

(i.e. p), or an increase in the belief that a cost asymmetry actually obtains (i.e. q) will

all do the trick. So will infinitely many combinations of the three. Indeed, we can

even reduce the forces favoring C = 1 in one or two of the cognitive dimensions

we consider and still get a local increase in the probability of choosing C = 1. This

unusual possibility simply requires that the remaining cognitive dimensions involve

countervailing forces that overcompensate. Formally, for the probability of C = 1

to increase at the margin, all we need is a positive total differential,

df =
∂f

∂z
dz +

∂f

∂p
dp +

∂f

∂q
dq > 0. (16)

As (16) makes clear, this condition can be satisfied in various ways, and this re-

mains true even if some cognitive mechanisms, in isolation, are actually increas-

ing the probability of choosing C = 0 and by extension increasing the decision
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maker’s tendency to make the more costly error. The net result is that, if we only

have behavioral data showing a strong tendency to choose C = 1, we have an ex-

tremely restricted ability to draw inferences about cognitive processes - there are

just too many free parameters. A strong behavioral tendency can arise from various

combinations of at least three different quantities related to cost asymmetries. In

essence, inferences about cognition are radically underdetermined. This is a ver-

sion of the more general point that adaptationist thinking is often more useful for

making predictions about adaptive phenotypes than predictions about the proximate

mechanisms by which selection will fashion such phenotypes.

6 Error management biases

Having sketched several definitions of bias, we now consider the claims of error

management theory in relation to this taxonomy. As noted above, error management

theorists argue that cognition is biased, and they seek to recast cognitive biases as

evolutionary adaptations to ancestral environments. What, however, do they mean

by cognitive biases? Which, if either, of our two conceptions of cognitive bias do

they have in mind? Given the trivial nature of the first conception, one might expect

that the second, interesting conception is the only possibility. After all, probably

every cognitive agent that has ever existed has had trivial cognitive biases. If you

consider it relatively unlikely that the world will end in the next five minutes, or that

a talking horse will be elected the next Pope, then you are cognitively biased in the

trivial sense. No one has ever complained that humans have cognitive biases of this

sort. Any attempt to defend or reframe cognitive biases, therefore, must presumably

refer to cognitive biases of the second, more interesting sort, namely beliefs that

depart systematically from the beliefs a hypothetical Bayesian would have.

The situation, however, is not so clear. In their article, “The Paranoid Optimist:

An Integrative Evolutionary Model of Cognitive Biases,” Haselton and Nettle (2006,

p. 48) distinguish between errors of belief and errors of behavior:
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In general, there are four possible outcomes consequent on a judg-

ment or decision. A belief can be adopted when it is in fact true (a true

positive or TP), or it cannot be adopted and not be true (a true negative

or TN). Then there are two possible errors. A false positive (FP) error

occurs when a person adopts a belief that is not in fact true, and a false

negative (FN) occurs when a person fails to adopt a belief that is true.

The same framework applies to actions. An FP occurs when a person

does something, although it does not produce the anticipated benefit,

and an FN when a person fails to do something that, if done, would

have provided a benefit.

Here the authors acknowledge a distinction between belief and behavior. Erroneous

beliefs involve a mismatch between belief and reality. Perhaps the world is in state

x, but the individual has an unjustifiably strong belief that it is in state x′. Erroneous

behavior, instead, occurs when an individual takes an action that is not optimal given

the state of the world. On the next page of the article, however, Haselton and Nettle

(2006, p. 49) explictly conflate belief and behavior when they say, “By adopting

a belief, we mean behaving or reasoning as if the corresponding proposition were

true.” In our view this conflation creates substantial confusion. After all, if ap-

proaching uninterested females in bars carries no meaningful costs but occasionally

large benefits, selection will favor men who approach women even if they only have

an exceedingly weak belief that they will succeed with any given woman. A man

may be nearly convinced that a particular woman is not interested in him. Nonethe-

less, if he admits any hope, however slim, he will behave as if she is interested.

He will do so precisely because the fitness costs of a missed encounter are so much

larger than the costs of brief embarrassment. Crucially, this bias in behavior does

not require an interesting bias in beliefs.

Given this conflation of belief and behavior, the possibility arises that the cog-

nitive biases Haselton and Nettle (2006) seek to defend are not cognitive biases at
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all. Indeed, much of what they discuss gives the impression that the biases they

seek to recast as design features are not interesting cognitive biases but interesting

behavioral biases. Consider, for example, this extract from their paper’s abstract,

“EMT [error management theory] predicts that if judgments are made under uncer-

tainty, and the costs of false positive and false negative errors have been asymmet-

ric over evolutionary history, selection should have favored a bias toward making

the least costly error.” Haselton and Nettle, of course, are exactly right; selection

should favor a bias toward making less costly errors. This, however, is an interest-

ing behavioral bias. Biased behavior simply requires a biased decision rule. It does

not require a cognitive bias in the sense of beliefs that depart systematically from

the theoretical optimum given the available evidence. Haselton and Nettle (2006,

pp. 48-49) repeatedly mention decision rules, implying that humans have evolved

to make decisions in a manner that maximizes reproductive success:

According to EMT, certain decision-making adaptations have evolved

through natural selection to commit predictable errors. Whenever there

exists a recurrent cost asymmetry between two types of errors over evo-

lutionary time, selection will fashion mechanisms biased toward com-

mitting errors that are less costly in reproductive currency... EMT pre-

dicts that human psychology contains evolved decision rules biased to-

ward committing one type of error over another.

Without doubt, actors showing interesting behavioral biases will often end up mak-

ing more errors than actors who minimize the overall error rate. Again, however,

the task is not to minimize errors but rather to minimize costs. If this is the basic

claim of error management theory, it is certainly persuasive. Nonetheless, the prob-

lem is that the same claim follows in a straightforward way from expected utility

theory (von Neumann and Morgenstern, 1944), and the idea is central to the game

theoretic solution concept known as “risk dominance” (Harsanyi and Selten, 1988).

From this perspective, error management theory might seem somewhat derivative.
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Fortunately, however, we think that error management theory provides a basis for

a more novel claim, namely that interesting behavioral biases can rest on interest-

ing cognitive biases, and that the latter can be adaptive insofar as they generate the

former. More rigor is necessary, however, in formulating this claim precisely.

In what follows, we will attempt to bring this claim into sharper focus. Before

proceeding, however, we would like to touch on another important point. Hasel-

ton and Nettle (2006, p. 49) put forward an unbiased decision rule for “adopting

the belief S,” where adopting the belief S is apparently viewed as a binary outcome

equivalent to exhibiting the behavior S. If s is a state of the world, ¬s is the comple-

mentary set of states, and e is available evidence, then the decision rule is to adopt

or exhibit S when P (e | s)/P (e | ¬s) > 1. This is indeed an unbiased decision rule

for behavior under our second, interesting definition of a behavioral bias, but only

if the prior probabilities of s and ¬s are equal (Bar-Hillel, 1980; Kahneman and

Tversky, 1973). Although Haselton and Nettle acknowledge this assumption, they

do not emphasize the fact that it rarely holds. Applying such a decision rule when

the priors are not equal can lead to serious consequences. Consider a situation in

which an airport security guard is trying to decide whether or not to subject a certain

passenger to extra screening measures. Judging by his clothing, the passenger is a

Muslim. The question of interest to the security guard is whether the passenger is

also likely to be a terrorist. Let S be the decision to implement extra screening, and

e be the empirical evidence available to the security guard. Further let s be the state

in which the passenger is in fact a terrorist and ¬s the state in which the passenger

is not. The security guard estimates that P (e | s) = 0.99, i.e. 99% of the world’s

active terrorists have clothing that makes them seem Muslim. The guard also esti-

mates that P (e | ¬s) = 0.2, which means that 20% of the world’s peacable citizens

have clothing that makes them seem Muslim. Because 0.99/0.2 > 1, the guard sub-

jects the passenger to additional screening, as indeed he does with all passengers

who appear to be Muslim.

Whatever limited merits the security guard’s decision rule might have (see Press,
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2009), it is clearly biased. The reason, of course, is that the security guard fails to

account for the base rates of terrorism and peacable tendencies in the general popu-

lation. Given that the vast majority of Muslims who pass through airport security are

not terrorists, the guard’s decision rule generates a huge number of false positives.

A more general decision rule is

P (s | e)
P (¬s | e) =

P (e | s)P (s)

P (e | ¬s)P (¬s)
> 1. (17)

This rule incorporates the prior probabilities of s and ¬s. Because terrorists are

vastly outnumbered by non-terrorists, this rule yields a very different decision from

the rule above. Even if the security guard assumes that the proportion of active ter-

rorists in the world is 0.1, which is surely a radical overestimate, then P (s | e)/P (¬s | e) =

0.55, and the guard will let the passenger in question through unmolested. Indeed,

she will let all passengers through unmolested. This new rule, of course, is also bi-

ased because it only generates false negatives. In fact, it is completely worthless as

a rule because it never discriminates between terrorists and non-terrorists. In terms

of the absolute numbers of errors, however, this rule generates far fewer than the

previous rule.

7 The evolution of interesting cognitive biases

We now return to what we see as the interesting and novel claim that error manage-

ment theory makes. We view the claim as having three parts.

• Interesting behavioral biases require patterns of behavior that result in a non-

uniform distribution over the possible types of error. Such biases will be

adaptive in many situations.

• Beliefs and decision-making rules that yield such biases under appropriate

conditions will be favored by selection.
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• In general, optimal beliefs will correspond to the beliefs of a Bayesian be-

cause, all else equal, we cannot do better than Bayesian beliefs in deliberative

contexts. Nonetheless, in principle Bayesian beliefs could be unavailable be-

cause, say, they are too expensive neurologically. If something like this is the

case, systematic departures from the beliefs of a Bayesian, which constitute

interesting cognitive biases, may be adaptive provided they lead to behaviors

that are interestingly biased in the adaptive direction.

The idea that some constraint may preclude Bayesian beliefs is crucial, but Haselton

and Nettle (2006) do not mention it. For example, they argue (p. 48),

Because men’s reproduction is limited primarily by the number of

sexual partners to whom they gain sexual access, a bias that caused men

to err on the side of assuming sexual interest would have resulted in

fewer missed sexual opportunities, and hence greater offspring number,

than unbiased sexual inferences. Therefore, natural selection should

favor sexual overperception in men.

It is true, to give an extreme example, that a man who pursues every woman he meets

because he thinks they all want to sleep with him will have no more missed sexual

opportunities than someone with Bayesian beliefs. Indeed, his number of missed

opportunities will be zero, and thus it will probably be strictly less than the number

of missed opportunities for someone with Bayesian beliefs. On the other hand,

chasing all those women who in fact are not interested will probably bring costs

in other fitness-relevant domains. As a result, departures from Bayesian beliefs are

not obviously adaptive. Bayesian beliefs, after all, are distinguished by the fact that

they are theoretically justified given all the available evidence. What Haselton and

Nettle need is an additional assumption, namely the assumption that some kind of

constraint limits the ability of selection to implement perfectly Bayesian beliefs. To

see how systematic departures from Bayesian beliefs might be adaptive given such

a constraint, consider the following.
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As Haselton and Nettle point out, when some object making a sound is ap-

proaching, and one needs to prepare for the arrival of the object, estimating an ar-

rival time that is systematically too early is better than a time that is systematically

too late (Neuhoff, 2001). What Haselton and Nettle overlook is that, all else equal,

it is better still to estimate an arrival time that is neither systematically too early nor

too late. Such optimal estimates are Bayesian. Asymmetric costs may affect the

optimal point in time for taking an action relative to the estimated arrival, but this is

a separate issue entirely. Suppose, however, that some unspecified constraint limits

our ability to have perfectly Bayesian beliefs. As a result, our subjective distribu-

tion of arrival times is not the same as a Bayesian would have. Two distributions,

of course, can differ in several ways, but for simplicity we focus on the case in

which two distributions differ only in terms of their means. In this case, systemat-

ically underestimating arrival times should be advantageous relative to systematic

overestimation or unsystematic misestimations. This conclusion follows from the

relatively weak assumption that being prepared a bit too early is usually better than

being prepared a bit too late.

We have refined the claims of error management theory by providing precise

definitions of behavioral and cognitive biases and by highlighting the importance of

a key assumption. Namely, assuming constraints limit our ability to form Bayesian

beliefs, some interesting cognitive biases, which are here defined as systematic de-

partures from the beliefs of a Bayesian, may be adaptive in many situations. What

the theory now needs is an account of why constraints might prohibit Bayesian be-

liefs. One possibility is that cognition is to a large extent general purpose, and

performance in some domains is negatively correlated with performance in other

domains. Dependent on the relevant cost functions, globally optimal performance

in this case may entail sub-optimal performance in some or all of the individual

domains.

From an evolutionary psychological perspective, however, this idea clashes with

an important assumption of the discipline, namely the assumption that the human
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mind is not a general-purpose cognitive system but rather a collection of function-

ally specialized modules (Cosmides and Tooby, 1997). Insofar as these modules

interact, effects in one module may constrain optimization in other modules. In-

sofar as these modules operate independently, however, natural selection should be

free to optimize in one domain without affecting other domains. Evolutionary psy-

chologists are notable for positing a high degree of modularity, which would weaken

the constraint argument above. An alternative explanation for constraints, which is

perhaps more consistent with the hypothesized degree of modularity associated with

evolutionary psychology, is that the neural circuitry required to implement Bayesian

inference in all or most domains is prohibitively costly. We leave it to others to eval-

uate such possibilities.

8 Empirical evidence

The final point we want to make concerns the empirical evidence for interesting cog-

nitive biases. We have claimed that, to argue for the adaptive nature of systematic

departures from Bayesian inference, one needs to invoke constraints. But why make

this argument at all? Why not just assume that evolved cognitive systems incorpo-

rate data in the optimal way by producing theoretically justifiable beliefs consistent

with Bayesian updating? This seems to be the most parsimonious approach in the

absence of contrary evidence. In our view, however, contrary evidence is available,

but to date published error management accounts have not clearly discriminated be-

tween evidence for interesting cognitive biases and evidence for mere behavioral

biases. We conclude by considering three different domains of evidence in an effort

to demonstrate the interpretive complexities involved.
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8.1 Protective biases in disease defense

In their overview of different biases, Haselton and Nettle (2006; see also Haselton

et al., 2009) mention biological systems designed to protect the body from harm,

via mechanisms such as allergy and cough. Such defense systems are often mobi-

lized in the absence of any real threat. Coughs, for example, probably frequently

represent false positives, and for this reason dampening them with medication often

leads to few negative effects (Nesse, 2001). This phenomenon seems a plausible

candidate for an interesting behavioral bias. Specifically, the more costly error, not

coughing when a real threat exists, occurs less frequently than the less costly error,

namely coughing when no threat is present. We see no need, however, to invoke an

interesting cognitive bias here. Although interesting cognitive biases may reinforce

adaptive interesting behavioral biases in some settings, evidence of an interesting

behavioral bias is not evidence for an interesting cognitive bias. We may cough a

lot because coughs are cheap and disease is expensive, but this observation does not

require us to posit a distortion in the body’s processing of information.

8.2 Hot hand behavior

The hot hand phenomenon occurs when research participants expect streaks in se-

quences of hits and misses, the probabilities of which are, in fact, independent. Does

this phenomenon reflect an interesting cognitive bias? Wilke and Barrett (2009)

have suggested that the phenomenon reflects a psychological adaptation for suc-

cessful foraging. We consider this hypothesis in some detail here.

To begin, we define two relevant foraging errors: 1) Over-foraging: Having dis-

covered a desired resource, an individual continues to forage when the reality is that

continued foraging will prove fruitless; 2) Under-foraging: Having discovered a de-

sired resource, the individual ceases foraging when continued foraging would have

(perhaps literally) yielded further fruits. Now, imagine that an anthropologist visits

a particular field location and observes interestingly biased foraging behavior in that
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location. Specifically, she notes that foragers there are more likely to over-forage

than to under-forage. What might this hypothetical researcher conclude? We distin-

guish two distinct possibilities, both compatible with the data she has collected.

The first possibility is that the foragers are flawless Bayesians who maximize

expected utility under appropriate incentives. These cognitively laudable creatures

reliably track the relevant environmental contingencies. The bias toward over-

foraging that they exhibit may stem from the fact that they accurately perceive that

their resources of interest are spatially clumped (positively autocorrelated at a given

scale). Having discovered some of the resource, they may accurately infer that fur-

ther foraging at this scale is statistically more likely to yield fruit than to not yield

fruit. Alternatively, or additionally, the foragers may accurately perceive that the

cost of the two foraging errors is asymmetric. If they consider that the cost of a

missed foraging opportunity is greater than the cost of fruitless foraging, then they

may adjust their foraging behavior so as to produce the observed non-uniform distri-

bution over error types (i.e. they will tend to over-forage rather than under-forage).

The second possibility is that the observed interesting behavioral bias reflects

an interesting cognitive bias in the foragers. It may be that some kind of constraint

in the evolutionary past (e.g. a historical or ecological constraint) limited selec-

tion’s ability to implement Bayesian beliefs. In this case, systematic departures

from Bayesian updating (interesting cognitive biases) may have proven adaptive in-

sofar as they generated adaptive tendencies to avoid costly errors. The present-day

foragers retain this cognitive bias (which may or may not still be adaptive, depend-

ing on whether the relevant environmental contingencies are different to those that

obtained in the environment of evolutionary adaptedness).

One of our main points in this paper is that the evidence the anthropologist has

collected in this hypothetical example is consistent with both hypotheses. Having

simply inferred interesting behavioral biases, therefore, researchers should be very

cautious about inferring interesting cognitive biases – especially given that the lat-

ter possibility is somewhat unparsimonious (involving, as it does, the constraint
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assumption).

A recent study by Wilke and Barrett (2009), however, represents a much more

rigorous and controlled investigation of the issue than that conducted by our hypo-

thetical anthropologist. Wilke and Barrett designed computer tasks in which par-

ticipants could forage for different resources. Participants were presented with a

sequence of hits (e.g. fruits) and misses (e.g. no fruits) and were required, after

each event in the sequence, to predict whether the next event would be a hit or a

miss. In this paradigm there were two relevant errors: guessing hit when the sub-

sequent trial was a miss and guessing miss when the subsequent trial was a hit.

Crucially, however, the (opportunity) cost of these errors was perfectly symmetric

– participants were paid a standard amount for each correct response (whether true

positive or true negative), and were not penalized for false alarms or misses. Ob-

served behavior in this study thus transparently revealed cognition in a way that it

did not in the hypothetical anthropological study above because there is every rea-

son to suspect that a participant’s button press for hit indicated a belief of at least

1/2 that the next trial would be a hit.

Given 1) that responses appeared to indicate an assumption of clumpiness across

all resource types, although distributions were in fact equivalent to a series of coin

tosses, and 2) that there was no evidence of learning over time (participants were

uniformly hot handed over the course of the computer task – if anything, hot-

handedness increased as the experiments progressed), the conclusion that partici-

pants showed interesting cognitive biases in this domain does not initially seem un-

warranted. However, there is an important caveat here. Assume, for a moment, that

the participants were in fact flawless Bayesians. In this case the participants would

soon correctly infer that the distribution of hits and misses was uniform. Given

this knowledge, what guessing strategy should they have employed? The answer is

that no strategy would have presented itself as preferable to any other. Participants

would have fared just as well if they had guessed at random, if they had chosen hit

on every trial, if they always chose the event that had just occurred, or any other
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strategy whatsoever. Our point is that hot hand behavior had absolutely no payoff

consequences here. The fact that participants displayed hot hand tendencies is not

therefore at odds with their having had Bayesian beliefs. Although the fact that they

displayed hot hand behavior is certainly suggestive, we cannot be sure that they had

hot hand beliefs.

In order to demonstrate an interesting cognitive bias experimentally, it is nec-

essary to set things up such that cognitive biases will yield one sort of behavior,

and Bayesian beliefs will yield another. Because all behavior is equally rational in

the situation where participants must, in effect, guess the outcomes of repeatedly

flipping a fair coin, the above experiment does not ultimately accomplish this. An-

other possible approach would be to artificially constrain the distribution of hits and

misses in the experiment such that there is an equal global proportion of each, and

to tell the participants this in advance. Truly Bayesian participants in that situation

would update the probabilities of hits and misses after each event, and at each point

in time they would choose the option that had occurred least often up to that point.

For example, if the participant knows that 50 hits and 50 misses will be presented

in random order, then her subjective probability of a hit at the outset will be 50/50.

If the first two events turn out to be hits, then her updated probability of a hit on

the third event will be 48/98, and she will choose miss. Note that the Bayesian

strategy here will not consist in simply choosing the event that has just occurred –

so evidence of hot hand behavior here would be convincing evidence of interesting

cognitive bias. Such behavior would have a detrimental effect on payoffs.

A different, and perhaps even better approach, would be to set things up such

that the outcomes in the experiment are negatively autocorrelated. Wilke and Bar-

rett (2009) found that participants displayed hot hand tendencies even for resources

(such as bird nests) that are dispersed (rather than clumped) in the real world. How-

ever, these resources were not negatively autocorrelated in their experiment – as

with the other resources they used, the distribution of bird nest hits and misses was

equivalent to that generated by a series of coin tosses. One way of producing neg-
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atively autocorrelated outcomes would be to use two different coins, one biased

toward heads and the other biased toward tails, and to repeatedly flip these coins

in turn. A Bayesian in that situation would end up exhibiting reverse hot hand be-

havior, so standard hot hand behavior in that situation would, again, be convincing

evidence of interesting cognitive bias.

8.3 Sexual overperception by men

Our final example pertains to the domain of sexual inference discussed earlier. One

claim is that natural selection has favored sexual overperception in men (Haselton

and Buss, 2000; Haselton and Nettle, 2006). As we have indicated, this claim is

underdetermined by evidence that men exhibit interesting behavioral biases in this

domain. If wasted opportunities are costlier than rejections, as seems plausible,

then expected fitness maximizers with Bayesian beliefs will behave so as to avoid

wasted opportunities, and they will do so without any sort of interesting cognitive

bias. Evidence in the domain of sexual overperception, however, goes beyond sim-

ply demonstrating an interesting behavioral bias. A number of studies do, in fact,

suggest interesting cognitive biases. For example, Abbey (1982) had unacquainted

men and women interact briefly in pairs. Hidden observers, both male and female,

observed the interactions and rated the sexual intent of both parties. Male observers

perceived greater sexual intent in the target women than did female observers. Other

studies have documented similar effects, including interesting studies by Haselton

(2003) and Haselton and Buss (2000). In these studies, given that men and women

have the same data, so to speak, it would appear that they cannot both be cognitively

unbiased (in the interesting sense).

However, consider one final caveat. It is possible that people are born with

evolved domain-specific priors, priors that, in effect, encode the evolutionary his-

tory of humans. In principle, men and women could be congenitally equipped with

the same prior beliefs about the sexual interest of a given woman. Men and women,
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however, are socialized in systematically different ways. As a result they will have

different evidence available to them as they proceed through life, and they may

enter an experimental scenario with different prior beliefs about female sexual in-

terest – beliefs that may be justifiable in each case, given the evidence they have,

respectively, encountered. We make no claims about whether this is true or about

what form differential socialization would take (see Haselton and Buss, 2000, who

consider a related point and offer convincing evidence against it). We simply want

to point out that different posterior beliefs in men and women could, in principle,

reflect different prior beliefs that are justified in each case. If the experiment were

continued for long enough, with male and female observers exposed to the same

evidence, it is possible that their respective posteriors would converge through time

and be empirically indistinguishable.

9 Discussion and conclusion

Error management theory is a theory of emerging influence and broad application.

The theory claims that cognitive biases do not necessarily reflect flaws in evolution-

ary design, but that they may be best conceived as design features. Unfortunately,

existing accounts of the theory are vague regarding the key concept of bias. The

result is that it is unclear that the cognitive biases that the theory seeks to defend are

not simply a form of behavioral bias, in which case the theory reduces to a version

of expected utility theory. We have offered some refinements and clarifications in an

effort to highlight what we see as error management theory’s genuinely novel claim:

that behavioral tendencies to avoid costly errors can rest on systematic departures

from Bayesian beliefs, and that the latter can be adaptive insofar as they generate

the former.

We have outlined a taxonomy of biases, comprising trivial and interesting con-

ceptions of both behavioral bias and cognitive bias. We have shown that inferences

about cognition are radically underdetermined by evidence of interesting behavioral
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bias. On the one hand, evidence of a behavioral tendency to avoid costly errors

is not, in itself, evidence of interesting cognitive bias. Individuals with perfectly

Bayesian beliefs will display such tendencies to the extent that they maximize ex-

pected utility under appropriate incentives. On the other hand, we have noted that

even inferences about trivial cognitive biases are underdetermined by evidence of

behavioral bias. We have identified three different trivial cognitive biases that might

result in behavioral bias – trivially biased beliefs about states of the world will do

the trick, as will trivially biased beliefs about the existence and/or magnitude of cost

asymmetries. Finally, we have highlighted a key assumption, that the capacity for

Bayesian beliefs is subject to constraints. To date, published accounts of error man-

agement theory have not mentioned this assumption, but the claim that systematic

departures from Bayesian beliefs can be adaptive insofar as they generate adaptive

interesting behavioral biases requires it.
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Table 1: The payoff matrix for the basic binary model. By assumption, a, b, c, d >
0, and a + d > b + c.

X = 0 X = 1

C = 0 b −d

C = 1 −c a

Table 2: The payoff matrices for the binary model with two alternative payoff struc-
tures. The matrix on the left corresponds to M = 0, while the matrix on the right
corresponds to M = 1.

X = 0 X = 1 X = 0 X = 1

C = 0 b −c C = 0 b −d

C = 1 −c b C = 1 −c a
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Figure 1: The minimum belief that X = 1 required to choose C = 1 with a probabil-
ity greater than CT = 0.9 shown as a function of z, the cost asymmetry. The graph
shows this minimum required belief for values of z from 1 to 20 when λ(b+ c) = 3.
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