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Abstract

This paper derives an identity connecting the square loss of ridge regression in on-line mode with the loss
of the retrospectively best regressor. Some corollaries about the properties of the cumulative loss of on-line
ridge regression are also obtained.

1. Introduction

Ridge regression is a powerful technique of machine learning. It was introduced in [2]; the kernel version
of it is derived in [3].

Ridge regression can be used as a batch or on-line algorithm. This paper proves an identity connecting
the square losses of ridge regression used on the same data in batch and on-line fashions. The identity and
the approach to the proof are not entirely new. The identity implicitly appears in [4] for the linear case
(it can be obtained by summing (4.21) from [4] in an exact rather than estimated form). In [5] Bayesian
estimation was applied to the analysis of regression in a fashion very similar to this paper. However [5]
focuses on probabilistic statements and stops one step short of formulating the identity. The right-hand side
of the identity providing a short explicit formula was obtained in [6] (see Lemma 14).

In this paper we put it all together, explicitly formulate the identity in terms of ridge regression, and
give two proofs for the kernel case. The first proof obtains the terms of the identity calculating the same
likelihood in a Gaussian processes model by three different methods. Remarkably, a probabilistic argument
yields a result that holds in the worst case along any sequence of signals and outcomes with no probabilistic
assumptions. The other proof is based on the analysis of a Bayesian-type algorithm for prediction with
expert advice; it is reproduced from unpublished technical report [1].

We use the identity to derive several inequalities providing upper bounds for the cumulative loss of ridge
regression applied in the on-line fashion. Corollaries 2 and 3 deal with the ‘clipped’ ridge regression. The
later reproduces Theorem 4.6 from [4] (this result is often confused with Theorem 4 in [7], which, in fact,
provides a similar bound for an essentially different algorithm). Corollary 4 shows that for continuous kernels
on compact domains the loss of (unclipped) on-line ridge regression is asymptotically close to the loss of the
retrospectively best regressor. This result cannot be generalised to non-compact domains.

In the literature there is a range of specially designed regression-type algorithms with better worst-case
bounds or bounds applicable to more general scenarios. Aggregating algorithm regression (also known as
Vovk-Azoury-Warmuth predictor) is described in [7], [4], and Section 11.8 of [8]. Theorem 1 in [7] provides an
upper bound for aggregating algorithm regression; the bound is better than the bound given by Corollary 3
for clipped ridge regression. The bound from [7] has also been shown to be optimal in a strong sense. The
exact relation between the performance of ridge regression and the performance of aggregating algorithm
regression is not known. Theorem 3 in [7] provides an example where aggregating algorithm regression

IEarlier versions of this paper appeared in Proceedings of ALT 2010, LNCS 6331, Springer, 2010 and as technical report
abs/1112.1390 at CoRR. This paper also reproduces some results from technical report [1].
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performs better, but the signals in the example are unbounded. An important class of regression-type
algorithms achieving different bounds is based on the gradient descent idea; see [9], [10], and Section 11 in
[8]. In [11] and [12] regression-type algorithms dealing with changing dependencies are constructed. In [13]
regression is considered within the framework of discounted loss, which decays with time.

The paper is organised as follows. Section 2 introduces kernels and kernel ridge regression in batch and
on-line settings. We use an explicit formula to introduce ridge regression; Appendix A contains a proof that
this formula specifies a function with a certain optimality property. Section 3 contains the statement of the
identity and Subsection 3.1 shows that the identity remains true (in a way) for the case of zero ridge.

Section 4 discusses corollaries of the identity. Section 5 contains the proof based on a probabilistic
interpretation of ridge regression in the context of Gaussian fields. Section 6 contains an alternative proof
based on prediction with expert advice. The proof has been reproduced from [1].

Appendixes A–C to the paper contain proofs of some known results; they have been included for com-
pleteness and to clarify the intuition behind other proofs in the paper. Appendix D contains a technical
lemma.

2. Kernel Ridge Regression in On-line and Batch Settings

2.1. Kernels
A kernel on a domain X, which is an arbitrary set with no structure assumed, is a symmetric positive-

semidefinite function of two arguments, i.e., K : X ×X → R such that

1. for all x1, x2 ∈ X we have K(x1, x2) = K(x2, x1) and

2. for any positive integer T , any x1, x2, . . . , xT ∈ X and any real numbers α1, α2, . . . , αT ∈ R we have∑T
i,j=1K(xi, xj)αiαj ≥ 0.

An equivalent definition can be given as follows. A function K : X ×X → R is a kernel if there is a Hilbert
space F of functions on X such that

1. for every x ∈ X the function K(x, ·), i.e., K considered as a function of the second argument with the
first argument fixed, belongs to F and

2. for every x ∈ X and every f ∈ F the value of f at x equals the scalar product of f by K(x, ·), i.e.,
f(x) = 〈f,K(x, ·)〉F ; this property is often called the reproducing property.

The second definition is sometimes said to specify a reproducing kernel. The space F is called the reproducing
kernel Hilbert space (RKHS) for the kernel K (it can be shown that the RKHS for a kernel K is unique).
The equivalence of the two definitions is proven in [14].

2.2. Regression in Batch and On-line Settings
Suppose that we are given a sample of pairs (sometimes called a training set1)

S = ((x1, y1), (x2, y2), . . . , (xT , yT )) ,

where all xt ∈ X are called signals and yt ∈ R are called outcomes (or labels) for the corresponding signals.
Every pair (xt, yt) is called a (labelled) example.

1Strictly speaking it is an array rather than a set: the same pair may appear in the training set twice so that ((x0, y0)) and
((x0, y0), (x0, y0)) are two essentially different training sets.
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The task of regression is to fit a function (usually from a particular class) to the data. The method
of kernel ridge regression with a kernel K and a real regularisation parameter (ridge) a > 0 suggests the
function fRR(x) = Y ′(K + aI)−1k(x), where Y = (y1, y2, . . . , yT )′ is the column vector2 of outcomes,

K =


K(x1, x1) K(x1, x2) . . . K(x1, xT )
K(x2, x1) K(x2, x2) . . . K(x2, xT )

...
...

. . .
...

K(xT , x1) K(xT , x2) . . . K(xT , xT )


is the kernel matrix and

k(x) =


K(x1, x)
K(x2, x)

...
K(xT , x)

 .

Note that the matrix K is positive-semidefinite by the definition of a kernel. Therefore the matrix K + aI
is positive-definite and thus non-singular.

If the sample S is empty, i.e., T = 0 or no examples have been given to us yet, we assume that fRR(x) = 0
for all x.

It is easy to see that fRR(x) is a linear combination of functions K(xt, x) (note that x does not appear
outside of k(x) in the ridge regression formula) and therefore it belongs to the RKHS F specified by the
kernel K. It can be shown that on fRR the minimum of the expression

∑T
t=1(f(xt)− yt)2 + a‖f‖2F (where

‖ · ‖F is the norm in F) over all f from the RKHS F is achieved. For completeness, we include a proof in
Appendix A.

Suppose now that the sample is given to us example by example. For each example we are shown the
signal and then asked to produce a prediction for the outcome. One can say that the learner operates
according to the following protocol:

Protocol 1.
for t = 1, 2, . . .
read signal xt

output prediction γt

read true outcome yt

endfor

This learning scenario is called on-line or sequential. The scenario when the whole sample is given to us
at once as before is called batch to distinguish it from on-line.

One can apply ridge regression in the on-line scenario in the following natural way. On step t we form
the sample St−1 from the t− 1 known examples (x1, y1), (x2, y2), . . . , (xt−1, yt−1) and output the prediction
suggested by the ridge regression function for this sample.

For the on-line scenario on step t we will use the same notation as in the batch mode but with the index
t − 1 denoting the time3. Thus Kt−1 is the kernel matrix on step t (its size is (t − 1) × (t − 1)), Yt−1 is
the vector of outcomes (y1, y2, . . . , yt−1)′, and kt−1(xt) = (K(x1, xt),K(x2, xt), . . . ,K(xt−1, xt))′ is k(xt) for
step t. We will be referring to the prediction output by on-line ridge regression on step t as γRR

t .

3. The Identity

Theorem 1. Take a kernel K on a domain X and a parameter a > 0. Let F be the RKHS for the kernel K.
For a sample (x1, y1), (x2, y2), . . . , (xT , yT ) let γRR

1 , γRR
2 , . . . , γRR

T be the predictions output by ridge regression

2Throughout this paper M ′ denotes the transpose of a matrix M .
3The conference version of this paper used t rather than t− 1. This paper uses t− 1 because it coincides with the size and

for compatibility with earlier papers.
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with the kernel K and the parameter a in the on-line mode. Then

T∑
t=1

(γRR
t − yt)2

1 + dt/a
= min

f∈F

(
T∑

t=1

(f(xt)− yt)2 + a‖f‖2F

)
= aY ′

T (KT + aI)−1YT ,

where dt = K(xt, xt)− k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) ≥ 0 and all other notation is as above.

The left-hand side term in this equality is close to the cumulative square loss of ridge regression in the
on-line mode. The difference is in the denominators 1 + dt/a. The values dt have the meaning of variances
of ridge regression predictions according to the probabilistic view discussed below. Lemma 2 shows that
dt → 0 as t →∞ for continuous kernels on compact domains. The terms of the identity thus become close
to the cumulative square loss asymptotically; this intuition is formalised by Corollary 4.

Note that the minimum in the middle term is attained on f specified by batch ridge regression knowing
the whole sample. It is thus nearly the square loss of the retrospectively best fit f ∈ F .

The right-hand side term is a simple closed-form expression.

3.1. The Case of Zero Ridge
In this subsection we show that the identity essentially remains true for a = 0.
Let the parameter a in the identity approach 0. One may think that the third term of the identity should

tend to zero. On the other hand, the value of the middle term of the identity for a = 0 depends on YT ;
the values of yt can be chosen (at least in some cases) so that there is no exact fit in the RKHS (i.e., no
f ∈ F such that f(xt) = yt, t = 1, 2, . . . , T ) and the middle term is not equal to 0. This section resolves the
apparent contradiction.

As a matter of fact, the limit of the identity as a → 0 does not have to be 0. The situation when
there is no exact fit in the RKHS is only possible when the matrix KT is singular, and in this situation the
right-hand side does not always tend to 0.

The expression on the left-hand side of the identity is formally undefined for a = 0. The expression on
the right-hand side is undefined when a = 0 and KT is singular. The expression in the centre, by contrast,
always makes sense. The following theorem clarifies the situation.

Corollary 1. Under the conditions of Theorem 1, as a → 0, the terms of the identity

T∑
t=1

(γRR
t − yt)2

1 + dt/a
= min

f∈F

(
T∑

t=1

(f(xt)− yt)2 + a‖f‖2F

)
= aY ′

T (KT + aI)−1YT

tend to the squared norm of the projection of the vector YT to the null space of the matrix KT . This coincides
with the value of the middle term of the identity for a = 0.

The null space (also called the kernel) of a matrix S is the space of vectors x such that Sx = 0. It is
easy to see that the dimension of the null space and the rank of S (equal to the dimension of the span of
the columns of S) sum up to the number of columns of S. If, moreover, S is square and symmetric, the null
space of S is the orthogonal complement of the span of the columns of S.

Proof. For every a ≥ 0 let ma = inff∈F

(∑T
t=1(f(xt)− yt)2 + a‖f‖2F

)
. Proposition 2 implies that if a > 0

then the infimum is achieved on the ridge regression function with the parameter a. Throughout this proof
we will denote this function by fa.

Let us calculate the value of m0 = inff∈F
∑T

t=1(f(xt) − yt)2. It follows from the representer theorem
(see Proposition 3) that it is sufficient to consider the functions f of the form f(·) =

∑T
i=1 ciK(xi, ·).

For f(·) =
∑T

i=1 ciK(xi, ·) the sum
∑T

t=1(f(xt) − yt)2 equals the squared norm ‖KT C − YT ‖2, where
C = (c1, c2, . . . , cT )′ is the vector of coefficients of the linear combination. If C0 minimises this expression,
then KT C0 is the projection of YT to the linear span of the columns of KT . The vector YT −KT C0 is then
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the projection of YT to the orthogonal complement of the span and the orthogonal complement is the null
space of KT .

Let us show that ma is continuous at a = 0. Fix some f0 such that the infimum m0 is achieved on f0 (if
KT is singular there can be more than one such function). Substituting f0 into the formula for ma yields
ma ≤ m0 + a‖f0‖2F = m0 + o(1) as a → 0. Substituting fa into the definition of m0 yields m0 ≤ ma. We
thus get that ma → m0 as a → 0.

4. Corollaries

In this section we use the identity to obtain some properties of cumulative losses of on-line algorithms.

4.1. A Multiplicative Bound
It is easy to obtain a basic multiplicative bound on the loss of on-line ridge regression. The matrix (Kt−1+

aI)−1 is positive-definite as the inverse of a positive-definite. Therefore k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) ≥ 0
and dt ≤ K(xt, xt). Assuming that there is cF > 0 such that K(x, x) ≤ c2

F on X (i.e., the evaluation
functional on F is uniformly bounded by cF ), we get

T∑
t=1

(γRR
t − yt)2 ≤

(
1 +

c2
F
a

)
min
f∈F

(
T∑

t=1

(f(xt)− yt)2 + a‖f‖2F

)
= a

(
1 +

c2
F
a

)
Y ′

T (KT + aI)−1YT . (1)

4.2. Additive Bounds for Clipped Regression
Some less trivial bounds can be obtained under the following assumption. Suppose that we know in

advance that outcomes y come from an interval [−Y, Y ], and Y is known to us. It does not make sense then
to make predictions outside of the interval. One may consider clipped ridge regression, which operates as
follows. For a given signal the ridge regression prediction γRR is calculated; if it falls inside the interval,
it is kept; if it is outside of the interval, it is replaced by the closest point from the interval. Denote the
prediction of clipped ridge regression by γRR,Y . If y ∈ [−Y, Y ] indeed holds, then (γRR,Y −y)2 ≤ (γRR−y)2

and (γRR,Y − y)2 ≤ 4Y 2.

Corollary 2. Take a kernel K on a domain X and a parameter a > 0. Let F be the RKHS for the
kernel K. For a sample (x1, y1), (x2, y2), . . . , (xT , yT ) such that yt ∈ [−Y, Y ] for all t = 1, 2, . . . , T , let
γRR,Y
1 , γRR,Y

2 , . . . , γRR,Y
T be the predictions output by clipped ridge regression with the kernel K and the

parameter a in the on-line mode. Then

T∑
t=1

(γRR,Y
t − yt)2 ≤ min

f∈F

(
T∑

t=1

(f(xt)− yt)2 + a‖f‖2F

)
+ 4Y 2 ln det

(
I +

1
a
KT

)
,

where KT is as above.

Proof. We have
1

1 + dt/a
= 1− dt/a

1 + dt/a

and
dt/a

1 + dt/a
≤ ln(1 + dt/a) ;

indeed, for b ≥ 0 the inequality b/(1 + b) ≤ ln(1 + b) holds and can be checked by differentiation. Therefore

T∑
t=1

(γRR,Y
t − yt)2 =

T∑
t=1

(γRR,Y
t − yt)2

1
1 + dt/a

+
T∑

t=1

(γRR,Y
t − yt)2

dt/a

1 + dt/a

≤
T∑

t=1

(γRR
t − yt)2

1
1 + dt/a

+ 4Y 2
T∑

t=1

ln(1 + dt/a) .
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Lemma 4 proved below yields

T∏
t=1

(1 + dt/a) =
1
aT

det(KT + aI) = det
(

I +
1
a
KT

)
.

There is no sub-linear upper bound on the regret term

4Y 2 ln det
(

I +
1
a
KT

)
in the general case; indeed, consider the kernel

δ(x1, x2) =

{
1 if x1 = x2;
0 otherwise.

(2)

However we can get good bounds in special cases.
It is shown in [15] that for the Gaussian kernel K(x1, x2) = e−b‖x1−x2‖2 , where x1, x2 ∈ Rd, we can

get an upper bound on average. Suppose that all xs are independently identically distributed according
to the Gaussian distribution with the mean of 0 and variance of cI. Then for the expectation we have
E ln det

(
I + 1

aKT

)
= O((ln T )d+1) (see Section IV.B in [15]). This yields a bound on the expected loss of

clipped ridge regression.
Consider the linear kernel K(x1, x2) = x′1x2 defined on column vectors from Rn. We have K(x, x) = ‖x‖2,

where ‖·‖ is the quadratic norm in Rn. The reproducing kernel Hilbert space is the set of all linear functions
on Rn. We have Kt = X ′

tXt, where XT is the design matrix made up of column vectors x1, x2, . . . , xT . The
Sylvester determinant identity det(I + UV ) = det(I + V U) (see, e.g., [16], Eq. (6)) implies that

det
(

I +
1
a
X ′

T XT

)
= det

(
I +

1
a
XT X ′

T

)
= det

(
I +

1
a

T∑
t=1

xtx
′
t

)
.

We will use an upper bound from [17] for this determinant4; a proof is given in Appendix C for completeness.
We get the following corollary.

Corollary 3. For a sample (x1, y1), (x2, y2), . . . , (xT , yT ), where ‖xt‖ ≤ B and yt ∈ [−Y, Y ] for all t =
1, 2, . . . , T , let γRR,Y

1 , γRR,Y
2 , . . . , γRR,Y

T be the predictions output by clipped linear ridge regression with a
parameter a > 0 in the on-line mode. Then

T∑
t=1

(γRR,Y
t − yt)2 ≤ min

θ∈Rn

(
T∑

t=1

(θ′xt − yt)2 + a‖θ‖2
)

+ 4Y 2n ln
(

1 +
TB2

an

)
.

It is an interesting problem if the bound is optimal. As far as we know, there is a gap in existing bounds.
Theorem 2 in [7] shows that Y 2n lnT is a lower bound for any learner and in the constructed example,
‖xt‖∞ = 1. Theorem 3 in [7] provides a stronger lower bound, but at the cost of allowing unbounded xs.

4.3. An Asymptotic Comparison
The inequalities we have considered so far hold for finite time horizons T . We shall now let T tend to

infinity.
Let us analyse the behaviour of the quantity

dt = K(xt, xt)− k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) .

4The authors would like to thank the anonymous reviewer who suggested this bound strengthening the corollary.
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According to the probabilistic interpretation discussed in Subsection 5.1, dt has the meaning of the variance
of the prediction output by kernel ridge regression on step t and therefore it is always non-negative.

The probabilistic interpretation suggests that the variance should go down with time as we learn the
data better. In the general case this is not true. Indeed, if K = δ (defined by (2)) and all xi are different
then dt = 1 for all t = 1, 2, . . . However under natural assumptions that hold in most reasonable cases the
following lemma holds. The lemma generalises Lemma A.1 from [18] because for the linear kernel dt can be
represented as shown in (14) below.

Lemma 2. Let X be a compact metric space and a kernel K : X2 → R be continuous in both arguments.
Then for any sequence x1, x2, . . . ∈ X and a > 0 we have dt → 0 as t →∞.

Proof. As discussed in Subsection 5.1, dt has the meaning of a variance under a certain probabilistic
interpretation and therefore dt ≥ 0. One can easily see that k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) ≥ 0. Indeed,
the matrix (Kt−1 + aI)−1 is positive-definite as the inverse of a positive-definite. We get

0 ≤ k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) ≤ K(xt, xt) . (3)

Let us start by considering a special case. Suppose that the sequence x1, x2, . . . converges and let
limt→∞ xt = x0 ∈ X. The continuity of K implies that K(xt, xt) → K(x0, x0) and

0 ≤ k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) ≤ K(x0, x0) + o(1) (4)

as t → ∞. We will obtain a lower bound on k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) and show that it converges to
K(x0, x0) thus proving the lemma in the special case.

For every symmetric matrix M and a vector x of the matching size we have λmin‖x‖2 ≤ x′Mx, where
λmin is the smallest eigenvalue of M (this can be shown by considering an orthonormal base where M
diagonalises). The smallest eigenvalue of (Kt−1 + aI)−1 equals 1/(λ̃ + a), where λ̃ is the largest eigenvalue
of Kt−1. The value of λ̃ is bounded from above by the trace of Kt−1:

λ̃ ≤
t−1∑
i=1

K(xi, xi)

and this yields a lower bound on the smallest eigenvalue of (Kt−1 + aI)−1.
The squared norm of kt−1 equals

‖kt−1(xt)‖2 =
t−1∑
i=1

(K(xi, xt))2 .

Combining this with the above estimates we get

k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) ≥
∑t−1

i=1(K(xi, xt))2

a +
∑t−1

i=1 K(xi, xi)
.

Let us assume K(x0, x0) 6= 0 and show that the right-hand size of the inequality tends to K(x0, x0) (if
K(x0, x0) = 0, then (4) implies that k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) → 0). Dividing the numerator and the
denominator by t− 1 yields

∑t−1
i=1(K(xi, xt))2

a +
∑t−1

i=1 K(xi, xi)
=

Pt−1
i=1(K(xi,xt))

2

t−1

a
t−1 +

Pt−1
i=1 K(xi,xi)

t−1

.

Clearly, as t goes to infinity, most terms in the sums become arbitrary close to (K(x0, x0))2 and K(x0, x0)
and thus the ‘averages’ tend to (K(x0, x0))2 and K(x0, x0), respectively. Therefore the fraction tends to
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K(x0, x0) and (4) implies that k′t−1(xt)(Kt−1 + aI)−1kt−1(xt) → K(x0, x0). We have shown that dt → 0 for
the special case when the sequence x1, x2, . . . converges.

Let us prove the lemma for an arbitrary sequence x1, x2, . . . ∈ X. If dt 6→ 0, there is a subsequence of
indexes τ1 < τ2 < . . . < τk < . . . such that dτk

is separated from 0. Since X is compact, we can choose a
sub-subsequence t1 < t2 < . . . < tn < . . . such that dtn

is separated from 0 and xtn
converges. If we show

that dtn → 0, we get a contradiction and prove the lemma. Thus it is sufficient to show that dtn → 0 where
limn→∞ xtn = x0 ∈ X.

Clearly, we have inequalities (4) for t = tn:

0 ≤ k′tn−1(xtn
)(Ktn−1 + aI)−1ktn−1(xtn

) ≤ K(x0, x0) + o(1) . (5)

We proceed by obtaining a lower bound on the middle term as before.
Fix some n and the corresponding tn. One can rearrange the order of the elements of the finite sequence

x1, x2, . . . , xtn−1 to put the elements of the subsequence to the front and consider the sequence (still of
length tn − 1) xt1 , xt2 , . . . , xtn−1 , x̄1, x̄2, . . . , x̄tn−n, where x̄1, x̄2, . . . , x̄tn−n are the elements of the original
sequence with indexes not in the set {t1, t2, . . . , tn−1}.

One can write

k′tn−1(xtn)(Ktn−1 + aI)−1ktn−1(xtn) = k̃′tn−1(xtn)(K̃tn−1 + aI)−1k̃tn−1(xtn) ,

where

k̃′tn−1(xtn
) =



K(xt1 , xtn)
...

K(xtn−1 , xtn)
K(x̄1, xtn

)
...

K(x̄tn−n, xtn
)


and

K̃tn−1 =



K(xt1 , xt1) . . . K(xt1 , xtn−1) K(xt1 , x̄1) . . . K(xt1 , x̄tn−n)
...

...
...

...
K(xtn−1 , xt1) . . . K(xtn−1 , xtn−1) K(xtn−1 , x̄1) . . . K(xtn−1 , x̄tn−n)
K(x̄1, xt1) . . . K(x̄1, xtn−1) K(x̄1, x̄1) . . . K(x̄1, x̄tn−n)

...
...

...
...

K(x̄tn−n, xt1) . . . K(x̄tn−n, xtn−1) K(x̄tn−n, x̄1) . . . K(x̄tn−n, x̄tn−n)


.

Indeed, we can consider the matrix product ktn−1(xtn)(Ktn−1+aI)−1ktn−1(xtn) in the rearranged orthonor-
mal base where the base vectors with the indexes t1, t2, . . . , tn−1 are at the front of the list. (Alternatively
one can check that rearranging the elements of the training set does not affect ridge regression prediction
and its variance.)

The upper left corner of K̃tn−1 and the upper part of k̃tn−1(xtn) consist of values of the kernel on elements
of the subsequence, K(xti , xtj ), i, j = 1, 2, . . . , n. We shall use this observation and reduce the proof to the
special case considered above.

Let us single out the left upper corner of size (n − 1) × (n − 1) in K̃tn−1 + aI and apply Lemma 10
from Appendix D. The special case considered above implies that k̃′tn−1(xtn)(K̃tn−1 + aI)−1k̃tn−1(xtn) ≥
K(x0, x0) + o(1) as n →∞. Combined with (5) this proves that dtn

→ 0 as n → 0.

Remark 1. Lemma 10 from Appendix D implies (and is essentially equivalent) to the following statement
in terms of the probabilistic interpretation from Subsection 5.1. Let yx be a Gaussian field on a domain X
with the means of 0. Let a sample of pairs (x′1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
n, y′n) ∈ X ×R contain all the pairs from

a sample (x′′1 , y′′1 ), (x′′2 , y′′2 ), . . . , (x′′m, y′′m) ∈ X × R. Then the conditional variance of yx given that yx′1
= y′1,

yx′2
= y′2, . . . , and yx′n = y′n does not exceed the conditional variance of of yx given that yx′′1

= y′′1 , yx′′2
= y′′2 ,

. . . , and yx′′m = y′′m. (Note that by Remark 3 we can always assume that all xt are different.)
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We shall apply Lemma 2 to establish asymptotic equivalence between the losses in on-line and batch
cases. The following corollary generalises Corollary 3 from [1].

Corollary 4. Let X be a compact metric space and a kernel K : X2 → R be continuous in both arguments;
let F be the RKHS corresponding to the kernel K. For a sequence (x1, y1), (x2, y2), . . . ∈ X × R let γRR

t be
the predictions output by on-line ridge regression with a parameter a > 0. Then

1. if there is f ∈ F such that
∑∞

t=1(yt − f(xt))2 < +∞ then

∞∑
t=1

(yt − γRR
t )2 < +∞ ;

2. if for all f ∈ F we have
∑∞

t=1(yt − f(xt))2 = +∞, then

lim
T→∞

∑T
t=1(yt − γRR

t )2

minf∈F

(∑T
t=1(yt − f(xt))2 + a‖f‖2F

) = 1 . (6)

Proof. Part 1 follows from bound (1). Indeed, the continuous function K(x, x) is uniformly bounded on
X and one can take a finite constant cF .

Let us prove Part 2. We observed above that dt ≥ 0. The identity implies

T∑
t=1

(yt − γRR
t )2 ≥

T∑
t=1

(yt − γRR
t )2

1 + dt/a
= min

f∈F

(
T∑

t=1

(yt − f(xt))2 + a‖f‖2F

)

and thus the fraction in (6) is always greater than or equal to 1.
Let mt = minf∈F

(∑t
τ=1(yτ − f(xτ ))2 + a‖f‖2F

)
. The sequence mt is non-decreasing. Indeed let the

minimum in the definition of mt be achieved on ft. If mt+1 < mt then one can substitute ft+1 into the
definition of mt and decrease the minimum.

Let us prove that mt → +∞ as t → ∞. A monotonic sequence must have a limit; let limt→∞mt =
m∞. We have m1 ≤ m2 ≤ . . . ≤ m∞. We will assume that m∞ < +∞ and find f∞ ∈ F such that∑∞

t=1(yt − f∞(xt))2 ≤ m∞ < +∞ contrary to the condition of Part 2.
Proposition 2 implies that ft(·) is the ridge regression function and belongs to the linear span of K(xi, ·),

i = 1, 2, . . . , t, which we will denote by Xt. (For uniformity let X0 = ∅ and m0 = 0.) The squared norm of
ft does not exceed mt/a ≤ m∞/a. Thus all ft belong to the ball of radius

√
m∞/a centred at the origin.

Let X∞ be the closure of the linear span of
⋃∞

t=0 Xt. If X∞ happens to have a finite dimension, then all
ft belong to a ball in a finite-dimensional space; this ball is a compact set. If X∞ is of infinite dimension,
the ball is not compact but we will construct a different compact set containing all ft.

Take 0 ≤ s < t. The function ft can be uniquely decomposed as ft = g + h, where g belongs to Xs and
h is orthogonal to Xs. The Pythagoras theorem implies that ‖f‖2F = ‖g‖2F + ‖h‖2F . The function h(·) is
orthogonal to all K(xi, ·), i = 1, 2, . . . , s; thus h(xi) = 〈h,K(xi, ·)〉 = 0 and ft(xi) = g(xi), i = 1, 2, . . . , s
(recall the proof of the representer theorem, Proposition 3). Note that g cannot outperform fs, which
achieves the minimum ms. We get

mt =
t∑

i=1

(yi − ft(xi))2 + a‖ft‖2F

=
s∑

i=1

(yi − g(xi))2 + a‖g‖2F +
t∑

i=s+1

(yi − ft(xi))2 + a‖h‖2F

≥ ms +
t∑

i=s+1

(yi − ft(xi))2 + a‖h‖2F .

9



This inequality implies that ‖h‖2F ≤ (mt −ms)/a ≤ (m∞ −ms)/a.
Consider the set B of functions f ∈ X∞ ⊆ F satisfying the following property for every s = 0, 1, 2, . . .:

let f = g + h be the unique decomposition such that g ∈ Xs and h is orthogonal to Xs; then the norm of h
satisfies ‖h‖2F ≤ (m∞ −ms)/a.

We have shown that all ft belong to B, t = 1, 2, . . . Let us show that B is compact. It is closed because
the projection in Hilbert spaces is a continuous operator. Let us show that B is totally bounded. We shall
fix ε > 0 and construct a finite ε-net of points in B such that B is covered by closed balls of radius ε centred
at the points from the net.

There is s > 0 such that (m∞ −ms)/a ≤ ε2/2 because ms → m∞. The ball of radius
√

(m∞ −m0)/a

in Xs is compact and therefore it contains a finite ε/
√

2-net g1, g2, . . . , gk. Every f ∈ B can be represented
as f = g + h, where g belongs to Xs and h is orthogonal to Xs. Since ‖g‖2F ≤ ‖f‖2F ≤ (m∞ −m0)/a, the
function g belongs to the ball of radius

√
(m∞ −m0)/a in Xs and therefore ‖g − gi‖F ≤ ε/

√
2 for some

gi from the ε/
√

2-net. The definition of B implies that ‖h‖2F ≤ (m∞ − ms)/a ≤ ε2/2. The Pythagoras
theorem yields

‖f − gi‖2F = ‖g − gi‖2F + ‖h‖2F ≤ ε2/2 + ε2/2 = ε2 .

Thus the net we have constructed is an ε-net for B.
Since the functions ft belong to a compact set, there is a converging sub-sequence ftk

; let limk→∞ ftk
=

f∞. We have
∑∞

t=1(yt−f∞(xt))2+a‖f∞‖2F ≤ m∞. Indeed, if
∑∞

t=1(yt−f∞(xt))2+a‖f∞‖2F > m∞ then for
a sufficiently large T0 we have

∑T0
t=1(yt−f∞(xt))2 +a‖f∞‖2F > m∞. Since ftk

→ f∞ we get ftk
(x) → f∞(x)

for all x ∈ X and for sufficiently large k all ftk
(xt) are sufficiently close to f∞(xt), t = 1, 2, . . . , T0 and ‖ftk

‖F
is sufficiently close to ‖f∞‖F so that

∑T0
t=1(yt − ftk

(xt))2 + a‖ftk
‖2F > m∞.

We have proved that under the conditions of Part 2 we have mt → +∞ as t →∞.
Take ε > 0. Since by Lemma 2 we have dT → 0, there is T0 such that for all T ≥ T0 we have

1 + dT /a ≤ 1 + ε and

T∑
t=1

(yt − γRR
t )2 =

T0∑
t=1

(yt − γRR
t )2 +

T∑
t=T0+1

(yt − γRR
t )2

≤
T0∑
t=1

(yt − γRR
t )2 + (1 + ε)

T∑
t=1

(yt − γRR
t )2

1 + dt/a

=
T0∑
t=1

(yt − γRR
t )2 + (1 + ε) min

f∈F

(
T∑

t=1

(yt − f(xt))2 + a ‖f‖2F

)
.

Therefore for all sufficiently large T the fraction in (6) does not exceed 1 + 2ε.

Remark 2. The proof of compactness above is based on the following general result (cf. [19], Chapter 4,
exercise 7 on p. 172). Let B be a subset of l2. Then B is totally bounded if and only if there is a
sequence of nonnegative numbers α1, α2, . . . ≥ 0 converging to 0, i.e., limt→∞ αt = 0, such that for every
x = (x1, x2, . . .) ∈ B and every t = 1, 2, . . . the inequality

∑∞
i=t x2

i ≤ αt holds. This result generalises the
well-known construction of the Hilbert cube (also known as the Hilbert brick).

The corollary does not hold for a non-compact domain. Let us construct a counterexample.
Let X be the unit ball in l2, i.e., X = {x ∈ l2 | ‖x‖l2 = 1}. Let the kernel on X be the scalar product in

l2, i.e., for u = (u1, u2, . . .) and v = (v1, v2, . . .) from X we have K(u, v) = 〈u, v〉l2 =
∑∞

i=1 uivi.
Consider the following sequence of elements xt ∈ X. Let x2i−1 = x2i have one at position i and zeroes

elsewhere, i = 1, 2, . . . Consider the sequence of outcomes where odd elements equal 1 and even elements
equal 0, i.e., y2i−1 = 1 and y2i = 0 for i = 1, 2, . . . We get

10



t xt yt

1 (1, 0, 0, . . .) 1
2 (1, 0, 0, . . .) 0
3 (0, 1, 0, . . .) 1
4 (0, 1, 0, . . .) 0

...
Fix a > 0. Let us work out the predictions γRR

t output by on-line ridge regression on this sequence. The
definition implies that γRR

1 = 0 and γRR
2 = 1/(1 + a). To obtain further predictions we need the following

lemma stating that examples with signals orthogonal to all other signals and x0 where we want to obtain a
prediction can be dropped from the sample.

Lemma 3. Let K : X × X → R be a kernel on a domain X; let S = ((x1, y1), (x2, y2), . . . , (xT , yT )) ∈
(X × R)∗ be a sample of pairs and let x0 ∈ X. If there is a subset (xi1 , yi1), (xi2 , yi2), . . . , (xik

, yik
) of

S such that the signals of the examples from this subset are orthogonal w.r.t. K to all other signals, i.e.,
K(xij

, xm) = 0 for all j = 1, 2, . . . , k and m 6= i1, i2, . . . , ik, and orthogonal to x0 w.r.t. K, i.e., K(xij
, x0) = 0

for all j = 1, 2, . . . , k, then all elements of this subset can be removed from the sample S without affecting
the ridge regression prediction fRR(x0).

Proof. Let the subset coincide with the whole of S. Then k(x0) = 0 and the ridge regression formula
implies that ridge regression outputs γ = 0. Dropping the whole sample S leads to the same prediction by
definition. For the rest of the proof assume that the subset is proper.

The main part of the proof relies on the optimality of ridge regression given by Proposition 2. Let F be
the RKHS of functions on X corresponding to K. The ridge regression function for the sample S minimises∑T

t=1(f(xt) − yt)2 + a‖f‖2F and by the representer theorem (Proposition 3) it is a linear combination of
K(xi, ·), i = 1, 2, . . . , T .

Let us represent a linear combination f as f1 + f2, where f1 is a linear combination of K(xij , ·), j =
1, 2, . . . , k corresponding to signals from the subset and f2 is a linear combination of the remaining signals.
The functions f1 and f2 are orthogonal in F and this representation is unique. For every j = 1, 2, . . . , k and
m 6= i1, i2, . . . , ik we have f(xij

) = f1(xij
) and f(xm) = f2(xm) and therefore

T∑
t=1

(f(xt)− yt)2 + a‖f‖2F =
k∑

j=1

(f1(xij
)− yij

)2 +
∑

m6=i1,i2,...,ik

(f2(xm)− ym)2 + a‖f1‖2F + a‖f2‖2F .

This expression splits into two terms depending only on f1 and f2. We can minimise it independently
over f1 and f2. Note that f1(x0) = 0 by assumption and therefore fRR(x0) = f̃2(x0), where f̃2 minimises∑

m6=i1,i2,...,ik

(f(xm)− ym)2 + a‖f‖2F

over F . The optimality property implies that f̃2 is the ridge regression function for the smaller sample.

The lemma implies that γ2i−1 = γ1 = 0 and γ2i = γ2 = 1/(1 + a) for all i = 1, 2, . . . It is easy to see that
Corollary 4 is violated. For f0 = 0 we have∑2i

t=1(γ
RR
t − yi)2∑2i

t=1(f0(xt)− yt)2
=

i(1 + 1/(1 + a)2)
i

= 1 +
1

(1 + a)2
> 1 .

The actual minimiser5 gives an even smaller denominator and an even larger fraction.
We have shown that compactness is necessary in Corollary 4. It is easy to modify the counterexample

to show that compactness without the continuity of K is not sufficient. Indeed, take an arbitrary compact

5It can easily be calculated but we do not really need it.
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metric space X containing an infinite sequence x̃0, x̃1, x̃2, . . . where x̃i 6= x̃j for i 6= j. Let Φ : X → l2
be such that x̃i is mapped to xi from the counterexample for every i = 1, 2, . . . and x0 is mapped to 0.
Define the kernel K on X2 by K(u, v) = 〈Φ(u),Φ(v)〉l2 (this kernel cannot be continuous). Take yi as in
the counterexample. All predictions and losses on (x̃1, y1), (x̃2, y2), . . . will be as in the counterexample with
K(x0, ·) playing the part of f0.

5. Gaussian Fields and a Proof of the Identity

We will prove the identity by means of a probabilistic interpretation of ridge regression.

5.1. Probabilistic Interpretation
Suppose that we have a Gaussian random field6 zx with the means of 0 and the covariances cov(zx1 , zx2) =

K(x1, x2). Such a field exists. Indeed, for any finite set of x1, x2, . . . , xT our requirements imply the Gaussian
distribution with the mean of 0 and the covariance matrix of K. These distributions satisfy the consistency
requirements and thus the Kolmogorov extension (or existence) theorem (see, e.g., [20], Appendix 1 for a
proof sketch7) can be applied to construct a field over X.

Let εx be a Gaussian field of mutually independent and independent of zx random values with the mean
of 0 and variance σ2. The existence of such a field can be shown using the same Kolmogorov theorem. Now
let yx = zx + εx. Intuitively, εx can be thought of as random noise introduced by measurements of the
original field zx. The field zx is not observable directly and we can possibly obtain only the values of yx.

The learning process can be thought of as estimating the values of the field yx given the values of
the field at sample points. One can show that the conditional distribution of zx given a sample S =
((x1, y1), (x2, y2), . . . , (xT , yT )) is Gaussian with the mean of γRR

x = Y ′(K + σ2I)−1k(x) and the variance
dx = K(x, x) − k′(x)(K + σ2I)−1k(x). The conditional distribution of yx is Gaussian with the same mean
and the variance σ2 +K(x, x)− k′(x)(K + σ2I)−1k(x) (see [21], Section 2.2, p. 17).

If we let a = σ2, we see that γRR
t and a+dt are, respectively, the mean and the variance of the conditional

distributions for yxt
given the sample St.

Remark 3. Note that in the statement of the theorem there is no assumption that the signals xt are
pairwise different. Some of them may coincide. In the probabilistic picture all xs must be different though,
or the corresponding probabilities make no sense. This obstacle may be overcome in the following way. Let
us replace the domain X by X ′ = X × N, where N is the set of positive integers {1, 2, . . .}, and replace xt

by x′t = (xt, t) ∈ X ′. For X ′ there is a Gaussian field with the covariance function K′((x1, t1), (x2, t2)) =
K(x1, x2). The argument concerning the probabilistic meaning of ridge regression stays for K′ on X ′. We
can thus assume that all xt are different.

The proof of the identity is based on the Gaussian field interpretation. Let us calculate the density of
the joint distribution of the variables (yx1 , yx2 , . . . , yxT

) at the point (y1, y2, . . . , yT ). We will do this in
three different ways: by decomposing the density into a chain of conditional densities, marginalisation, and,
finally, direct calculation. Each method will give us a different expression corresponding to a term in the
identity. Since all the three terms express the same density, they must be equal.

5.2. Conditional Probabilities
We have

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

pyxT
(yT | yx1 = y1, yx2 = y2, . . . , yxT−1 = yT−1)pyx1 ,yx2 ,...,yxT−1

(y1, y2, . . . , yT−1) .

6We use the term ‘field’ rather than ‘process’ to emphasise the fact that X is not necessarily a subset of R and its elements
do not have to be moments of time; some textbooks still use the word ‘process’ in this case.

7Strictly speaking, we do not need to construct the field for the whole X in order to prove the theorem; is suffices to consider
a finite-dimensional Gaussian distribution of (zx1 , zx2 , . . . , zxT ).
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Expanding this further yields

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) = pyxT

(yT | yx1 = y1, yx2 = y2, . . . , yxT−1 = yT−1)·
pyxT−1

(yT−1 | yx1 = y1, yx2 = y2, . . . , yxT−2 = yT−2) · · · pyx1
(y1) .

As we have seen before, the distribution for yxt given that yx1 = y1, yx2 = y2, . . . , yxt−1 = yt−1 is Gaussian
with the mean of γRR

t and the variance of dt + σ2. Thus

pyxt
(yt | yx1 = y1, yx2 = y2, . . . , yxt−1 = yt−1) =

1√
2π

1√
dt + σ2

e
− 1

2
(yt−γRR

t )2

dt+σ2

and

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2

√
(d1 + σ2)(d2 + σ2) . . . (dT + σ2)

e
− 1

2

PT
t=1

(γRR
t −yt)

2

dt+σ2 .

5.3. Dealing with a Singular Kernel Matrix
The expression for the second case looks particularly simple for non-singular K. Let us show that this

is sufficient to prove the identity.
All the terms in the identity are in fact continuous functions of T (T + 1)/2 values of K at the pairs

of points xi, xj , i, j = 1, 2, . . . , T . Indeed, the values of γRR
t in the left-hand side expression are ridge

regression predictions given by respective analytic formula. Note that the coefficients of the inverse matrix
are continuous functions of the original matrix.

The optimal function minimising the second expression is in fact fRR(x) =
∑T

t=1 ctK(xt, x), where the
coefficients ct are continuous functions of the values of K. The reproducing property implies that

‖fRR‖2 =
T∑

i,j=1

cicj〈K(xi, ·),K(xj , ·)〉F =
T∑

i,j=1

cicjK(xi, xj) .

We can thus conclude that all the expressions are continuous in the values of K. Consider the kernel
Kα(x1, x2) = K(x1, x2) + αδ(x1, x2), where δ is as in (2) and α > 0. Clearly, δ is a kernel and thus Kα is a
kernel. If all xt are different (recall Remark 3), the kernel matrix for Kα equals K + αI and therefore it is
non-singular.

However the values of Kα tend to the corresponding values of K as α → 0.

5.4. Marginalisation
The method of marginalisation consists of introducing extra variables to obtain the joint density in some

manageable form and then integrating over the extra variables to get rid of them. The variables we are
going to consider are zx1 , zx2 , . . . , zxT

.
Given the values of zx1 , zx2 , . . . , zxT

, the density of yx1 , yx2 , . . . , yxT
is easy to calculate. Indeed, given

zs all ys are independent and have the means of corresponding zs and variances of σ2, i.e.,

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT | zx1 = z1, zx2 = z2, . . . , zxT−1 = zT−1) =
1√
2π

1
σ

e−
1
2

(y1−z1)2

σ2
1√
2π

1
σ

e−
1
2

(y2−z2)2

σ2 · · · 1√
2π

1
σ

e−
1
2

(yT−zT )2

σ2 =
1

(2π)T/2σT
e−

1
2σ2

PT
t=1(yt−zt)

2

Since zx1 , zx2 , . . . , zxT
have a joint Gaussian distribution with the mean of 0 and covariance matrix KT ,

their density is given by

pzx1 ,zx2 ,...,zxT
(z1, z2, . . . , zT ) =

1
(2π)T/2

√
detKT

e−
1
2 Z′K−1

T Z ,
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where Z = (z1, z2, . . . , zT )′, provided KT is non-singular.
Using

pyx1 ,yx2 ,...,yxT
,zx1 ,zx2 ,...,zxT

(y1, y2, . . . , yT , z1, z2, . . . , zT ) =

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT | zx1 = z1, zx2 = z2, . . . , zxT−1 = zT−1)pzx1 ,zx2 ,...,zxT

(z1, z2, . . . , zT )

and

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

∫
RT

pyx1 ,yx2 ,...,yxT
,zx1 ,zx2 ,...,zxT

(y1, y2, . . . , yT , z1, z2, . . . , zT )dZ

we get

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2σT

1
(2π)T/2

√
detKT

∫
RT

e−
1

2σ2
PT

t=1(yt−zt)
2− 1

2 Z′K−1
T ZdZ .

To evaluate the integral we need the following proposition (see [22], Theorem 3 of Chapter 2) .

Proposition 1. Let Q(θ) be a quadratic form of θ ∈ Rn with the positive-definite quadratic part, i.e.,
Q(θ) = θ′Aθ + θ′b + c, where the matrix A is symmetric positive-definite. Then∫

Rn

e−Q(θ)dθ = e−Q(θ0)
πn/2

√
det A

,

where θ0 = arg minRn Q.

The quadratic part of the form in our integral has the matrix 1
2K−1

T + 1
2σ2 I and therefore

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T σT

√
detKT

πT/2√
det( 1

2K−1
T + 1

2σ2 I)
e−minZ( 1

2σ2
PT

t=1(yt−zt)
2+ 1

2 Z′K−1
T Z)

We have √
detKT

√
det
(

1
2
K−1

T +
1

2σ2
I

)
=

√
det
(

1
2
I +

1
2σ2

KT

)
=

1
2T/2σT

√
det(KT + σ2I) .

Let us deal with the minimum. We will link it to

M = min
f∈F

(
T∑

t=1

(f(xt)− yt)2 + σ2‖f‖2F

)
.

The representer theorem (see Proposition 3) implies that the minimum from the definition of M is achieved
on a function of the form f(x) =

∑T
t=1 ctK(xt, ·). For the column vector Z(x) = (f(x1), f(x2), . . . , f(xT ))′

we have Z(x) = KT C, where C = (c1, c2, . . . , cT )′. Since KT is supposed to be non-singular, there is a one-
to-one correspondence between C and Z(x); we have C = K−1

T Z(x) and ‖f‖2F = C ′KT C = Z ′(x)K−1
T Z(x).

We can minimise by Z instead of C and therefore

min
Z

(
1

2σ2

T∑
t=1

(yt − zt)2 +
1
2
Z ′K−1

T Z

)
=

1
2σ2

M .

For the density we get the expression

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2

√
det(KT + σ2I)

e−
1

2σ2 M .
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5.5. Direct Calculation
One can easily calculate the covariances of ys:

cov(yx1 , yx2) = E(zx1 + εx1)(zx2 + εx2)
= Ezx1zx2 + Eεx1εx2

= K(x1, x2) + σ2δ(x1, x2) .

Therefore, one can write down the expression

pyx1 ,yx2 ,...,yxT
(y1, y2, . . . , yT ) =

1
(2π)T/2

√
det(KT + σ2I)

e−
1
2 Y ′

T (KT +σ2I)−1YT .

5.6. Equating the Terms
It remains to take the logarithms of the densities calculated in different ways. We need the following

matrix lemma.

Lemma 4.
(d1 + σ2)(d2 + σ2) . . . (dT + σ2) = det(KT + σ2I)

Proof. The lemma follows from Frobenius’s identity (see, e.g., [16]):

det
(

A u
v′ d

)
= (d− v′A−1u) det A ,

where d is a scalar and the submatrix A is non-singular.
We have

det(KT + σ2I) = (K(xT , xT ) + σ2 − k′T−1(xT )(KT−1 + σ2I)−1kT−1(xT )) det(KT−1 + σ2I)

= (dT + σ2) det(KT−1 + σ2I)
= . . .

= (dT + σ2)(dT−1 + σ2) . . . (d2 + σ2)(d1 + σ2) .

We get
T∑

t=1

(γRR
t − yt)2

dt + σ2
=

1
2σ2

M = Y ′
T (KT + σ2I)−1YT .

The theorem follows.

6. Bayesian Merging Algorithm and an Alternative Proof of the Identity

In this section we reproduce an alternative way (after [1]) of obtaining the identity.
An advantage of this approach is that we do not need to consider random fields. The use of probability

is minimal; all probabilities in this approach are no more than weights or predictions. This provides an
additional intuition to the proof.
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6.1. Prediction with Expert Advice
Consider the standard prediction with expert advice framework. Let outcomes y1, y2, . . . from an outcome

set Ω occur successively in discrete time. A learner tries to predict each outcome and outputs a prediction γt

from a prediction set Γ each time before it sees the outcome yt. There is also a pool Θ of experts; experts try
to predict the outcomes from the same sequence and their predictions γθ

t are made available to the learner.
The quality of predictions is assessed by means of a loss function λ : Γ× Ω → [0,+∞].

The framework can be summarised in the following protocol:

Protocol 2.
for t = 1, 2, . . .
experts θ ∈ Θ announce predictions γθ

t ∈ Γ
learner outputs γt ∈ Γ
reality announces yt ∈ Ω
each expert θ ∈ Θ suffers loss λ(γθ

t , yt)
learner suffers loss λ(γt, yt)

endfor

The goal of the learner in this framework is to suffer the cumulative loss LossT =
∑T

t=1 λ(γt, yt) not
much larger than the cumulative loss of each expert LossT (θ) =

∑T
t=1 λ(γθ

t , yt).
In this paper we consider the game with the outcome set Ω = R and the prediction set Γ of all continuous

density functions on R, i.e., continuous functions ξ : R → [0,+∞) such that
∫ +∞
−∞ ξ(y)dy = 1. The loss

function is negative logarithmic likelihood, i.e., λ(ξ, y) = − ln ξ(y).

6.2. Bayesian Merging Algorithm
Consider the following merging algorithm for the learner. The algorithm takes an initial distribution P0

on the pool of experts Θ as a parameter and maintains weights Pt for experts θ.

Protocol 3.
let P ∗0 = P0

for t = 1, 2, . . .
read experts’ predictions ξθ

t ∈ Γ, θ ∈ Θ
predict ξt =

∫
Θ

ξθ
t P ∗t−1(dθ)

read yt

update the weights Pt(dθ) = ξθ
t (yt)Pt−1(dθ)

normalise the weights P ∗t (dθ) = Pt(dθ)/
∫
Θ

Pt(dθ)
endfor

If we consider an expert θ as a probabilistic hypothesis, this algorithm becomes the Bayesian strategy for
merging hypotheses. The weights P ∗t relate to P ∗t−1 as posterior probabilities to prior probabilities assigned
to the hypotheses. We will refer to the algorithm as the Bayesian Algorithm (BA).

The algorithm can also be considered as a special case of the Aggregating Algorithm ([23, 24], see also
[7]) going back to [25]. It is easy to check that the Aggregating Algorithm for these outcome set, prediction
set, and the loss function and the learning rate η = 1 reduces to Protocol 3. However we will not be using
the results proved for the Aggregating Algorithm in this paper.

After t steps the weights become

Pt(dθ) = e−Losst(θ)P0(dθ) . (7)

The following lemma is a special case of Lemma 1 in Vovk [7]. It shows that the cumulative loss of the BA
is an average of the experts’ cumulative losses in a generalised sense (as in, e.g., Chapter 3 of [26]).

Lemma 5. For any prior P0 and any t = 1, 2, . . ., the cumulative loss of the BA can be expressed as

Losst = − ln
∫

Θ

e−Losst(θ)P0(dθ).
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Proof. The proof is by induction on t. For t = 0 the equality is obvious and for t > 0 we have

Losst = Losst−1− ln ξt(yt) = − ln
∫

Θ

e−Losst−1(θ)P0(dθ)− ln
∫

Θ

ξθ
t (yt)

e−Losst−1(θ)∫
Θ

e−Losst−1(θ)P0(dθ)
P0(dθ)

= − ln
∫

Θ

e−(− ln ξθ
t (yt)+Losst−1(θ))P0(dθ) = − ln

∫
Θ

e−Losst(θ)P0(dθ)

(the second equality follows from the inductive assumption, the definition of ξt, and (7)).

6.3. Linear Ridge Regression as a Mixture
The above protocols can incorporate signals as in Protocol 1. Indeed let the reality announce a signal

xt on each step t; the signal can be used by both the experts and the learner.
Suppose that signals come from Rn. Take a pool of Gaussian experts Θ = Rn. Fix some σ > 0 and let

expert θ output the density of Gaussian distribution N (θ′xt, σ
2), i.e.,

ξθ
t (y) =

1√
2πσ2

e−
(θ′xt−y)2

2σ2 , (8)

on step t.
Let us assume the multivariate Gaussian distribution N (0, I) with the density

p0(θ) =
1

(2π)n/2
e−‖θ‖

2/2 (9)

as the initial distribution over the pool of experts. We will show that the learner using the Bayesian merging
algorithm with this initial distribution will be outputting a Gaussian density with the mean of the ridge
regression prediction. Note that there is no assumption on the mechanism generating outcomes yt.

Let Yt be the vector of outcomes y1, y2, . . . , yt. Let Xt be the design matrix made up of column vectors
x1, x2, . . . , xt and At = XtX

′
t + σ2I, t = 1, 2, . . ..

Lemma 6. The learner using the Bayesian merging algorithm with the initial distribution (9) on the pool
of experts Rn predicting according to (8) will be outputting on step T = 1, 2, . . . the density

ξT (y) =
1√

2πσ2
T

e
− (γRR

T −y)2

2σ2
T ,

where

γRR
T = Y ′

T−1X
′
T−1A

−1
T−1xT

σ2
T = σ2x′T A−1

T−1xT + σ2 .

We have γRR
T =

(
θRR

T

)′
xT , where θRR

T = A−1
T−1XT−1YT−1. At θRR

T the minimum

min
θ∈Rn

(
T−1∑
t=1

(θ′xt − yt)2 + σ2‖θ‖2
)

is achieved. This can be checked directly by differentiation or by reducing to Proposition 2 (see Subsection 6.5
for a discussion of linear ridge regression as a special case of kernel ridge regression). We will refer to the
function

(
θRR

T

)′
x as the linear ridge regression with the parameter σ2. We are considering the on-line mode,

but linear ridge regression can also be applied in the batch mode just like the general kernel ridge regression.
Let us prove the lemma.
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Proof. To evaluate the integral

ξT (v) =
∫

Rn

ξθ
T (v)P ∗T−1(dθ) (10)

we will use a probabilistic interpretation.
Let θ be a random value distributed according to P ∗T−1, i.e., having the density

pθ(u) ∼ e−
1

2σ2
PT−1

t=1 (u′xt−yt)
2− 1

2‖u‖
2

.

Clearly, θ has a multivariate Gaussian distribution. The mean of a Gaussian distribution coincides with its
mode and thus the mean of θ equals

θRR
T = arg min

u∈Rn

(
T−1∑
t=1

(u′xt − yt)2 + σ2‖u‖2
)

= A−1
T−1XT−1YT−1 .

The covariance matrix

Σ =

(
1
σ2

T−1∑
t=1

xtx
′
t + I

)−1

= σ2A−1
T−1

can be obtained by singling out the quadratic part of the quadratic form in u.
Let y be a random value given by y = θ′xT + ε, where ε is independent of θ and has a Gaussian

distribution with the mean of 0 and variance of σ2. Clearly, given that θ = u, the distribution of y is
N (u′xT , σ2). The marginal density of y is just ξT (v) we need to evaluate.

We will use the following statement from [27], Section 2.3.3. Let η have the (multivariate) Gaussian
distribution N (µ,Λ−1) and ζ have the (multivariate) Gaussian distribution N (Aη + b, L−1), where A is a
fixed matrix and b is a fixed vector. Then the marginal distribution of ζ is N (Aµ + b, L−1 + AΛ−1A′).

We get that the mean of y is x′T θRR
T and the variance is σ2 + x′T σ2A−1

T−1xT .

The lemma is essentially equivalent to the following statement from Bayesian statistics. Let yt = x′tθ+εt,
where εt are independent Gaussian values with the means of 0 and variances σ2, and xt are not stochas-
tic. Let the prior distribution for θ be N (0, I). Then the distribution for yT given the observations
x1, y1, x2, y2, . . . , xT−1, yT−1, xT is N (γRR

T , σT ); see, e.g., [27], Section 3.3.2 or [28].

6.4. The Identity in the Linear Case
The following theorem is a special case of Theorem 1

Theorem 7. Take a > 0. For a sample (x1, y1), (x2, y2), . . . , (xT , yT ), where x1, x2, . . . , xT ∈ Rn and
y1, y2, . . . , yT ∈ Rn, let γRR

1 , γRR
2 , . . . , γRR

T be the predictions output by linear ridge regression with the
parameter a in the on-line mode. Then

T∑
t=1

(γRR
t − yt)2

1 + x′tA
−1
t−1xt

= min
θ∈Rn

(
T∑

t=1

(θ′xt − yt)2 + a‖θ‖2
)

= aY ′
T (X ′

T XT + aI)−1YT ,

where At =
∑t

i=1 x′ixi +aI = X ′
tXt, Xt is the design matrix consisting of column vectors x1, x2, . . . , xt, and

Yt = (y1, y2, . . . , yt)′.

Proof. We start by showing that the first two terms are equal and then proceed to the last term.
Consider the pool of Gaussian experts with the variance σ2 = a and the learner following the Bayesian

merging algorithm with the initial distribution N (0, I) on the experts.
It follows from Lemma 6, that the total loss of the learner over T steps is given by

LossT = −
T∑

t=1

ln
1√
2πσ2

t

e
− (γt−yt)

2

2σ2
t (11)

=
T∑

t=1

(γt − yt)2

2σ2
t

+ ln
T∏

t=1

σt +
T

2
ln(2π) , (12)
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where σ2
t = σ2(1 + x′tA

−1
t−1xt).

Lemma 5 implies that

LossT = − ln
(

1
(2πσ2)T/2(2π)n/2

∫
Rn

e−
1

2σ2
PT

t=1(θ
′xt−yt)

2− 1
2‖θ‖

2
dθ

)
.

It follows from Proposition 1 that the integral evaluates to

e−minθ∈Rn( 1
2σ2

PT
t=1(θ

′xt−yt)
2+ 1

2‖θ‖
2) πn/2√

det(AT /(2σ2))
=

e−
1

2σ2 minθ∈Rn(PT
t=1(θ

′xt−yt)
2+σ2‖θ‖2) (2π)n/2√

det(AT /σ2)

and thus

LossT =
1

2σ2
min
θ∈Rn

(
T∑

t=1

(θ′xt − yt)2 + σ2‖θ‖2
)

+
T

2
ln(2π) + T lnσ +

1
2

ln det
AT

σ2
. (13)

Let us equate the expressions for the loss provided by (12) and (13). To prove the identity we need to
show that

1
2

ln
T∏

t=1

σ2
t =

1
2
T lnσ2 +

1
2

ln det
AT

σ2
.

This equality follows from the lemma.

Lemma 8. For any a > 0 and positive integer T we have

det
AT

a
=

T∏
t=1

(1 + x′tA
−1
t−1xt) ,

where At =
∑t

i=1 x′ixi + aI.

Proof. We will use the matrix determinant lemma

det(A + uv′) = (1 + v′A−1u) detA ,

which holds for any non-singular square matrix A and vectors u and v (see, e.g., [29], Theorem 18.1.1). We
get

det
AT

a
=

1
an

det(AT−1 + xT x′T )

=
1
an

det(AT−1)(1 + x′T A−1
T−1xT )

= . . .

=
1
an

det(aI)
T∏

t=1

(1 + x′tAt−1xt)

=
T∏

t=1

(1 + x′tA
−1
t−1xt) .
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Remark 4. The lemma is in fact a special case of Lemma 4 with the linear kernel K(u1, u2) = u′1u2 and
a = σ2. As shown in Subsection 6.5, dt/a = x′tA

−1
t−1xt. The Sylvester identity implies that det(aI + KT ) =

det(aI + X ′
T XT ) = det(aI + XT X ′

T ) = det AT .

We have shown that the left-hand side and the middle terms in the identity are equal. Let us proceed
to the equality between the middle and the right-hand side terms.

The minimum in the middle term is achieved on θRR
T+1 = A−1

T XT YT = (XT X ′
T + aI)−1XT YT as shown

in Subsection 6.3. Using Lemma 9 we can also write θRR
T+1 = XT (X ′

T XT + aI)−1YT . The proof is by direct
substitution of these expressions for θRR

T+1. We have

M = min
θ∈Rn

(
T∑

t=1

(θ′xt − yt)2 + a‖θ‖2
)

=
T∑

t=1

((
θRR

T+1

)′
xt − yt

)2

+ a‖θRR
T+1‖2 =

(
θRR

T+1

)′
(XT X ′

T + aI)θRR
T+1 − 2

(
θRR

T+1

)′
XT YT + Y ′

T YT .

Substituting the first expression for the second appearance of θRR
T+1 and cancelling out XT X ′

T + aI we get

M = (−θRR
T+1XT + Y ′

T )YT .

Substituting the second expression for θRR
T+1 yields

M = Y ′
T (−(X ′

T XT + aI)−1X ′
T XT + I)YT

It remains to carry (X ′
T XT + aI)−1 out of the brackets and cancel out the remaining terms.

6.5. Kernelisation
Let us derive Theorem 1 from Theorem 7.
First, let us show that Theorem 7 is really a special case of Theorem 1 for the linear kernel K(x1, x2) =

x′1x2. We will consider the identity term by term. By Lemma 9 the prediction output by linear ridge
regression on step t equals (

θRR
t

)′
xt = Y ′

t−1X
′
t−1(Xt−1X

′
t−1 + aI)−1xt

= Y ′
t−1(X

′
t−1Xt−1 + aI)−1Xt−1xt

= Y ′
t−1(Kt−1 + aI)−1k(xt) .

For the linear kernel the expression dt/a in the denominator of the identity can be rewritten as follows:

dt

a
=

1
a

[
K(xt, xt)− k′t−1(xt)(Kt−1 + aI)−1kt−1(xt)

]
=

1
a

[
x′txt − (x′tXt−1)(X ′

t−1Xt−1 + aI)−1(X ′
t−1xt)

]
.

We can apply Lemma 9 and further obtain

dt

a
=

1
a

[
x′txt − x′t(Xt−1X

′
t−1 + aI)−1Xt−1X

′
t−1xt

]
=

1
a

[
x′t(I − (Xt−1X

′
t−1 + aI)−1Xt−1X

′
t−1)xt

]
= x′t(Xt−1X

′
t−1 + aI)−1xt (14)

= x′tA
−1
t−1xt .

Let us proceed to the middle term in the identity. The set of functions fθ(x) = θ′x on Rn with the
scalar product 〈fθ1 , fθ2〉 = θ′1θ2 is a Hilbert space. It contains all functions K(u, ·) = fu and the reproducing
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property for K holds: 〈fθ,K(x, ·)〉 = 〈fθ, fx〉 = θ′x = fθ(x). The minimum in the middle term of Theorem 7
is thus the same as in the middle term of Theorem 1.

For the right-hand side term the equality is obvious.
Now take an arbitrary kernel K on a domain X and let F be the corresponding RKHS. We will apply

a standard kernel trick. Consider a sample (x1, y1), (x2, y2), . . . , (xT , yT ), where xt ∈ X and yt ∈ R,
t = 1, 2, . . . , T . It follows from the representer theorem (see Proposition 3) that the minimum in the
middle term is achieved on a linear combination of the form f(·) =

∑T
t=1 ctK(xt, ·), where c1, c2, . . . , cT ∈

R. These linear combinations form a finite-dimensional subspace in the RKHS F . Let e1, e2, . . . , em,
m ≤ T , be its orthonormal base and let C map each linear combination f into the (column) vector of
its coordinates in e1, e2, . . . , em. Since the base is orthonormal, the scalar product does not change and
〈f1, f2〉F = (C(f1))′C(f2). The reproducing property implies that

f(xt) = 〈f,K(xt, ·)〉F = (C(f))′C(K(xt, ·))

for t = 1, 2, . . . , T . We also have

K(xi, xj) = 〈K(xi, ·),K(xj , ·)〉F = (C(K(xi, ·)))′C(K(xj , ·) ,

i, j = 1, 2, . . . , T . Note that C is a surjection: each θ ∈ Rm is an image of some linear combination f .
Consider the sample (x̃1, y1), (x̃2, y2), . . . , (x̃T , yT ), where x̃t = C(K(xt, ·)) ∈ Rm, t = 1, 2, . . . , T . Clearly,

linear ridge regression in the on-line mode outputs the same predictions on this sample as the kernel ridge
regression on the original sample and 〈x̃i, x̃j〉 = K(xi, xj). The minimum from Theorem 1 on the original
sample clearly coincides with the minimum from Theorem 7 on the new sample.

Theorem 1 follows.

Appendix A. Optimality of Kernel Ridge Regression

In this appendix we derive the optimality property for the ridge regression function function fRR.
Proposition 2. Let K : X ×X → R be a kernel on a domain X and F be the corresponding RKHS. For
every non-negative integer T , every x1, x2, . . . , xT ∈ X and y1, y2, . . . , yT ∈ R, and every a > 0 the minimum

min
f∈F

(
T∑

t=1

(f(xt)− yt)2 + a‖f‖2F

)
(15)

is achieved on the unique function fRR(x) = Y ′(aI + K)−1k(x) for T > 0, where Y , K, and k(x) are as in
Subsection 2.2, and fRR(x) = 0 identically for T = 0

Proof. If T = 0, i.e., the initial sample is empty, the sum in (15) contains no terms and the minimum is
achieved on the unique function f with the norm ‖f‖F = 0. This function is identically equal to zero and
it coincides with fRR for this case by definition. For the rest of the proof assume T > 0.

The representer theorem (see Proposition 3) implies that every minimum in (15) is achieved on a linear
combination of the form f(·) =

∑T
t=1 ctK(xt, ·).

The minimum in (15) thus can be taken over a finite-dimensional space. As ‖f‖F →∞, the expression
tends to +∞, and thus the minimum can be taken over a bounded set of functions. The value f(x) =
〈f,K(x, ·)〉F is continuous in f for every x ∈ X. Therefore we are minimising a continuous function over a
bounded set in a finite-dimensional space. The minimum must be achieved on some f .

Let C = (c1, c2, . . . , cT )′ be the vector of coefficients of some optimal function f(x) =
∑T

t=1 ctK(xt, x) =
C ′k(x). It is easy to see that the vector (f(x1), f(x2), . . . , f(xT ))′ of values of f equals KC and

‖f‖2F =
T∑

i,j=1

cicj〈K(xi, ·),K(xj , ·)〉F = C ′KC .
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Thus

T∑
t=1

(f(x)− yt)2 + a‖f‖2F = ‖KC − Y ‖2 + aC ′KC

= C ′K2C − 2Y ′KC + ‖Y ‖2 + aC ′KC .

Since f is optimal, the derivative over C must vanish. By differentiation we obtain

2K2C − 2KY + 2aKC = 0

and

K(K + aI)C = KY .

Hence
(K + aI)C = Y + v

and
C = (K + aI)−1Y + (K + aI)−1v ,

where v belongs to the null space of K, i.e., Kv = 0.
Let us show that K(K + aI)−1v = 0. We need a simple matrix identity; as it occurs in this paper quite

often, we formulate it explicitly.

Lemma 9. For any (not necessarily square) matrices A and B and any constant a the identity

A(BA + aI)−1 = (AB + aI)−1A

holds provided the inversions can be performed. If B = A′ and a > 0, the matrices AB + aI and BA + aI
are both positive-definite and therefore non-singular.

Proof. We have ABA + aA = A(BA + aI) = (AB + aI)A. If AB + aI and BA + aI are invertible, we can
multiply the equality by the inverses.

We get K(K + aI)−1v = (K + aI)−1Kv = 0. Therefore C has the form C = (K + aI)−1Y + u, where
Ku = 0.

Consider the function fu(x) = u′k(x). It is a linear combination of K(xi, ·). On the other hand, it
vanishes at every xt, t = 1, 2, . . . , T , because Ku = 0. We have

0 = fu(xt) = 〈f,K(xt, ·)〉F

and thus fu is orthogonal to the space of linear combinations. This is only possible if fu = 0.
Thus the minimum can only be achieved on a unique function that can be represented as fRR(x) =

Y ′(K + aI)−1k(x). Since it must be achieved somewhere, it is achieved on fRR.

Appendix B. Representer Theorem

In this appendix we formulate and prove a version of the reproducing property for RKHSs. See [30] for
more details including a history of the theorem.
Proposition 3. Let K be a kernel on a domain X, F be the corresponding RKHS and

(x1, y1), (x2, y2), . . . , (xT , yT )
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be a sample such that xt ∈ X and yt ∈ R, t = 1, 2, . . . , T . Then for every f ∈ F there is a linear combination
f̃(·) =

∑T
t=1 ctK(xt, ·) ∈ F such that

T∑
t=1

(f̃(xt)− yi)2 ≤
T∑

t=1

(f(xt)− yi)2

and ‖f̃‖F ≤ ‖f‖F . If f is not itself a linear combination of this type, there is a linear combination f̃ with
this property such that ‖f̃‖F < ‖f‖F .

Proof. The linear combinations of K(xt, ·) form a finite-dimensional (and therefore closed) subspace in the
Hilbert space F . Every f ∈ F can be represented as f = h + g, where h is a linear combination and g is
orthogonal to the subspace of linear combinations. For every t = 1, 2, . . . , T we have g(xt) = 〈g,K(xt, ·)〉F =
0 and the values of f and h on x1, x2, . . . , xT coincide. On the other hand, the Pythagoras theorem implies
that ‖f‖2F = ‖h‖2F + ‖g‖2F ≥ ‖h‖2F ; if g 6= 0, the inequality is strict.

Appendix C. An Upper Bound on a Determinant

In this appendix we reproduce an upper bound from [17].
Proposition 4. Let the columns of a n×T matrix X be vectors x1, x2, . . . , xT ∈ Rn and a > 0. If ‖xt‖ ≤ B,
t = 1, 2, . . . , T , then

det
(

I +
1
a
XX ′

)
= det

(
I +

1
a
X ′X

)
≤
(

1 +
TB2

an

)n

.

Proof. Let λ1, λ2, . . . , λn ≥ 0 be the eigenvalues (counting multiplicities) of the symmetric positive-definite
matrix XX ′. The eigenvalues of I + 1

aXX ′ are then 1 + λ1/a, 1 + λ2/a, . . . , 1 + λn/a and det(I + 1
aXX ′) =∏n

i=1(1 + λi

a ).
The sum of eigenvalues λ1 +λ2 + . . .+λn equals the trace tr(XX ′) and tr(XX ′) = tr(X ′X). Indeed, the

matrices AB and BA (provided they exist) have the same non-zero eigenvalues counting multiplicities while
zero eigenvalues do not contribute to the trace. Alternatively one can verify the equality tr(AB) = tr(BA)
by a straightforward calculation, see, e.g., [31], Proposition 10.9 (p. 219). The matrix X ′X is the Gram
matrix of vectors x1, x2, . . . , xT and the elements on its diagonal are the squared quadratic norms of the
vectors not exceeding B2. We get tr(XX ′) = tr(X ′X) ≤ TB2.

The problem has reduced to obtaining an upper bound on the product of some positive numbers with a
known sum. The inequality of arithmetic and geometric means implies that

n∏
i=1

(
1 +

1
a
λi

)
≤

(
1
n

n∑
i=1

(
1 +

1
a
λi

))n

=

(
1 +

1
an

n∑
i=1

λi

)n

.

Combining this with the bound on the trace obtained earlier proves the lemma.

Appendix D. A Lemma about Partitioned Matrices

In this appendix we formulate and prove a matrix lemma for the proof of Lemma 2.
Lemma 10. If a symmetric positive-definite matrix M is partitioned as

M =
(

A B
B′ D

)
,

where A and D are square matrices, then A is non-singular, and if a column vector x of the same height as
M is partitioned as

x =
(

u
v

)
,

where u is of the same height as A, then x′M−1x ≥ u′A−1u ≥ 0.
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Proof. We shall rely on the following formula for inverting a partitioned matrix: if

M =
(

P Q
R S

)
then the inverse can be written as

M−1 =
(

P̃ Q̃

R̃ S̃

)
,

where

P̃ = P−1 + P−1Q(S −RP−1Q)−1RP−1 ,

Q̃ = −P−1Q(S −RP−1Q)−1 ,

R̃ = −(S −RP−1Q)−1RP−1 ,

S̃ = (S −RP−1Q)−1 ,

provided all the inverses exist (see [32], Section 2.7.4, equation (2.7.25)). Applying these formulae to our
partitioning of M we get

M−1 =
(

A−1 + A−1BE−1B′A−1 −A−1BE−1

−E−1B′A−1 E−1

)
,

where E = D −B′A−1B.
The matrix A is symmetric positive-definite as a minor of a symmetric positive-definite matrix; therefore

it is non-singular. Non-singularity of E follows from the identity

detM = det P det(S −RP−1Q) ,

where M and its blocks are as above (see [32], Section 2.7.4, equation (2.7.26) and [33], Section 0.8.5; the
matrix S −RP−1Q is known as the Schur complement of P ). Applying this identity to our matrices yields

detM = det A detE

and since both M and A are non-singular, E is also non-singular. This justifies the use of the formula for
the inverse of a partitioned matrix in this case.

Note also that E−1 is symmetric and positive-definite as a minor of a symmetric positive-definite matrix
M−1.

We can now write

x′Mx = u′A−1u + u′A−1BE−1B′A−1u− 2u′A−1BE−1v + v′E−1v

(since u′A−1BE−1v is a number, it equals its transpose). The first term in the sum is just what we need for
the statement of the lemma. Let us show that the sum of the remaining three terms is non-negative. Let
w = B′A−1u. We have

u′A−1BE−1B′A−1u− 2u′A−1BE−1v + v′E−1v =

w′E−1w − 2w′E−1v + v′E−1v =
(
w′ v′

)( E−1 −E−1

−E−1 E−1

)(
w
v

)
.

To complete the proof, we need the following simple lemma.

Lemma 11. If a matrix H is symmetric positive-semidefinite, then the matrix(
H −H
−H H

)
is also symmetric positive-semidefinite.

24



Proof. We will rely on the following criterion. A symmetric matrix H is positive-semidefinite if and only
if it is has a symmetric square root L such that H = L2 (the if part is trivial and the only if part can be
proven by considering the orthonormal base where H diagonalises). We have(

L√
2

− L√
2

− L√
2

L√
2

)(
L√
2

− L√
2

− L√
2

L√
2

)
=
(

L2 −L2

−L2 L2

)
.

Thus (
w′ v′

)( E−1 −E−1

−E−1 E−1

)(
w
v

)
≥ 0 .
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