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Abstract

Beam position monitors are required in all accelerators for the measurement and op-

timization of the beam parameters. Cavity beam position monitors (CBPM) offer the

possibility of measurement of beam centroid positions at the nanometer scale. These

devices can be and typically are used at electron accelerator facilities, both existing

light sources and test facilities proposed for future linear colliders, such as the Interna-

tional Linear Collider (ILC) and Compact Linear Collider (CLIC). The requirements

for the CLIC main linac are to measure the beam position using approximately 5000

beam position monitors (BPM) with 50 nm resolution, at every 50 ns. The high reso-

lution, enormous scale of the system and the small bunch separation of 0.5 ns present

many challenges and demand innovative approaches for the design and operation of

the CBPM system. A cylindrical cavity BPM system has been designed in collabo-

ration with the Diamond Light Source, in the C-Band frequency region. The design

ideas, which will be beneficial to CLIC BPM and other designs, such as the deliberate

separation of modes coupled to the x and y position measurements and the cavity oper-

ation without mechanical tuning are tested in the design. The major resonance modes

of the cavity are simulated using Eigenmode simulation. The coupling and isolation

characteristics are simulated using S-parameter simulations, while the beam coupling

is studied through time domain simulations. Four cavities were fabricated according to

the design discussed in this thesis. Their coupling and isolation were tested through

S-parameter measurements. The dipole modes are separated by more than 5 MHz

in frequency. The values of the quality factors were measured using the impedance

method. The field orientation of the dipole and quadrupole modes were measured us-

ing the bead-pull perturbation technique and found to be rotated by 12◦ and 3◦ from
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x-axis respectively. The initial beam studies were carried out at the Diamond Light

Source and at the ATF2 beam line, and are presented in this thesis. The techniques

for position determination of temporally closely spaced bunches are studied. A method

was developed to remove the errors in the position determination, due to the overlap

of the signals from the previous bunches, by subtracting the decayed phasors from the

previous bunch. The method is applied to the signals from the CBPM system on the

ATF2 beam line, in the two and three bunch mode operation. The overestimation

in position determination of the second bunch is reduced from more than 67% to less

than 2%. Position resolution of better than 3 µm is demonstrated for the second bunch.

The observed phase difference between the consecutive bunches is studied for different

bunch spacing. The performance of the code is verified against simulated data.
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Chapter 1
Introduction

Particle accelerators, from the simple cathode ray tube (CRT) in televisions to the Large

Hadron Collider (LHC) with a 27 km circumference, have played a very important role

in scientific, technological and social development. With the demonstration of the

nitrogen nucleus disintegration by natural alpha particles in 1917, Rutherford fueled

enthusiasm in the new field of particle physics [1]. The need for a source of artificially

accelerated particles was soon expressed and realised by Rutherford in front of the

Royal Society in 1927.

High energy particle accelerators have been designed to accelerate various particles

for versatile applications. From the development of CRT in 1870, it took six decades

to develop the first 80 keV cyclotron in 1931 [2]. The development of accelerators

happened in many stages. The requirement for even higher energy particles has never

stopped and so the development in accelerator concepts [1]. The first accelerators using

direct voltage reached their practical limits by using big spherical electrodes and better

insulation, while avoiding voltage breakdown by dividing voltage in multiple stages.

In the next stage of accelerators, such as the cyclotrons and early linear accelerators,

the problem of voltage break down was resolved by passing the particles multiple times

through a smaller potential drop in resonance with an oscillating electric field. The third

stage of accelerators were developed by applying the concept of phase stable accelera-
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1.1. Particle colliders

tion, which started the area of synchro-accelerators [1]. The particles were accelerated

by an oscillating electromagnetic (EM) field in resonant structures, synchronised at a

specific phase. In this way the limitation of direct current (DC) breakdown could be

overcome by using the localized energy stored in a resonant cavity. In this way radio

frequency (RF) resonant cavities have played a very important role in development of

the accelerators.

Particle accelerators are developed for different purposes ranging from pure fundamen-

tal research in particle physics, to user facilities for high-intensity high-energy light.

As discussed in the following sections, the accelerators can be classified based on their

applications and layout.

1.1 Particle colliders

The field of particle and atomic physics has evolved with the contributions of many

people. With the discovery of the electron by J. J. Thomson in 1897, the prevailing

belief that a Hydrogen atom is the basic element of matter was broken. The ex-

periments to break an atom by bombarding it with accelerated particles required an

artificial source, other than radioactive nuclei. The accelerators, such as Bevatron [3] at

Lawrence Berkeley National Laboratory (LBNL) in the USA, were built to artificially

generate particles, such as antiprotons, in 1955. The Bevatron was a weak-focusing

proton synchrotron accelerating the beam to energies more than 6.2 GeV. The energy

and intensity of accelerated beams continued to rise thoughout the 20th century, with

the synchrotron as the work horse of high energy physics.

At the Fermi National Accelerator Laboratory (FNAL), the quest for elementary par-

ticles proceeded with the Tevatron high energy particle collider. The Tevatron was a

proton-antiproton collider with a 6.2 km circumference, and it accelerated the beams

up to 1 TeV. Two detectors, CDF and DØ, recorded the particles generated from the

collisions of the beams. The Tevatron announced the discovery of top quark in 1995.

Within 2006 to 2008, the experiments detected two types of baryon. The last collisions

from the Tevatron were recorded in September 2011. On July 2, 2012, the Tevatron an-
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1.1. Particle colliders

nounced sets of analysis results for its collision data, showing no statistically significant

evidence for the Higgs boson.

The Large Hadron Collider (LHC) built by European Organization for Nuclear Re-

search (CERN) is situated near Geneva, on the border of Switzerland and France. It is

designed to accelerate proton beams up to 7 TeV. To bend such a high energy beam of

protons, the LHC uses 1600 superconducting magnets generating magnetic field up to

8.3 T. The particles generated from the collisions of the beams are detected by two gen-

eral purpose detectors, ATLAS and CMS. The other two detectors, ALICE and LHCb,

are designed to investigate quark-gluon plasma and missing antimatter respectively.

The LHC reported to produce quark-gluon plasmas during 2010 operation. In 2011,

the LHC experiments started search for the Higgs boson, the primary physics research

goal of the machine. LHC experiments could not find any sign of the Higgs boson in

the higher mass range. Finally on July 4, 2012, the ATLAS and CMS teams at CERN

announced the discovery of a boson with mass of 125.3 GeV/c2, with a significance of

4.9 sigma, which is consistent with the Higgs boson [4, 5].

1.1.1 Synchrotron radiation and limitation on circular collider

In classical electrodynamics, when a charged particle is accelerated in a uniform vertical

magnetic field, it emits energy in terms of electromagnetic radiation, which is called

synchrotron radiation. The total radiated power Psyn by an accelerated electron is

calculated as [6],

Psyn =
e4γ4

6πε0m4
ec

5
B2, (1.1)

where e is the charge of the electron, γ is the relativistic Lorentz factor, ε0 is the

permittivity of free space, me is the rest mass of the electron, c is the speed of light

and B is the magnetic field strength.

The radiated power is proportional to γ4. It also means that a lighter particle will

emit more radiation compared to a heavier particle with the same energy. An electron

will emit 6.19 × 109 times more energy than a proton with the same total energy.

This limits the energy up to which the electrons and positrons can be accelerated
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1.1. Particle colliders

efficiently in a circular machine. To reduce the radiation loss, the magnetic field should

be weaker, which decreases the bending angle and increases the overall size of the

machine. To overcome this limitation, linear accelerators can be used to accelerate and

collide electrons and positrons at high energies.

1.1.2 Linear colliders

The SLAC Linear Collider (SLC), situated at the SLAC National Accelerator Labo-

ratory, California, was a 3.2 km long electron-positron collider, designed for 91 GeV

center of mass (CM) energy [7]. It was the first linear collider; designed solely to collide

electrons and positrons to study the Z0 particle. Based on the experiences acquired

during the design and operation of this machine, future linear colliders such as the In-

ternational Linear Collider (ILC) and Compact Linear Collider (CLIC), were proposed.

a) International Linear Collider

International Linear Collider (ILC) is a proposed electron-positron collider with 200-

500 GeV center of mass energy (CME), with a provision to upgrade it to 1 TeV [8].

ILC is proposed to provide a peak luminosity of 2× 1034 cm−2s−1. A set of parameters

for the ILC design with 500 GeV CME is listed in Table 1.1. The energy range of

ILC should provide an opportunity to study the physics of top-quarks and Higgs boson

with better precision. The physics and engineering concepts and techniques required

for ILC are being developed by different collaborators, and it will also benefit from the

experience gained from other accelerators developed in past and present.

A layout of ILC facility for the design with 500 GeV CME is shown in Fig. 1.1. A po-

larised electron source will use a laser illuminating photo-cathode gun to produce elec-

tron beams [8]. The beam will be bunched and accelerated up to 76 MeV using normal

conducting acceleration structures. The bunched beam will be further accelerated to

5 GeV in a superconducting linac. Before injecting into a damping ring (DR), the spin

vectors of the electrons will be rotated in the vertical direction using a superconducting

solenoid, and the corresponding energy will be compensated using additional acceler-
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1.1. Particle colliders

Table 1.1: Set of major machine parameters of ILC for a proposed design with 500 GeV
CME [8].

Parameters Value Unit

Center of mass energy 200-500 GeV

Peak luminosity 2× 1034 cm−2s−1

Charge per bunch 1.6 - 3.2 nC

Bunch length σz 0.3 mm

Number of bunches per train 2625

Bunch spacing 369 ns

Pulse repetition rate 5 Hz

ation structures. The positrons will be generated using photo-production techniques,

by directing the photons emitted by the accelerated electrons on to a rotating target of

Titanium. The positrons generated from the target will be captured and accelerated

up to 5 GeV, while the electrons and photons will be dumped. The spin vectors of

the positrons will also be rotated in the similar way as of the electrons and the energy

will be compensated. The beams will then be injected into the corresponding damping

rings.

ILC will have separate damping rings for electron and positron beams, each with a

circumference of 6.7 km, divided into six arcs and straight sections [8]. The straight

sections will have focusing defocusing (FODO) cells, and the arc sections will contain

theoretical minimum emittance (TME) cells. The damping ring should be able to

reduce the horizontal and vertical emittances to the desired lower values, of 8.0 µm

and 20 nm respectively, within a short duration of 200 ms. The damping rings are

proposed to use superferric wigglers with a peak field of 1.67 T. The superconducting RF

acceleration system will provide an acceleration voltage of 24 MV at 650 MHz for energy

compensation [8]. The DR should be able to suppress the larger jitters in the injected

beam, and facilitate a fast feedback system to control the bunch instabilities. Because

the bunch separation in the main linac section is larger than in the damping rings, it

should be possible to extract a bunch individually without affecting the emittance of

the other bunches. The bunches will be extracted using the short RF pulse field in a

stripline kicker.
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Figure 1.1: Layout of ILC facility for 500 GeV CME design [8].
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1.1. Particle colliders

The bunches extracted from the DRs will be transported to the main linacs through

ring to main linac (RTML) sections. In RTML, the longer bunches from the damping

rings will be compressed in two stages, by a factor of 30 to 45, to 300 µm [8]. In

RTMLs, the beams will also be accelerated up to 15 GeV from the 5 GeV energy at

DR extraction. In addition to bunch compression and acceleration, the beam will also

be collimated and the spin rotation angles of the electrons and positrons will be rotated

as per requirements at the interaction point (IP).

The 15 GeV beams of electrons and positrons from the RTMLs will be further accel-

erated to their final target energy of 250 GeV in two separate main linacs [8]. The

combined length of both main linacs will be 23 km. Both linacs will use nine cell super-

conducting standing wave cavities, which will provide an average acceleration gradient

of 31.5 MV/m at 1.3 GHz. Each of the 14560 superconducting radio frequency (SRF)

cavities is proposed to have fill time of 596 µs and internal Q values higher than

0.8× 1010. The main linac will use weak focusing FODO optics with one quad per RF

unit. The lattice and accelerator components are designed to restrict the emittance

growth to less than 10 nm in the vertical direction.

The parameters of the beams accelerated in the main linacs will be verified in the beam

delivery system (BDS) [8]. The parameters will be matched to the requirements at the

IP. It will also remove any beam-halo and mis-steered beams, to prevent damage to the

detectors and to minimise the background in the detectors. The final focus (FF) optics

blows the beam size and make it almost parallel at the entrance of the final doublet (FD)

of strong quadrupoles. The FD will demagnify the beam, and the required chromatic

corrections will be applied using additional sextupoles. Two beams will then collide at

the interaction point at a nominal angle.

The ILC BDS will be equipped with different beam diagnostics systems such as beam

current monitors, beam loss monitors, laser wires, optical transition radiation (OTR)

screens and beam position monitor (BPM) systems. The beam position will be mea-

sured along the beam line using three different types of BPMs, based on the principles

of striplines, buttons and resonant cavities. Their working principles are explained in

Chapter 2. The ILC BDS will use 312 cavity BPMs, working in the L, S and C fre-
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1.1. Particle colliders

quency bands, depending on the beam size in different sections of the beam line. Other

than BDS, cavity BPMs will also be used in the RTML and main linac sections of the

ILC.

b) Compact Linear Collider

The Large Hadron Collider (LHC), at CERN in Geneva, will explore the TeV energy

range by colliding beams of hadrons. One should not expect from the LHC experiments

answers to all questions concerning new physics. For example, any Higgs boson other

than those detected by the LHC experiments can be interesting. If super-symmetry is

the working principle, then the LHC may not be able to measure all super partners.

A lepton-antilepton collider can answer many of the residual questions. In lepton-

antilepton collisions, all of the center of mass energy is available for the production of

elementary particles [9].

To address some of the open questions, a multi-TeV lepton collider, called the Compact

Linear Collider (CLIC), has been proposed. It will collide bunches of electrons and

positrons with a 3 TeV center of mass (CM) energy [10], with a provision to increase

it up to 5 TeV. The machine will be upgraded in steps to the final energy.

Some of the major physics topics for research at CLIC will be to investigate the con-

tribution of a lighter Higgs boson to the muon mass, and to study the heavy Standard

Model (SM) Higgs boson, super-symmetric Higgs boson and Charge Parity (CP) vio-

lation [10, 11]. In addition CLIC should also provide precise measurements of gluinos

and strongly interacting quarks. At CLIC it should be possible to fully utilize its high

center of mass energy to test the Standard Model and some new physics beyond the

Standard Model.

The proposed design of CLIC can be divided into different subsystems. A block diagram

of a proposed machine layout for the design with 3 TeV CM energy is shown in Fig. 1.2.

The electrons and positrons will be accelerated up to 200 MeV in different pre-injector

linacs before injecting into a common injector linac, which will further accelerate them

up to 2.86 GeV [12]. In the common injector linac, the bunch repetition frequency
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1.1. Particle colliders

Figure 1.2: Proposed layout of CLIC for a design with 3 TeV CM energy [12].
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1.1. Particle colliders

will be 1 GHz, while the accelerating structures will use an RF voltage at 2 GHz.

The accelerated e− and e+ bunches will be separated and injected into the separate

pre-damping rings.

The damping rings will cool the injected e− and e+ beams, by radiation damping, to

reduce their emittances to the smaller values required for collisions [12]. The beams

will be cooled in two stages. Two damping rings are required because of the large

emittance of the beams coming from injector and the high bunch repetition rate. The

normalised beam emittances at the output of the injector, of 100 and 7000×103 nm.rad

for the e− and e+ beams respectively, will be reduced to 500 nm.rad by the process of

radiation damping. To cool the beams, pre-damping and damping rings will use the

wigglers with peak magnetic fields of 1.9 and 2.5 T respectively. The delay loops are

used to create the required 2 GHz bunch train structure.

The beams extracted out of the damping rings will be transferred to the main linacs,

through Ring To Main Linac (RTML) sections [12]. In RTML the beams will be

accelerated to 9 GeV, which is the proposed particle energy at the injection to the

main linacs.

The major proposed parameters of the main linacs are listed in Table 1.2. A CLIC main

linac will be based on the Two Beam Acceleration (TBA) scheme, in which the RF

power extracted from a high current low energy drive beam will be used to accelerate

a low current main beam [12, 13].

The drive beam will be formed of 24 bunch trains which are separated by 5.85 µs.

The bunch trains with a bunch repetition frequency of 0.5 GHz, accelerated up to

2.37 GeV by the drive beam linac, will then enter the Drive Beam Recombination

Complex (DBRC). Using a delay line and two combiner rings, the bunch trains will be

compressed to increase the bunch repetition frequency to 12 GHz, which will increase

its average current to 100 A. Each of the 244 ns long bunch trains will be made of 2928

bunches of 8.4 nC charge each.

The power stored in the drive beam will be extracted using Power Extraction and Trans-

fer Structures (PETS), which will be transferred to the main beam running alongside
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1.2. Storage rings and free electron lasers as a light source

it. A single tunnel will house the beam lines for both of the main beam and drive beam.

Table 1.2: Major parameters of the main linacs and beams for the 3 TeV design of
CLIC. [12, 14]

Parameter Symbol Value Unit

Center of mass energy Ecm 3 GeV

Overall linac length llinac 42.16 km

Number of drive beam sectors Nunit 24

Main linac RF frequency fRF 11.994 GHz

Gradient (loaded) G 100 MV/m

Luminosity L 5.9 ×1034 cm−2s−1

Drive beam

Beam energy Ein,dec 2.4 GeV

Beam pulse current Idec 100 A

Number of bunch train in a beam Ntrain,dec 24

Train separation ∆ttrain,dec 5.8 µs

Bunch repetition frequency fb,dec 11.994 GHz

Bunch charge qb.dec 8.4 nC

Main beam

Number of bunches per train Nb 312

Beam pulse current I 1.5 A

Bunch repetition frequency fb 2 GHz

Bunch charge q > 0.6 nC

Bunch length σs 44 µm

The main beams will be accelerated from 9 GeV to 1.5 TeV, using an RF acceleration

voltage of 100 MV/m at 11.994 GHz [12, 13]. A total peak RF power of 9.2 TW will

be required for both linacs. The main beams will be formed of the bunch trains with a

train repetition frequency of 50 Hz. Each bunch train will be 156 ns long, producing a

pulse current of 1.5 A. Each train will have 312 bunches of 0.6 nC, separated by 0.5 ns.

1.2 Storage rings and free electron lasers as a light source

A storage ring is a circular accelerator used to store an accelerated beam, for longer

duration while extracting its energy in the form of electromagnetic radiation. Because

the electrons are easy to produce and lighter than other charged particles, synchrotron

light sources typically use electron beams. The potential of synchrotron radiation
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1.2. Storage rings and free electron lasers as a light source

for research and measurement was realized in the 1950’s and light sources, such as the

Cosmotron at Brookhaven National Laboratory (BNL) in the USA, were commissioned.

The technology and design of magnets have since then developed and third generation

synchrotron light sources at present use special magnets known as undulators and

wigglers (insertion devices) to produce the synchrotron radiation. Unlike simple dipole

magnets, the insertion devices are made from pairs of north and south poles arranged

alternatively [15, 6]. The radiation extracted is collimated and transported through

beam lines to user areas, where it is used for different research techniques. The extracted

radiation is typically in the wavelength range from visible to X-rays, and can be stacked

as short pulses of high intensity. The fourth generation of light sources are linear

accelerator facilities known as free electron lasers (FEL).

Synchrotron radiation from light sources is used over a broad range of research areas

ranging from condensed matter, archaeology, crystallography, electronics and material

science to biology and medical applications. The radiation is used for optical analysis

techniques, such as electromagnetic (EM) spectroscopy and imaging techniques based

on absorption, emission, diffraction and scattering mechanisms. The short and high

intensity pulses from a light source make it possible to take high speed images with

higher resolution.
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Chapter 2
Introduction to beam position monitor

systems

With the development of acceleration techniques, beam diagnostics have also evolved

to provide more precise and faster measurements. The accurate measurements of beam

positions make it possible to study the beam trajectory, dynamics and verify machine

optics. In this chapter, various techniques to determine the beam position of different

particle beams with different parameters are discussed. After brief introduction to

the working and applications of different beam position monitor (BPM) systems, the

working principle of a cavity beam position monitor (CBPM) is explained in detail.

The advantages and drawbacks of a CBPM system are discussed briefly.

2.1 Diagnostics for beam position measurement

BPM diagnostics are normally non-destructive. They can be based on different prin-

ciples, such as capacitive, inductive, traveling wave and resonant structure techniques.

Short introductions to the working principles of these techniques are given in the fol-

lowing sections.
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2.1. Diagnostics for beam position measurement

2.1.1 Shoe-box BPM

A shoe-box BPM uses capacitive pickup from the beam. As shown in Fig. 2.1, a typical

shoe-box BPM contains a rectangular conductor plate, of width 2a and length l, with

a diagonal cut in it.

lleft

lright

x

a

lU U

Figure 2.1: Simplified drawing of a shoe-box BPM, showing two plate electrodes and
corresponding segments of a beam trajectory (in red) superimposed.

For any beam trajectory at a specific position x, the beam trajectory segments within

each of the plates are of different lengths. The capacitively induced voltage on each

of the plates is proportional to the lengths of the segments. The beam position is

proportional to the difference between the voltages induced on the two plates, calculated

as [16, 17],

x = a
lright − lleft
lright + lleft

= a
Uright − Uleft
Uright + Uleft

= a
∆U∑
U
, (2.1)

where lleft and lright are the lengths of segments and Uleft and Uright are the induced

voltages on the left and right plates respectively.

The major advantage of the shoe-box technique is the linear dependence of the output

signal on the position offset. It is generally used for ion beams with bunches longer

than the plates. The output signal has a very small dependence on the frequency. The

system can operate at a bandwidth between direct current (DC) and 100 MHz, and
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2.1. Diagnostics for beam position measurement

has a typical position resolution of the order of a few µms.

2.1.2 Button BPM

A button BPM is another example of a capacitive BPM. As shown in Fig. 2.2, the two

button electrodes are kept at a same distance a from the centre of the beam pipe. They

are kept electrically isolated from the beam pipe.

Figure 2.2: Simplified vertical cross-section drawing of a button BPM, showing the two
electrodes at radius a inside a beam pipe.

The image current induced on a button electrode, by a bunch passing at a radial

distance r and angle θ, will induce a voltage across the impedance between the electrode

and beam pipe. From the induced voltages on both electrodes, the beam position x

can be derived as [18, 17],

x = r cos(θ) =
1

S

∆U∑
U
, (2.2)

where ∆U and
∑
U are respectively the difference and sum of the induced voltages on

the electrodes. S is the sensitivity constant derived from system calibration.

The amplitudes of the voltages induced on the buttons have a non-linear dependence on

the position of the beam. In comparison to the shoe-box type BPMs, the button BPMs

have smaller capacitance and can operate at 50 Ω. Button BPMs are generally used

for high energy electron accelerators and light sources where the bunches are shorter or

of the same length of the button electrodes. The button BPMs can measure the beam
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2.1. Diagnostics for beam position measurement

position with a resolution of 10 to 100 µm, at a bandwidth up to 1 GHz.

2.1.3 Stripline BPM

A stripline BPM works on the principle of a traveling wave. Fig. 2.3 shows a simpli-

fied drawing of a stripline BPM made of two striplines of length l and characteristic

impedance Zstrip. A bunch of relativistic charged particles passing by the striplines

induces an electromagnetic (EM) pulse on the striplines [17]. Half of the induced pulse

generates voltage across a resistance R1 at port 1 of the stripline, while other half of the

induced pulse travels along the stripline. On arrival at port 2, the half of the traveling

pulse gets reflected and returns to port 1, while the other half generates a voltage across

a resistance R2.

Figure 2.3: A simplified section though a stripline BPM in the beam direction.

The impedance Zstrip of the stripline must be matched carefully to the load. Machining

and installation of the stripline is relatively complex. The length of the stripline should

be chosen such that the reflected pulse from port 2 should not cancel the signal induced

by the next bunch at port 1. At any instance of time t, the induced voltage U1 at the

port 1 can be calculated as,

U1(t) =
1

2

α

2π
R1 [Ib(t) − Ib(t− 2l/c)] , (2.3)

where Ib is the beam image current, α is the angular width of the stripline, l is the

length of the stripline and c is the speed of light. In the case of relativistic short
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2.2. Cavity beam position monitor

pulses, the signal will appear as two pulses out of phase and separated in time by 2l/c.

Stripline BPMs are generally used on electron machines to measure the position of

short relativistic bunches. They typically have a position resolution of 10 µm. As the

measurements with striplines are sensitive to the direction of beam propagation, they

are very useful to distinguish between the signals induced by two beams rotating in

opposite directions.

2.2 Cavity beam position monitor

A cylindrical cavity is a cylindrical metallic pipe of radius b and length l, enclosed at

both ends by conducting plates. As shown in Fig. 2.4(a), the beam is allowed to pass

by the beam pipe of radius a connected via holes in the end plates.

2.2.1 Theory and working principle

Because a cavity is a single conductor structure, the electric and magnetic fields at all

locations inside a cavity are always orthogonal to each other. The values of the EM

E
110 

field

Bunch
l

b
a

x

(a) Three dimensional view of a simple cylindrical
cavity geometry showing a bunch and direction of
the induced dipole electric field E110 with respect
to the bunch.

a

b

l
Coaxial couplerWaveguide

Slot

Monopole

Bunch

Dipole

x

(b) A simplified cross section in the beam di-
rection of a CBPM showing cavity, coupling
slots, waveguides and coaxial coupler, along
with the induced electric fields in the monopole
and dipole modes.

Figure 2.4: Three dimensional and plan diagrams to explain the working principle of a
cylindrical cavity BPM.
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2.2. Cavity beam position monitor

field components inside the cavity can be calculated by solving Maxwell’s equations and

applying appropriate boundary conditions at the cavity walls [19, 20]. These conditions

limit the EM field to oscillate with specific field distribution patterns, known as the

resonant modes of the cavity. Based on the direction of the EM field components, the

resonant modes can be classified in either a transverse electric (TE) type mode, with its

electric field perpendicular to the cylindrical axis of the cavity, or a transverse magnetic

(TM) type mode, with its electric field aligned parallel to the cavity axis. The electric

field distribution of the two primary TM modes of interest, first monopole (TM010) and

dipole (TM110), are shown in Fig. 2.4(b). In the notation TMmnp, the m, n and p are

the mode numbers along φ, r and z axes of the cavity respectively. The m, n and p

can be seen as a number of electric field poles (peaks) within the half range along the

respective coordinate axis, e.g. m shows the number of peaks within 0 to π angle along

the φ-axis.

When a bunch of high energy charged particles passes through a resonant cavity, some

of its energy gets coupled in the cavity and induces oscillating electromagnetic (EM)

fields over the different resonant modes. Among all TM modes, the amplitude of

the induced dipole mode (TM110) is proportional to the charge and position offset of

the bunch from the centre of the cavity, hence it can be used to measure the beam

position. On the other hand for a small position offset, the amplitude of the induced

monopole mode (TM010) does not depend on the bunch position, but it is sensitive

to the bunch charge. It can be used to provide reference measurements for the bunch

charge and bunch arrival time. The induced EM fields in the modes oscillate with time

at the resonant frequencies of the modes. The resonant frequency fmnp of a transverse

magnetic mode TMmnp of an empty cavity is given by [19],

fmnp =
ωmnp
2π

=
1

2π
√
µ0ε0

√(
jmn
b

)2

+
(pπ
l

)2
, (2.4)

where µ0 and ε0 are the permeability and permittivity of the free space respectively, m,

n and p are the mode numbers in the cylindrical coordinates φ, r and Z respectively.

The ωmnp is the angular resonant frequency, jmn is the nth zero of the Bessel function

of order m. The resonant frequency of a mode is inversely proportional to the radius
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2.2. Cavity beam position monitor

of the cavity.

The minimum radius of the cavity is limited by the radius of the beam pipe. The

cavity radius should be large enough to allow resonances, and to support the power

extraction mechanism. As the beam pipe acts as a circular waveguide and high pass

filter, the resonant frequencies of the strongly coupled modes of the cavity should be

less than the cut-off frequency of the beam pipe to restrict their propagation into the

beam pipe. The cut-off frequency of a transverse electric (TE) propagation mode of a

circular waveguide is calculated as [19],

fc,mn =
c× j′mn

2π a
, (2.5)

where j
′
mn is the nth root of the derivative of the mth order Bessel function Jm. Among

all TE modes, TE11 mode has the lowest cut-off frequency. All these factors put a lower

limit on the cavity radius and an upper limit on the resonant frequency of the dipole

mode.

On the other hand, the resonant frequency of the dipole mode should be high enough

to have enough EM cycles between two consecutive bunches. Increasing the size of the

cavity and overall BPM structure reduces the resonant frequency. These factors put

an upper limit on the radius of the cavity and a lower limit on the dipole frequency.

Even after the bunch has passed, the induced EM field in a mode keeps oscillating,

with its amplitude decaying exponentially in time. The amplitude decay constant τ of

the field of a mode can be calculated as,

τ =
2QL
ωmnp

, (2.6)

where QL is the loaded quality factor for the cavity mode, which is calculated as,

QL =
ωmnpWstored

Ploss
, (2.7)

where Wstored is the EM energy stored inside the cavity at an instance of time, Ploss

is the energy lost per unit time. The energy stored inside a cavity can be lost in
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2.2. Cavity beam position monitor

two ways; by internal resistive losses in the cavity walls, or it can be extracted out of

the cavity. The quality factor can be divided into the internal quality factor Q0 and

external quality factor Qext. The three Q values are related to each other via,

1

QL
=

1

Q0
+

1

Qext
. (2.8)

The quality factor is a material dependent parameter. To compare the effects of

only cavity geometry, a material independent factor known as the normalised shunt

impedance R/Q is used. The amount of energy coupled into the cavity from the beam

depends on this factor. The R/Q of the TMmnp mode for an x0 beam position is

calculated as,

(
R

Q

)
mnp

(x0) =
V 2
mnp(x0)

ωmnpWmnp
=

(∫ l/2

−l/2
Emnp(x0) dz

)2

ωmnp
ε0
2

∮
Vcavity

|Emnp(r, φ, z)|2dV
, (2.9)

where Vmnp =

∫ l/2

−l/2
Emnp(x0)dz, Emnp(x0) is the electric field along the beam trajec-

tory, and Vcavity is the cavity volume.

Because of the oscillating nature of the EM fields, the field inside the cavity changes

while the bunch is still passing through the cavity. It reduces the effective power coupled

from the bunch into the cavity, compared to its peak value. This factor is called the

transit time factor αTT , which is calculated as,

αTT (β) =
sin
(
ωmnp l
βc

)
ωmnp l
βc

, (2.10)

where β = v/c and v is the speed of the bunch. The αTT is used later in this chapter,

while calculating CBPM signal amplitude using Eqn. 2.18.

From Eqn. 2.9, the power coupling from the beam to the cavity is limited by the length

of the cavity. A very thin cavity will not couple enough power which can be detected.

If the cavity is very long, then the transit time factor will reduce the effective coupled

voltage. The effects of a slanted orbit or bunch also start to be dominant in a longer
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2.2. Cavity beam position monitor

cavity. Choosing the cavity parameters is a trade off between better power coupling

and these limiting factors.

The EM field induced inside the cavity is coupled out for detection using different

coupling mechanisms, such as a capacitive probe or a magnetic loop. In present designs,

slot coupled waveguides are used as shown in the Fig. 2.4(b). The voltage difference

across the slot edges generates an oscillating dipole voltage inside the slot. The field

inside the cavity is coupled into the waveguides through slots. A rectangular waveguide

is preferred as a capacitive coupling probe is more effective with a rectangular structure.

The fixed orientation of the EM field in the rectangular waveguide improves the selection

of the dipole field of a specific orientation inside the cavity. In addition, the rectangular

shape makes the design compact and it is easier to mount a coupling probe on the

rectangular surface. The waveguide inherently acts as a high pass filter. The cut-off

frequency of a TEmn mode of a rectangular waveguide is given by,

fc,mn =
1

2π
√
µ0ε0

√(mπ
A

)2
+
(nπ
B

)2
, (2.11)

where, m and n are the mode numbers, A and B are the longer and shorter dimensions

of the rectangular waveguide cross-section respectively.

All frequencies below the cut-off will be attenuated exponentially along the waveguide

length. The TE10 mode is the fundamental mode of the rectangular waveguide with

lowest cut-off frequency, and is utilised as the coupling mode. The dimension of the

waveguide is chosen such that the cut-off frequency of the waveguide is higher than

the monopole frequency of the cavity, but it is lower than the dipole frequency, which

should propagate without any attenuation. So the monopole signal is filtered out in

the waveguide itself. In addition, the slots and waveguide adapters can be designed

such that, the position signals for x and y (transverse) axes get slightly separated in

frequency. This provides an additional opportunity to filter the contribution due to

the position offset along the orthogonal axis. This coupled signal is then extracted to

a coaxial line for further processing. The coaxial coupler can also be designed to act

as a filter for better performance of the system.
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2.2. Cavity beam position monitor

a) Beam loading in a cylindrical resonant cavity

The amplitude of the extracted position signal induced by a bunch inside a cavity can

be calculated using the fundamental theorem of beam loading. The energy lost in the

dipole mode of the cavity W110 by a bunch, can be calculated as [21],

W110 = V110(x) q, (2.12)

where V110 is the voltage seen by the bunch inside the cavity and q is the bunch charge.

According to the fundamental theorem of beam loading, the bunch sees only half of

the voltage induced by it. By rearranging the terms in equation 2.12 and using the

theorem of beam loading we get,

V110 =
ω110

2

V 2
110

ω110W110
q. (2.13)

The internal quality factor for the dipole mode Q0,110 can be calculated as,

Q0,110 =
ω110W110

P110,loss
, (2.14)

where P100,loss is the power dissipated in the cavity walls.

From the definition of the power and Eqn. 2.14, we get the relation between the nor-

malised shunt impedance and induced voltage as,

(
R

Q

)
110

=
V 2

110

ω110W110
. (2.15)

From Eqn. 2.13 and 2.15, the induced voltage in the dipole mode V110 is,

V110(x) =
ω110

2

(
R

Q

)
110

(x) q. (2.16)

From the definition of external quality factor Qext and Eqn. 2.15 and 2.16, the power

coupled out P110,coupled from the dipole mode in the cavity, through the waveguide
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2.2. Cavity beam position monitor

adapter, into the coaxial line can be calculated as,

P110,coupled =
ω2

110

4Q110,ext

(
R

Q

)
110

(x) q2, (2.17)

where Q110,ext is the external quality factor for the dipole mode.

If the impedance of the coaxial line is Zcoax, the amplitude V110,offset of the extracted

EM oscillating signal, induced due to bunch position offset, can be calculated as [22],

V110,offset(x, t) =
ω110

2

√
Zcoax

Q110,ext

(
R

Q

)
110

(x0) q
x

x0
αb αTT e

−t/2τ sin(ω110t), (2.18)

∝ x e−t/2τ sin(ω110t), (2.19)

where x0 is the bunch position for which R/Q is known, αb is the attenuation factor

due to the variation in the induced oscillating EM field over the bunch length, which

can be calculated for a bunch with a Gaussian charge distribution along its length as,

αb = e

(
−σ

2
bω

2
110

2c2

)
, (2.20)

where σb is the root mean square length of the charge of the charge distribution.

As shown in the above equation, the amplitude of the CBPM signal is linearly propor-

tional to the beam position offset. The signals induced by bunches with their positions

on the opposite side of the cavity centre will be out of phase by 180◦ with each other.

In this way, the amplitude of the CBPM signal gives the value of the bunch position

offset, and the phase of the signal gives the direction of the offset with respect to the

electromagnetic centre of the cavity.

A typical CBPM signal, calculated using Eqn. 2.18, induced by a single bunch is shown

in Fig. 2.5. A CBPM with R/Q(1 mm) of 0.8, and QL and Qext of 250 and 20000

respectively, is considered. A single bunch of electrons, carrying 0.6 nC of charge,

passing at 1 mm position offset was considered as a beam. The attenuation due to the

transit time and bunch length are neglected. As shown in Fig. 2.5(a) and 2.5(b), the

EM signal oscillates at the cavity dipole frequency. The signal has maximum amplitude

at the beginning, and it decays exponentially with time.
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Figure 2.5: Simulated typical CBPM signal, induced by a bunch in a cavity with dipole
mode frequency of 6 GHz and QL of 250.

Now considering a bunch trajectory passing through the centre of the cavity, but at a

small angle θ with respect to the cylindrical axis. In the limit of a shorter cavity, the

signal induced by the tilt reduces to [22],

Vθ,110(t) ∼= ω110

2

√
Z

Qext

(
R

Q

)
110

(x0)αb
q tan θ

lx0

× e−t/2τ cos(ω110t)

{
2c2 cos2 θ

ω2
110

sin

(
ω110l

2c cos θ

)
− lc cos θ

ω110
cos

(
ω110l

2c cos θ

)}
,

∝ θ e−t/2τ cos(ω110t). (2.21)

Similarly if a bunch passes with its centroid moving along the z-axis, but the bunch is

tilted by an angle α to the z-axis, a signal Vα,110 will be induced. The signal induced by

such a bunch can be calculated by slicing the bunch along the z-axis and calculating the

signals induced by the fractional charge stored in each slice. The net signal calculated

by vector addition of the individual signals can be written as [22],

Vα,110(t) ∼= −ω110

2

√
Z

Qext

(
R

Q

)
110

(x0)
qω110σ

2
z tan(α)

x0c

exp

(
−ω

2
110σ

2
z

2c2

)
e−t/2τ cos(ω110t),

∝ −α e−t/2τ cos(ω110t). (2.22)
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It is clear from equations 2.18, 2.21 and 2.22 that the signals generated by the position

offset and angular tilts are 90◦ out of phase with each other. The total signal will be

the linear combination of the position and tilt signals. Generally for a small tilt angles,

the position signal is dominant.

For smaller values of position offset, the amplitude of the field induced by a bunch in the

monopole (TM010) mode of a cylindrical cavity is only sensitive to the charge and length

of the bunch, not the position offset. The BPM signal is normalised for its dependence

on the bunch charge and length with the monopole signal from a reference cavity. The

reference cavity is designed such that the resonant frequency of its monopole mode is

equal to the dipole frequency of the position cavity.

Cavity BPMs are normally used in high energy electron colliders and light sources. In as

early as 1999, V. Balakin et al tested a cavity BPM triplet setup and showed position

resolution of 150 nm [23]. While testing their design, V Sargsyan and collaborators

faced problems with the low available bunch charge and large beam jitter, and could

extract resolution of 470 µm [24]. M. Slater et al tested many BPMs during their

experiments on a prototype energy spectrometer and recorded minimum resolution

of 170 nm [25]. S. Boogert et al recorded consistent position resolution of 200 nm

and the highest resolution of 27 nm over a shorter time spans [26]. These are the

resolutions measured for cavities with relatively higher QL values of the order of 5000

and moderate beam coupling strength. Cavities with lower QL values of the order of 50

are also designed for faster measurements. H. Maesaka et al reported development of

a cavity BPM for XFEL/SPRING-8, with QL of 50 and measured position resolution

of 230 nm [27]. Y. Honda et al from KEK reported design of low QL cavity BPM to

use near the interaction point of ATF2 and tested its resolution to 8.7 nm [28], which

is the best resolution recorded till today.

2.3 Advantages and applications of cavity BPMs

The major advantage of a CBPM is its linear response to the beam position offset.

Linear response improves the accuracy of the measurement interpretation and system
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2.3. Advantages and applications of cavity BPMs

calibration. For a cavity with relatively higher QL value, the cavity signal is available

for a longer time which makes it possible to efficiently isolate the dipole signal. The

other techniques involve subtraction of two large signals even near the BPM centre,

which limits their measurement resolution.

The beam positions measured by the CBPMs can be used to determine and verify the

parameters of machine lattice components. For example, if the beam trajectories before

and after a dipole magnet can be calculated accurately, the magnetic strength can be

determined and compared to the expected value. If the power supply of a magnet

becomes unstable during beam operation, the amplitude of beam position jitter in the

down stream CBPMs will increase, which can be used to find the faulty magnet and

supply. If any transverse wakefield has build up in the accelerating cavities, it will

also kick the beam and increase beam emittance. The kick due to the wakefield can

also be measured as a position change in the down stream CBPMs. The variation

in beam energy due to errors in the acceleration units, or beam arrival time, can be

measured using an energy spectrometer [25], in which the difference in bunch position

and trajectory measured at the CBPMs situated downstream from a dipole magnet are

used to determine the variation in the beam energy.

The beam positions determined from the CBPMs can be given to a position and angle

feedback system to correct the trajectories of the following bunches, in the same [29] or

next bunch train. If the parameters of machine lattice components are kept constant,

the trajectories of a bunch can be predicted for different initial positions and angles, as

their values before and after the lattice components can be related by their well defined

transfer functions [6]. In circular particle accelerators, the bunch positions measured

during a revolution are used to calculate the amount of kick required to correct its

trajectory during the next revolution [30]. In linear accelerators, the measured positions

of the bunches at the beginning of a train are used to correct the trajectories of the

following bunches in the same train, or in the next train. The intra-train feedback

systems are limited by the amount of time required to calculate the bunch positions

and to generate the corresponding kick.
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2.3.1 Beam based alignment

In an accelerator, specially those using low emittance beams, it is essential to align

the optics elements accurately to satisfy the requirements of small emittance dilution

and orbit distortion. The dipole field kick errors experienced by a beam while passing

through quadrupole magnets at off-centre positions deviate the beam from its ideal orbit

and increase the emittance of the beam [31, 32]. To improve the relative alignment of the

machine optical elements and correct for fabrication and mechanical alignment errors,

the elements are aligned using a beam-based alignment (BBA) technique [33, 34, 35].

Quadrupole and sextupole magnets have field patterns, such that a beam passing

through their centre will not experience any dipole field. In this case, changing the

strength of the magnet should not affect the beam trajectory. If the beam is passing

off centre through the magnet, the beam experiences kick accordingly. The amount

of kick the beam experience is linearly and non-linearly proportional to the distance

from the magnetic centre of the quadrupole and sextupole respectively. The change in

the trajectory is measured by BPM(s) situated down stream from the magnet. For a

beam passing at a constant position offset through the magnet, changing the magnet

strength changes the amount of kick experienced by the beam, which changes the posi-

tion reading in the BPM. To align the magnet, the magnet position is scanned, and at

each magnet position the magnet strength is varied. The amount of kick experienced

for each magnet strength is recorded as a position variation in the BPM. The mag-

net position where the variation in the BPM output is minimum, for the variation in

magnet strength, gives the magnetic centre. Because a cavity BPM can differentiate

smaller position changes, it can measure the smaller trajectory variations with more

accuracy, and hence improve the accuracy of alignment.

2.4 Overview of research chapters

The goals of this research were to develop design and analysis techniques for cavity

beam position monitor systems for future high energy electron accelerators. The studies

presented in this thesis are motivated towards development of a CBPM system for the
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main linac section of the proposed CLIC collider.

The proposed layout and working principle of CLIC are discussed briefly at the begin-

ning of chapter 3. The constrains applied by the machine parameters on the choice

of the design parameters and signal analysis techniques for the CBPM system are ex-

plained. The effects of cavity parameters on the CBPM signals are discussed. The key

research areas, such as overlaping of signals from closely spaced bunches and require-

ment for a simpler and efficient CBPM design, are identified. As CLIC was still in

technical design stage, the identified topics were studied through collaborative projects

with the institutions having operational accelerator facilities, such as Accelerator Test

Facility (ATF) at KEK in Japan, and Diamond Light Source in UK. Most of the beam

testing presented in this thesis was carried at ATF to benefit from an already opera-

tional CBPM system and stable beam with shorter bunches.

In chapter 4, a method developed to analyze CBPM signals induced by closely spaced

bunches is discussed. After explaining the layout and working principles of the ATF, the

CBPM system installed on the ATF2 extraction line is discussed. A signal processing

method for CBPM signals induced by an individual bunch is explained in detail. The

development of a CBPM signal induced by multiple bunches, closely spaced in time,

is explained. The working principle of a method to remove the signal pollution from

previous bunches is discussed. Results from testing of the method on the CBPM signals

induced by beam and simulated signals are presented in this chapter. A code to simulate

the signals induced in a CBPM by a bunch train is presented in this chapter. The effects

of the signal processing parameters on the performance of the method are discussed in

detail. A study of the effects of temperature variation on the cavity parameters is also

presented in that chapter.

The design ideas for a large scale CBPM system are discussed in chapter 5. Differ-

ent ideas are tested individually by EM simulations before testing them together on a

complete CBPM geometry. The results of EM simulations of the CBPM structures are

compared in this chapter. The RF test measurements of a fabricated cavity are pre-

sented and their results are compared to the simulation results. The possible reasons

for the differences between the parameters of a fabricated cavity and those predicted
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from the EM simulations are explored using simulation reconstructions of various fab-

rication errors. Results from the initial beam tests carried at ATF2 are also presented

in the chapter.

The results from the development and testing of a multi-bunch signal processing method

and CBPM prototype are summarised in chapter 6. The effects of additional informa-

tion and advantages brought by these studies to the CBPM design, signal processing

and applicability of the high Q CBPMs on various accelerators are discussed in the

chapter. The research topics, identified during the course of the presented work, for

further studies are discussed at the end of the chapter.
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Chapter 3
Cavity BPM system for CLIC main linac

In the CLIC main linac, the bunch trains will be accelerated from 9 GeV to 1.5 TeV.

Each train will have 312 bunches of 0.6 nC, separated by 0.5 ns. The main linac is

designed to fulfil very stringent restrictions on beam emittance growth. The beam

emittances at the output of damping rings will be 500 and 5 nm along the x and y axes

respectively. The target luminosity for CLIC is 2× 1034 cm−2s−1. To achieve this goal,

the beam emittance in x (εx) and y (εy) will need to be maintained below 660 and

20 nm [12] respectively. This leaves little room for the total emittance growth in the

RTML and main linac sections. The emittance growth windows of 30 and 5 nm in x

and y are for the static (errors in alignment of quadrupole magnets and BPMs etc),

and dynamic (fluctuations in quadrupole magnet current etc) errors.

The primary alignment of various machine components in the main linac section will

be carried out using a Metrologic Reference Network (MRN). The MRN will use over-

lapping wires to align the machine components over a 200 m length, with an accuracy

of 5-20 µm. The alignment in the main linac section will further be improved using the

BBA techniques [12], as discussed in section 2.3.1.

To apply BBA techniques, the main linac will be instrumented with 4196 BPMs, one

BPM attached to almost every magnet. As explained in section 2.3.1, the BBA tech-

niques require precise position measurements down-stream to a magnet. The main
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3.1. Frequency regions for CBPM design and electronic signal processing

requirements and important machine parameters for the BPM system on the main

linac are listed in Table 3.1. The required position resolution of the order of 50 nm has

already been demonstrated by the existing CBPM systems [26, 36].

Table 3.1: BPM requirements for CLIC main linac.

Parameter Value Unit

Resolution 50 nm

Accuracy 5 µm

Bandwidth 100 MHz

Number of BPM required 4196

Drift tube diameter 8 mm

The CLIC main linac will have beam accelerating structures consuming several mega-

watt of power at 12 GHz and an RF signal of the same frequency will be distributed

along the linacs for the purpose of synchronisation of different devices. The same RF

signal can be used in the electronic processing of the cavity BPM signals. Using that

signal will provide a stable phase relation with the machine RF, which is essential for

position measurement. It will be beneficial to keep the CBPM frequency at, or near, a

harmonic or sub-harmonic of the machine RF frequency.

3.1 Frequency regions for CBPM design and electronic

signal processing

In the proposed design, the CBPMs will sit next to the accelerating structures operating

at MW power levels. Detecting the µW power induced inside a CBPM at the same

frequency can be difficult in the presence of the noise due to possible RF power leakage

from the accelerating cavities and power distribution system. The frequency region

near 12 GHz should be avoided as a CBPM frequency to reduce the background noise

signal and for the safety of the processing electronics.

As discussed in the chapters 2 and 5, the maximum value of a CBPM frequency is

limited by the cutoff frequency of the beam pipe attached to it. From Eqn. 2.5, a beam

pipe with 4 mm radius will have a cutoff frequency fc,pipe of 21.96 GHz. Fig. 3.1(a)
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3.1. Frequency regions for CBPM design and electronic signal processing

shows the frequencies of the major TM modes of a pillbox cavity, calculated using

Eqn. 2.4, designed to set its dipole mode at 6 GHz. All of the first three monopole,

dipole and quadrupole modes are well below the cutoff frequency of the beam pipe.

Neither of these modes will propagate along the beam pipe, nor will they affect the

beam passing through the beam pipe. Fig. 3.1(b) shows a block diagram of a simple

signal processing scheme for CBPM signals near 6 GHz. The functions of every circuit

components in the diagram are explained in section 4.2.1 further in this thesis. The

12 GHz reference signal from the machine can be converted to 6 GHz using an f/2

frequency divider. To process the signals in a homodyne mode, the cavity should be

designed at exactly 6 GHz. To process the signals in a heterodyne mode, the cavity can

be detuned from 6 GHz, and the down converted Intermediate Frequency (IF) signal

of few MHz frequency can be digitised for further digital processing.
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Figure 3.1: Resonance frequencies of major TM modes and signal processing scheme
of a CBPM with dipole mode frequency f110 near 6 GHz.
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3.1. Frequency regions for CBPM design and electronic signal processing

Above the machine RF frequency, the next convenient frequency to design the CBPM

system can be 18 GHz. Fig. 3.2(a) shows the resonant frequencies of the TM modes,

calculated using Eqn. 2.4, of a pillbox cavity with its dipole at 18 GHz. All TM modes

above the dipole will have resonant frequencies higher than the cutoff frequency of the

beam pipe, and may affect the beam while propagating along it.

0 10 20 30 40 50
Frequency (GHz)

0

10

20

30

40

50

60

T
M

01
0

T
M

11
0

T
M

21
0

T
M

02
0

T
M

12
0

T
M

22
0

T
M

03
0

T
M

13
0

T
M

23
0

f110 = 18.00 GHz, f c,pipe = 21.96 GHz

A
rb

it
ra

ry
 n

um
be

r

(a) Resonance frequencies of major TM modes in com-
parison to beam pipe cutoff frequency fc,pipe

f / 2

CBPM Signal
~ 18 GHz

Machine RF

12 GHz

LNA

6 GHz

IF Signal

in MHz
LNA

~ 6 GHz

IF Signal

12 GHz

(b) Basic diagram of signal processing scheme

Figure 3.2: Resonance frequencies of major TM modes and signal processing scheme
of a CBPM with dipole mode frequency f110 near 18 GHz

A signal at 18 GHz can be down converted in two stages, or in a single stage. A scheme

with two stages of electronic down conversion is shown in Fig. 3.2(b). In this scheme

the CBPM signal at 18 GHz will be mixed with the machine RF reference signal at

12 GHz to down convert it to 6 GHz. In the next stage of processing, the 12 GHz

machine reference signal will be converted to 6 GHz using a frequency divider, and will

be used as an LO signal to further down convert the 6 GHz IF signal. If a CBPM is

designed exactly at 18 GHz, the second stage will act as a homodyne down converter.

49



3.2. Effect of CBPM frequency on bunch train signal

For a detuned CBPM, the IF signal is in the MHz frequency range, the second stage IF

can be digitised for further processing. Frequencies between 6 and 18 GHz and their

processing schemes are also being investigated for the project.

3.2 Effect of CBPM frequency on bunch train signal

The EM fields induced in a cavity by individual bunches can be linearly added to get

the resultant signal. The possible cavity BPM signals induced by a CLIC bunch train

in the CBPMs of different frequency and Q values can be predicted using the signal

simulation code discussed in the Section 4.3. If the signal amplitude grows with time, it

can saturate the processing electronics. In such a case the signal has to be attenuated

in advance, or actively during the bunch train. Attenuating the signal degrades the

system resolution. To limit the amplitude growth, the effects of the cavity frequency and

Q values on the relative amplitude growth of the net signal are studied and presented

below in this section.

Fig. 3.3(a) and 3.3(b) shows the signal induced by a bunch train, with a constant

position offset, in a cavity with dipole mode at 6 GHz and QL of 250. Because of the

smaller bunch separation of 0.5 ns, the next bunch arrives before the signal induced by
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Figure 3.3: Simulated CBPM signal induced by a bunch train in a cavity with dipole
mode at 6 GHz and QL of 250, showing the change in signal amplitude as a function
of time.
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a bunch has decayed. Because 6 GHz is a harmonic of the bunch repetition frequency

(2 GHz), the fields induced by each bunch will add constructively, so the net signal

amplitude will grow. The rate of signal amplitude growth decreases with number of

bunch passage, because the amplitude of signals induced by previous bunches decay

with time. The amplitude stops growing after some time depending on the QL of the

cavity.

If the dipole frequency is detuned by 100 MHz from the exact harmonic frequency of

6 GHz, as shown in Fig. 3.4, the signals induced by the two consecutive bunches will

be at a phase difference of 0.31 radian. Because of the phase difference, the net signal

amplitude after two bunches will be lower than in the 6 GHz case. With this phase

difference, the signal from bunch one will be out of phase with the signal from bunch

six. As shown in Fig. 3.4(b), the net signal amplitude will oscillate before stabilizing

towards end of the bunch train.
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Figure 3.4: Simulated CBPM signal induced by a bunch train in a cavity with dipole
mode at 6.1 GHz and QL of 250, showing the change in signal amplitude as a function
of time.

The cavity signal looks completely different if the cavity is designed with a dipole

frequency at 7 GHz. The signals induced from consecutive bunches will be out of

phase with each other. As shown in Fig. 3.5(a), the signals from consecutive bunches

adds distructively and the signal amplitude decreases with each bunch passage. In

this case, the signal amplitude can get very small for alternate bunches, reducing the

measurement accuracy. The signal amplitude growth can be restricted by choosing an
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3.2. Effect of CBPM frequency on bunch train signal

appropriate resonance frequent for any mode. The same principle can be used to restrict

the growth of the monopole field inside the cavity. As the monopole modes are much

more strongly coupled to the beam, the cavity must be designed such that the induced

wake-fields in the monopole mode by different bunches do not add constructively, and

disrupt the beam itself.
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Figure 3.5: Simulated CBPM signal induced by a bunch train in a cavity with dipole
mode at 7 GHz and QL of 250, showing the change in signal amplitude as a function
of time.

The growth of the signal amplitude can also be restricted by damping the field induced

inside the cavity. As discussed in Section 2.2.1, the induced power can be damped in

the cavity walls (Q0) and it can be extracted out of the cavity (Qext). Fig. 3.6(a) shows

the signal induced by a bunch train inside a cavity with the dipole mode at 6 GHz, and

different QL values. The smaller value of QL means that the field induced by a bunch

will get damped rapidly and the maximum signal amplitude is lower. In addition, the

signal amplitude stabilises quickly for a cavity with smaller QL. The same issue can

be looked in terms of the signal pollution from previous bunches. Fig. 3.6(b) shows

the number of previous bunches Nbunch whose induced signal has not decayed to lower

than 1% of its initial amplitude. With decrease in the QL, the Nbunch also decreases,

showing decrease in the signal pollution.

One of the reason why cavity BPMs can provide higher resolution is their relatively

narrow band signal available for a longer time. When the Q values of a CBPM are

reduced below certain level, it begins to lose these advantages. Decreasing the Q of a
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3.2. Effect of CBPM frequency on bunch train signal
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Figure 3.6: Change in signal pollution with change in QL values of a cavity with dipole
mode at 6 GHz

cavity increases the frequency bandwidth of its modes, and hence the pollution from

the tails of the monopole modes. A CBPM should be designed with sensible Q values,

low enough to restrict the amplitude growth, but not permit too much contamination

from monopole modes.

3.2.1 Design challenges

Even though the required position resolution of 50 nm has already been demonstrated

by existing CBPM systems, the high beam current of 1.2 A, large scale of the system and

compact bunch spacing of 0.5 ns at CLIC present unique challenges in terms of physics

and engineering. The major research topics affecting the performance and design of

the CBPM system were identified. Because CLIC is still in its design stage, most of

the experimental studies were carried out in collaboration with other institutes with

operational accelerators, such as ATF at KEK in Japan and Diamond Light Source in

UK.

• The ambient temperature in the tunnel is estimated to change by 20 ◦C during

start up of beam operations. The cavity geometry will change with the temper-

ature due to the expansion and contraction of the metal. The variation in the
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3.2. Effect of CBPM frequency on bunch train signal

geometry will change the CBPM parameters, such as the resonant frequency and

coupling. The effect of the temperature change on the frequency of a CBPM was

studied using the CBPM system at ATF2, which is presented in Chapter 4.

• CLIC will accelerate a bunch train formed of 312 bunches separated by 0.5 ns

in time. Because of such a small temporal bunch separation, the next bunch

will arrive before the fields induced by previous bunches will have decayed. The

CBPM signal from a bunch will be polluted by the signals induced from previous

bunches. The CBPM signals from multiple bunches and a method developed to

remove the signal pollution are discussed in detail in Chapter 4. The method was

tested on the CBPM signals induced by multiple bunches in CBPMs at ATF2.

• The main linac section is proposed to have 4196 CBPMs. For a system with such

a large number of cavities, the cost of fabrication, characterisation, optimisation

and operation must be minimised by keeping the design of the CBPM simple.

The features, such as mechanical tuning, causing vacuum and fabrication failures

should be removed and the ways to work around them must be studied. These

features were studied during a project to design a CBPM system for the NLS-

Diamond Light Source, which are presented in Chapter 5.
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Chapter 4
Multi-bunch signal processing

The electromagnetic (EM) field induced by each bunch traversing through the cavity

continues to oscillate even after the bunch has passed. The amplitude of the field

decays exponentially with time. In the case of the CLIC main linac and beam delivery

system, because of the smaller bunch spacing in time, the next bunch will arrive before

the fields induced by the previous bunches will have decayed. The fields induced by

many bunches will overlap and the output signal from a bunch will be polluted by the

signals induced from the previous bunches. A bunch position determined from a signal

polluted by the previous bunches signals will be erroneous. A method was developed

to remove this signal pollution using a signal subtraction algorithm. The method was

tested on the signals from the CBPM system at the Accelerator Test Facility (ATF)

extraction line. The cavity signals induced by multiple bunches were simulated and the

performance of the algorithm was verified.

In this chapter, after introducing the ATF and CBPM system on the ATF2 extraction

line, the working principle of the signal subtraction algorithm is explained. The ap-

plication of the method on the signals induced by multiple bunches in the CBPMs at

ATF2 and on the simulated signals are presented. The effects of the system parameters

and signal processing parameters on the performance of the multi-bunch analysis are

also discussed.
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4.1. Accelerator Test Facility

4.1 Accelerator Test Facility

The ATF machine is designed to generate a beam with extremely small transverse

emittance. It has successfully decreased the emittance to a level which makes it al-

most an ideal place to test the concepts for the proposed International Linear Col-

lider (ILC). The ATF2 extraction line at the ATF is built as a continuation of the ILC

research program [37], motivated by the excellent results obtained at the Final Focus

Test Beam (FFTB) facility at SLAC [38]. Fig. 4.1(b) shows the layout of ATF ma-

chine with an enlarged view of the ATF2 extraction line shown in Fig. 4.1(a). Typical

operation values of the major parameters of the ATF machine are listed in Table 4.1.

Table 4.1: Typical operation values of the major parameters of the ATF.

Parameter Value Unit

Linac

Length 85 m

RF Frequency 2856 MHz

Accelerating field (nominal) 33 MV/m

Feed peak power 200 MW/structure

Number of bunches 1 - 20

Bunch Separation 2.8 ns

Damping ring

Energy 1.29 GeV

Revolution frequency 2.16 MHz

RF frequency 714 MHz

Bunch train repetition frequency 1.5 Hz

Extracted emittance γεx & γεy 2 & 0.5 nm

Bunch charge 1.6 nC

(Number of electrons per bunch) ( 1010) (electrons)

A photo-cathode based RF electron gun [39] can produce a train of up to 20 bunches,

with a bunch separation of 2.8 ns, which goes into a pre-injector. The pre-injector

is designed to accelerate the electrons to form an 80 MeV beam made of a single

or multiple bunches [40]. The buncher system consists of a subharmonic buncher at

357 MHz and a traveling wave buncher at 2856 MHz. The pre-injector linac is equipped

with instruments for bunch by bunch measurements, including button BPMs for beam

position measurement. The regular linac section consists of 16 accelerating structures
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4.1. Accelerator Test Facility
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Figure 4.1: Layout of the ATF and ATF2 extraction line [37].
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4.2. Cavity BPM system at ATF2

at 2856 MHz. Combined with the pre-injector, the ATF linac provides a nominal

acceleration gradient of 33 MV/m.

The accelerated beam is injected into a damping ring (DR) to reduce the transverse

emittance by radiation damping [41, 42]. The damping ring is designed to store up to 5

trains of 20 bunches. During the commissioning of the DR, the beam emittance could

be reduced to 2 and 0.5 nm in x and y-axes respectively [42]. Two straight sections

contain the RF cavities as well as the injection and extraction septa. Along with beam

profile and synchrotron radiation monitors, the DR is equipped with 96 button BPMs.

4.1.1 Operation of the ATF in multi-train mode

For a 1.29 GeV beam of electrons, the revolution frequency in the DR is 2.16 MHz [43].

There are 330 buckets formed by the RF system operating at 714 MHz. The timing

system is designed such that the 20 bunches in the train, with bunch separation of

2.8 ns, fill the alternate buckets. To study the processing of CBPM signals from multiple

bunches at ATF, a bunch separation of order of 150 ns was required. To generate bunch

separations of more than 2.8 ns, the machine was operated in a multiple train mode,

where the DR was filled with bunch trains of a single bunch. The individual trains

were timed to fill specific buckets, and could be separated in time by a value which is

an integer multiple of 2.8 ns. Once damped, the bunches are extracted during a single

extraction kicker pulse into the ATF2 extraction line.

4.2 Cavity BPM system at ATF2

ATF2 propagates a low emittance beam extracted from the DR of ATF [37]. It was

built to study beam delivery systems (BDS) for ILC and CLIC. The design goals of the

ATF2 are to demonstrate the following,

• feasibility for ILC type final focus system (FFS),

• 37 nm vertical beam size,

58



4.2. Cavity BPM system at ATF2
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Figure 4.2: Enlarged layout of ATF2 extraction line showing accelerator beam optics
components and cavity BPMs [37].

59



4.2. Cavity BPM system at ATF2

• optics, dispersion, coupling, beam based alignment (BBA) and nanometer level

beam control.

To achieve these goals, along with the beam optics components, the ATF2 is equipped

with state of the art diagnostics systems [44], including optical transmission radia-

tion (OTR) screens [45], laser wire system [46], Shintake beam size monitor [47] and

cavity BPMs [26].

As shown in Fig. 4.2, the CBPM system at the ATF2 has 41 cavities at C- and S-band

frequencies, attached to the quadrupoles along the beam line. Among the 41 cavities,

there are 36 dipole and 5 reference cavities. The main parameters of the cavities and

their functions are listed in Table 4.2. The position signal is measured using a dipole

cavity. A monopole cavity serves as a reference cavity; its signal is used to charge

normalise the dipole signal and to provide a reference for bunch arrival time. All of the

dipole cavities are rigidly mounted on the pole face of the magnets, and the magnets

in the final focus system are mounted on precision mover systems. From each dipole

cavity, both x and y position signals are recorded.

Table 4.2: Parameters and functions of BPM cavities on ATF2.

Frequency Mode Measurement Quantity QL
(GHz) (cavities) approximate

6.42 Dipole Position 32 6000

(C-Band) Monopole Charge 4 7000

2.88 Dipole Position 4 1700

(S-Band) Monopole Charge 1 1400

4.2.1 Signal processing

A signal coupled out of a cavity can either be analysed in analog or digital form.

Controlling the processing parameters in analog processing is complex due to RF phase

locking, electronic non-linearities, environmental drifts and the fixed nature of electronic

components. Changing a parameter in analog processing requires more time and it

is more expensive compared to digital techniques. On the other hand, computation

cost has reduced drastically due to advancements in computer technology. It is much
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4.2. Cavity BPM system at ATF2

easier to choose and change the processing parameters digitally, compared with analog

processing. Reprogramming capability and cost effectiveness makes digital processing

the best choice for the final signal analysis.

The frequency of the output signal of a cavity is typically greater than 2 GHz. As

no digitisers are available with such a high digitisation rate and high bit resolution

(>10 bits), the high frequency RF signal can not be directly digitised. The output

signal is processed in two frequency down conversion stages (heterodyne processing

scheme). The first stage is analog, where the cavity output signal of GHz is down

converted to a signal of MHz. Then the MHz signal is digitised and processed digitally.

a) Analog signal processing and frequency down conversion

Each cavity at ATF2 is processed by an individual processing card with two channels,

a channel to process the x and y position signals each. The processing electronics for a

single channel is shown in Fig. 4.3. In addition to the dipole mode, the signal coupled

out of a cavity also contains the EM fields coupled from other resonant modes. Only the

signal at the dipole frequency is selected using a band pass filter (BPF). The coupled

RF signal is in the frequency range of many GHz. The coupled signal is down converted

using a mixer driven by a local oscillator (LO), to an intermediate frequency (IF). The

process can be described as,

2 · sin(ωRF t)× sin(ωLOt) = − cos ((ωRF + ωLO)t) + cos ((ωRF − ωLO)t) , (4.1)

where ωRF and ωLO are the angular frequencies of the cavity and LO signals.

The high frequency component (ωRF +ωLO), is removed using a low pass filter (LPF).

A wider range of circuit components, such as filters with steep frequency response,

are available at the IF (MHz) frequency range, which provide design flexibility and

cost efficiency. To increase the sensitivity, the IF signal is amplified using a low noise

amplifier (LNA). The higher frequency components generated due to the non-linearities

in the amplifier can be filtered out using an additional IF low pass filter after the LNA.
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Figure 4.3: Block diagram of typical a typical single channel analog and digital proces-
sors.

The LO-frequency for C-band cavity signals is 6452 MHz and for S-Band it is 2856 MHz.

The IF frequencies are of the order of 26 MHz for C-band and 34 MHz for S-Band

cavities respectively. The filtered signals are digitised using 14 bit digitisers sampling

at 104 MHz [26].

Every electronic system has inherent noise generated due to different effects. Based on

their origin and distribution, most of the noise can be classified as thermal noise, shot

noise or flicker noise [48]. The reduction in the signal to noise ratio at the output of

the electronics system can be calculated from the total noise figure Ftotal as [19],

So
No

=
1

Ftotal

Si
Ni
, (4.2)

where So and No are the amplitudes of the signal and noise voltage at the output, while

Si and Ni are signal and noise voltage amplitudes at the input. The input thermal noise

power can be calculated as [49],

vn =
√

4RkBT∆f, (4.3)

where R is input load resistance, kB is the Boltzmann constant, T is the temperature of

resistance and ∆f is the frequency bandwidth. For a multi-element system with many

stages, the total noise figure can be calculated as,

F = F1 +
F2 − 1

G1
+
F3 − 1

G2G3
+

F4 − 1

G2G3G4
+ · · · , (4.4)
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4.2. Cavity BPM system at ATF2

where the subscript numbers represent different elements of the circuit, while G is the

gain or attenuation of the elements. From the above equation, the signal to noise ratio

increases by factor G, except the first element. Because of this it is important to choose

the first amplifier, and the components before that, with low noise.

One of the down-converter cards used to process the CBPM signals was tested for its

noise and gain characteristics. A block diagram of the test instrument setup is shown

in Fig. 4.4. The RF source (Hittite HMC-T2100) is connected to the input of the

electronics through a variable attenuator.

CBPM 
Electronics

Signal synthesizer
Hittite HMT-T2100
10MHz to 20GHz
-22       to  +22 dBm

Variable Attenuator
HP 8495B
0  to 18 GHz
0  to 70 dB

CBPM
Digitizer 

Figure 4.4: Block diagram of the test setup to measure the gain and bandwidth of a
CBPM electronics card.

To measure the net system gain, the input power level was varied and the electronics

output power was measured. The source power could be changed only between -20

to +20 dBm. The source frequency was set at 6423 MHz, which is a typical signal

frequency for C-band CBPMs. A discrete 10 dB step attenuator was used to attenuate

the source power up to a maximum of 70 dB. To obtain input power steps of less than

10 dB the source power output could be varied down to 0.1 dBm. Fig. 4.5(a) shows

the output power for different input power levels. The plot shows that the noise floor

of the electronics is less than -90 dBm. The output power varies linearly with input

power, with gain of 27 dB.

To measure the bandwidth of the system the source frequency was changed while keep-

ing the source power constant at -16 dBm. The source frequency was scanned from

6423 to 6403 MHz, and the output power was measured. The net gain observed with

signals of different frequencies are plotted in Fig. 4.5(b). The system gain began to

compress below 6415 MHz, and decreased by 3 dB at 6413 MHz. The signal frequencies

for all CBPMs are above 6420 MHz, where the gain is constant. The cavity output

signals are processed using these electronic channels and the down-converted IF signals
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Figure 4.5: Linearity and bandwidth measurements of an electronic card to process
CBPM signals

are digitised for further processing.

b) Digital signal processing

The second stage of frequency down conversion is performed digitally. Fig. 4.6(a)

shows a simulated digitised CBPM signal, along with its spectral power density (SPD)

in Fig. 4.6(b).
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Figure 4.6: Digitised raw IF signal in time and frequency domains.

The digitised IF signal is an oscillating signal with amplitude decaying in time, with a
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4.2. Cavity BPM system at ATF2

time constant τ (Eqn. 2.6). The signal at a sample time ts can be written as,

V (ts) = V0 + Θ (ts − tb) Apeak e
(
− ts−tb

τ

)
ei(ωts+φ) + Vnoise(ts)

= V0 + Aei(ωts+φ) + Vnoise(ts) (4.5)

where V0 is the DC offset, tb is the bunch arrival time, τ is the decay constant, ω is

the angular frequency of the IF signal, Apeak is the initial peak amplitude given by

Eqn. 2.18, A is the decayed signal amplitude at sample time ts, Θ is zero before bunch

arrival (ts < tb), and 1 after a bunch has arrived (ts > tb), and Vnoise is the noise

voltage.

The DC offset (V0) in the raw signal is calculated as an average of the voltage sampled

before the bunch arrival time (tb), which is subtracted from all data samples. The peak

of SPD plot (Fig. 4.6(b)) tells an approximate frequency of the IF signal, which in

this case is equal to 25.9 MHz. The signal is mixed with a complex oscillating signal

of frequency equal to the SPD peak frequency ω1 and unit amplitude. Neglecting the

noise term and taking only the real part of Eqn. 4.5, the signal mixing process can be

represented by following equation as,

A cos (ωts + φ)× ei(ω1ts) =
A

2

[
ei((ω+ω1)ts+φ) + ei((ω−ω1)ts+φ)

]
, (4.6)

where φ is the phase of the IF signal with respect to the digital LO signal.

Fig. 4.7(a) shows the real and imaginary components of the mixed signal, while their

SPDs are shown in Fig. 4.7(b). Each of the SPD plots shows two peaks, one near 0

and other near 52 MHz, which correspond to the two signal components with angular

frequencies of (ω− ω1) and (ω+ ω1) in Eqn. 4.6. The amplitude of the mixed signal is

shown in Fig. 4.7(c), is the sum of the two frequency components. The signal component

with frequency (ω + ω1) must be removed using a digital filter.

The digital filter is applied in the time domain. The output Yj of a finite impulse

response (FIR) filter at a sample j can be calculated from the input samples xi as [50],
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Figure 4.7: Mixed signal in the time and frequency domains

Yj =

b0 +
+σ∑
i=−σ

bixi

a0
(4.7)

where bi are the convolution weight coefficients, a0 and b0 are constants, and σ defines

the width of the convolution window in samples.

The convolution weight coefficients for a Gaussian filter are plotted in Fig. 4.8, which

are calculated as,

a0 = 3.011fc,
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and

bi = 3.011

(
fc
fs

)
exp

[
−π
(

3.011fc
fs

fi

)2
]
,

where fis traverse a range from −σ to +σ with σ = 1
a0

√
2π

, fc is the cutoff frequency

of the filter and fs is the digitiser sampling frequency.
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Figure 4.8: Convolution weights for a Gaussian filter with fc/fs = 0.08

Fig. 4.9(a) & 4.9(b) show the amplitude attenuation and phase delay characteristics of

different digital filters; Butterworth, Chebyshev, Elliptic, and Gaussian, all with a same

bandwidth of 4 MHz. The in built signal processing library in scientific python (SciPy)

was used to generate the filter coefficients and their amplitude response and phase delay.

As shown in Fig. 4.9(a), all filters attenuate the signal component at 2ω frequency by

160 dB. As shown in Fig. 4.9(b) the phase delay introduced by only the Gaussian filter

varies linearly with the frequency. The phase delay introduced by a digital LPF does

not change for a constant signal frequency, hence it does not affect the signal processing.

The amplitudes and phases of the signal processed using different digital filters are

compared in Fig. 4.9(c) and 4.9(d) respectively. The Gaussian filter preserves the

exponential shape of the signal and has a linear phase delay. In addition, the Gaussian

filter has a finite impulse response (FIR), and the width of its convolution window can

be limited explicitly. Because of these advantages, a Gaussian filter was used to process

the CBPM signals.

Fig. 4.10(a) shows the in-quadrature phase components of the filtered signal, and their

spectra are plotted in Fig. 4.10(b). In comparison to Fig. 4.7(b), the signal component
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Figure 4.9: Filter characteristics comparison

with angular frequency ω + ω1 is attenuated drastically. Accordingly, the SPD plot

shows that the signal power at frequency ω+ω1 is lower by more than 250 dB compared

to the peak at frequency ω − ω1.

Because of the limited frequency resolution of the SPD plot, the peak of the SPD is not

the exact LO frequency to down-convert the IF signal to DC (0 MHz). An accurate

LO frequency was determined by minimising the gradient of the phase of the down-

converted signal. As shown in Fig. 4.11, if the frequency of the LO signal is not equal

to the frequency of the IF signal, the phase of the filtered signal changes with time.

The ω−ω1 term in Eqn. 4.6 gives a linear change in phase 4φ over a change in sample
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Figure 4.10: Processed signal after application of the Gaussian digital LPF, showing a
sample ts where the I and Q phasors are calculated

time 4ts, given by,

4φ
4ts

= ω − ω1 = 2π (f − fLO). (4.8)

This frequency difference is subtracted from the frequency of the SPD peak digital

LO signal. If the digital LO frequency is equal to the IF signal frequency, then the

phase remains constant (as plotted in Fig. 4.11) in time and has zero gradient. The

phase gradient is calculated using only the samples with large signal amplitude. The
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Figure 4.11: Phase of the down-converted IF signal as a function of sample number,
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frequency is varied until the gradient is minimised. For f = fLO, Eqn. 4.5 reduces to,

V (ts) = Ae

(
− ts−tb

τ

)
eiφ.

The amplitude and phase at an appropriate sampled time ts is used to calculate the

position. The time ts is chosen such that it is delayed enough, after bunch arrival,

to avoid the amplitude deformation due to the filters near the amplitude peak. This

voltage can be represented in terms of the in i and quadrature q phase signals, compared

to the LO signal, as,

i(ts) = Ae

(
− ts−tb

τ

)
cos (φ)

q(ts) = Ae

(
− ts−tb

τ

)
sin (φ) . (4.9)

The same electronics system was used for the dipole and monopole signals from the

position and reference cavities respectively. The digitised IF signals from both types

of cavity were processed using the same digital signal processing (DSP) code to derive

the amplitudes and phases. To remove the effect of the variation in the bunch charge,

the processed amplitude of dipole signal Ad is normalised with the processed amplitude

of the reference signal Ar. To correct the measurement for the variation in the bunch

arrival time compared to the LO phase, the phase of the reference signal φr is subtracted
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4.2. Cavity BPM system at ATF2

from the phase of the dipole signal φd. The amplitudes at any single sample (at any

instance time) or a mean value of amplitudes at several consecutive samples (mean

of amplitude over finite time) can be used for the calculation. From the processed

amplitudes and phases, the in I and quadrature Q phasors are calculated as,

I(ts) =
Ad(ts)

Ar(ts)
cos (φd (ts)− φr (ts))

Q(ts) =
Ad(ts)

Ar(ts)
sin (φd (ts)− φr (ts)) . (4.10)

These I and Q phasors are used during the system calibration and position calculation.

c) Calibration

To convert the I and Q phasors into the actual beam position, it is essential to calibrate

the CBPM system. During the calibration process the cavities are moved in x or y

(perpendicular to beam propagation) directions using precision movers [26]. A cavity

is usually moved in a range from -200 to +200 µm, with a step size of 100 µm. Scans

over the range of -1000 µm to 1000 µm were also recorded several times. At each mover

position, the cavity signals from several machine pulses were recorded. The signals (x

or y position signals, depending on the direction of the mover scan) were processed

using the electronic and digital processing methods described previously, resulting in I

and Q phasors.

Fig. 4.12 shows the typical calibration plots from a single mover position scan, along the

y-axis, of the CBPM labeled MQM11FF. The first row shows plots of I vs Q amplitudes,

as well as of I and Q at different mover positions. Both I and Q phasors are correlated

with the change in the mover position. The mean values of IQ are calculated at each

mover position, which are plotted as red markers (*). The angle ΘIQ is calculated by

fitting a line through the mean values. The I and Q phasors are rotated by angle ΘIQ
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Figure 4.12: Calibration plots showing IQ diagram, phase rotation, position scale
determination and residual histogram.

using a standard rotation matrix given by,

I ′ = I cos(ΘIQ) + Q sin(ΘIQ)

Q′ = −I sin(ΘIQ) + Q cos(ΘIQ) (4.11)

The coordinates are rotated to make only I ′ phasors sensitive to the mover position.

It is not mandatory to choose only I ′ signal to represent the position. The coordinate

rotation process can be seen as changing the phase of the digital LO signal such that

the phase of I ′ matches the phase of the signal induced due to a bunch position offset.

The second row (in Fig 4.12) shows the same plots for the rotated phasors I ′ and Q′.

The first plot shows that the I ′ is no longer correlated to Q′. The second and third

plots show that I ′ changes linearly with the mover position, while Q′ does not depend
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on the mover position. The position scale factor S is calculated from the slope of I ′

against mover position, so,
1

S
=
dI ′

dx
, (4.12)

where x is the mover position.

The beam position is determined by multiplying the phasor I ′ with the scale factor

S. The left plot in the third row shows the measured beam positions as a function

of the mover positions. At each mover position, the position residuals are calculated,

and histogram is plotted to calculate the measurement error. A Gaussian is fitted to

the residuals histogram, whose width is the convolution of the error in the position

measurement and beam position jitter. A position jitter of more than 2 µm is observed

compared to the expected resolution of the order of 200 nm. The measurement error is

mainly dominated by beam jitter. The other sources of errors are non-linearities and

noise in the processing electronics, along with the digitiser clock errors. Beam jitter can

be reduced by using correlation techniques such as singular value decomposition (SVD),

which is discussed later in this chapter.

4.2.2 Effect of temperature change on CBPM frequency

The effects of temperature change on a CBPM were studied using surface temperature

monitor probes attached to the cavities. Most of the CBPMs are fixed to the quadrupole

and sextupole magnets. When the magnets are turned on during beam start up, their

temperature rises until reaching equilibrium. The heat from the magnets are transferred

to the attached cavities and increase their temperature.

The metal of the cavity expands with an increase in the temperature and changes the

cavity geometry. With a rise in the temperature, the cavity should expand and the

resonant frequency of the dipole mode should decrease. One of the S-band CBPMs,

labeled MQM1FF with the dipole frequency of 2.8 GHz, was monitored for the effect

of temperature change. This cavity was chosen because it was the only cavity with a

sizable temperature variation. At regular time intervals the temperature and variation

in the dipole frequency was monitored. The change in the dipole frequency was de-
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Figure 4.13: Change in the resonance frequency of a CBPM as a function of tempera-
ture.

termined from the variation in the IF frequency, determined using the phase gradient

minimisation process discussed in section 4.2.1. The change in dipole frequency ∆fd

with temperature is plotted in Fig. 4.13. During the experiment, the temperature of

the cavity increased from 28.5 to 32 ◦C and the CBPM frequency decreased by 125 kHz,

giving a temperature dependence of -36 kHz/◦C.

4.3 Signal simulation and calibration code

To understand and verify the signal processing and system calibration methods, a

code was developed to simulate and process CBPM signals. Fig. 4.14 shows the block

diagram of the program structure. The code was written in python [51], and it was

divided into classes depending on their functions. To simulate the cavity signals, the

code first loads a set of bunch train parameters and BPM parameters.

The parameters can be given as user input or through a configuration file. Depending

on the user input, the program generates a bunch train and sets the signal processing

parameters. To simulate the cavity signal from multiple bunches, the individual signal

from each bunch is calculated and then they are added to produce the net signal. The

user can generate signals with a specific amount of beam position and angle jitter. The

simulated signal was added with user specified thermal noise. The signal was then
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Figure 4.14: Layout of the simulation and analysis code.

passed to the class for DSP.

The simulated signals are processed using the same processing codes used to process

the experimental data. As mentioned in Section 4.2.1, the amplitude and phase of

the signal are calculated using digital down-conversion and filtering. After frequency

tuning of the digital LO signal, the final amplitude and phases are used to calculate

I and Q phasors. In the case of a signal from multiple bunches, the signal pollution

from previous bunches was removed using a signal subtraction algorithm. As with
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single bunch operation, the rotated I and Q phasors were used to determine the beam

position. Because the input parameters, such as signal and noise amplitudes, are well

controlled for simulated signals, the performance of the code can be verified against any

discrepancies observed in the experimental data. Along with the experimental results,

the signal processing and results obtained using the simulated data are also discussed

in the following sections.

4.4 CBPM signal from multiple bunches and signal sub-

traction

After a bunch has passed through a cavity, the induced field continues oscillating with

its amplitude decaying exponentially in time. Similar to Eqn. 4.5, the digitised IF

signal for one bunch V1(ts), now with labels on the parameters for the bunch number

as,

V1(ts) = Apeak,1 Θ1(ts − tb,1) e

(
−
ts−tb,1

τ

)
ei(ωts+φ1)

= A1 e
i(ωts+φ1) (4.13)

where,

A1 = Apeak,1 Θ1(ts − tb,1)e

(
−
ts−tb,1

τ

)
, (4.14)

where the variables used in the above equation and following equations in this chapter

are defined in Table 4.3.

For two bunches, the fields induced inside the cavity add linearly and result in an IF

voltage V2(ts) given by,

V2(ts) = A1 e

(
−∆tb

τ

)
ei(ωts +φ1) + A2 e

i(ωts +φ1−ω∆tb). (4.15)

The individual signals simulated for each bunch are shown in Fig. 4.15(a). Upon arrival

of the second bunch, the amplitude of the signal from the first bunch has decayed, but

only up to 50% of its initial (peak) value. The signal from the second bunch is polluted

76



4.4. CBPM signal from multiple bunches and signal subtraction

Table 4.3: Definitions of mathematical variables used for multi-bunch signals.

Symbol Name Meaning

Apeak,j Peak amplitude Initial (peak) amplitude of the IF signal, in-
duced by jth bunch

Aj Amplitude Amplitude of the IF signal at time ts, induced
by only jth bunch

φj Phase Phase of the IF signal with respect to digital
LO, induced by only jth bunch

tb,j Bunch arrival time Arrival time of the jth bunch

∆tb tb,j − tb,j−1 Time separation between consecutive bunches

ts Time sample Sample time during a bunch, at which the posi-
tion is calculated

ω Angular frequency Angular frequency of the IF signal from a cavity

τ Decay constant Decay constant of the IF signal from a cavity

Bj Net amplitude Net amplitude of the total IF signal at a time
ts, after j number of bunches have passed

θj Net phase Net phase of the total IF signal with respect to
digital LO, induced after j number of bunches
have passed through a cavity

considerably by the signal from the first bunch. The simulated net signal from the two

bunches, which would be recorded by a digitiser, is shown in Fig. 4.15(b).
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Figure 4.15: Simulated digitised IF signals from two bunches separated by 187.6 ns
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In a similar way, the signal induced after the passage of n bunches can be written as,

Vn(ts) =
n∑
k=1

Ak e

(
− (n−k)∆tb

τ

)
ei(ωts +φ1− (k−1)ω∆tb)

= Bn e
i(ωts + θn), (4.16)

where,

Ak = Apeak,k Θ1(ts − tb,k)e

(
−
ts−tb,k

τ

)
. (4.17)

Using above formula, the CBPM signals from a bunch train made of many bunches

with different parameters can be simulated. As in the case of single bunch signal,

the net amplitude Bn and net phase θn of the total signal from multiple bunches are

also calculated by the process of digital frequency down conversion, by mixing it with

a digital LO signal and filtering. Neglecting any attenuation and phase delay in the

digital filter, the equation for the down converted signal for n bunches VDDC,n can be

written from the above equation as,

VDDC,n(ts) =
n∑
k=1

Ak e

(
− (n−k)∆tb

τ

)
ei(φ1− (k−1)ω∆tb)

= Bn e
i(θn). (4.18)

The above equation shows that the signal from the nth bunch will be polluted by sig-

nals induced by the previous bunches. The method developed to remove this signal

pollution uses a signal subtraction algorithm. The algorithm removes the signal pollu-

tion by subtracting the phasors sampled during the immediate preceeding bunch, with

appropriate amplitude decay and phase rotation applied to it. The process can be

mathematically expressed by rearranging Eqn. 4.16 as,

VDDC,n(ts) = An e
i(φ1− (n−1)ω∆tb),

+ e

(
−∆tb

τ

) n−1∑
k=1

Ak e

(
− (n−1−k)∆tb

τ

)
ei(φ1− (k−1)ω∆tb)

= An e
i(φ1− (n−1)ω∆tb) + e

(
−∆tb

τ

)
Bn−1 e

i(θn−1). (4.19)
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By rearranging the terms in the above equation, an equation for the subtracted signal

from a cavity can be written as

An e
i(φ1− (n−1)ω∆tb) = Bn e

i(θn) − e

(
−∆tb

τ

)
Bn−1 e

i(θn−1). (4.20)

The equation shows that the signal pollution from all previous bunches can be removed

by subtracting the signal phasors sampled during only the immediate previous bunch,

with an appropriate amplitude decay. The pollution in the dipole signals from a position

cavity and monopole signal from a reference cavity is removed using the same signal

subtraction algorithm.

As for single bunch signals (Eqn 4.10), the I and Q phasors can be calculated for

the individual bunches using the subtracted amplitudes and phases of the dipole and

reference cavities, so

In(ts) =
An,d
An,r

cos[φ1,d − φ1,r − (n− 1)∆tb(ωd − ωr)],

Qn(ts) =
An,d
An,r

sin[φ1,d − φ1,r − (n− 1)∆tb(ωd − ωr)], (4.21)

where the symbols are described in Table 4.3, and carry an additional subscript of d

for dipole and r for reference cavities.

In comparison to Eqn 4.10, the above equation has an additional phase term. It shows

that if the resonant frequencies of the dipole and reference cavities are not equal, there

will be a phase difference ∆φIQ between the I and Q phasors of the consecutive bunches,

which can be calculated as,

∆ΘIQ = ∆ω ×∆tb = (ωd − ωr) ∆tb. (4.22)

With these predictions, the signal subtraction algorithm was tested on the signals

induced by multiple bunches in the CBPMs on the ATF2.
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4.4.1 Application of the algorithm on two bunch signals

To test the performance of the signal subtraction algorithm on the CBPM signals in-

duced by multiple bunches, signals were recorded from the CBPMs installed on ATF2,

while the ATF2 was operated in a multi-train mode (Section 4.1.1). Most of the data

was recorded parasitically during machine operations for the study of Feedback on

Nano-second Timescales (FONT) system. Also during a dedicated time slot of few

hours in the period between November - December, 2011. Several cavities were cali-

brated using precision movers, with a focus on a triplet of cavities labeled MQM13FF,

MQM12FF and MQM11FF, located in the low dispersion region. The monopole cavity

labeled as REFC1 was used as a reference cavity. The frequencies and decay times of

these cavities are listed in Table 4.4.

Table 4.4: Frequency and decay time of the cavity triplet used for the studies of the
CBPM signals from multiple bunches.

CBPM Resonance frequency Decay constant

ω/2π (GHz) τd (ns)

MQM13FF 6425.8 316

MQM12FF 6426.2 285

MQM11FF 6426.0 305

REFC1 6424.6 292

The same electronics and digitiser systems, which were used to process the single bunch

signals, were also used to process the signals from multiple bunches. The GHz frequency

cavity signals were down converted to a MHz frequency IF signals, which were then

digitised. By digitally processing the digitised signal in a similar way to the single

bunch signals, the amplitude and phase (Bn and θn in Eqn. 4.18) were calculated for

the dipole and reference signals. The amplitude and phase from a y-position signal

induced in MQM13FF by a machine pulse of two bunches, are plotted in Fig. 4.16.

Each bunch carried 1.6 nC charge, and were separated by 186.7 ns.

During the process of DDC, a digital Gaussian low pass filter was used to remove

the high frequency components. As described in Section 4.2.1b), the DDC requires a

Gaussian low pass filter to remove the 2ω components. The width of the convolution

window increases with reduction in the cutoff frequency. The maximum width of the
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Figure 4.16: Processed amplitude and phase, with sample location for position deter-
mination for each bunch.

window is limited by the number of sample points available between consecutive bunch

arrivals. A 14 sample wide Gaussian filter of cutoff frequency of 14.6 MHz was used in

the DDC filter. The processed amplitude and phase were sampled during each bunch,

at the time samples ts,1 and ts,2. The sample point was chosen between two bunch

arrivals, as seen in Fig. 4.16.

To calculate the position scale factor (S) and rotation angle (ΘIQ), the CBPM MQM13FF

was calibrated in a similar way to the single bunch calibration. The mover position was

scanned along the y-axis from -200 to 200 µm in steps of 100 µm. The CBPM signals

from around 20 machine pulses were recorded at each mover position.

From the downconverted amplitude and phase at the specific samples during each

bunch, the I and Q phasors were calculated. The I and Q phasors calculated without

applying the signal subtraction algorithm, using the net amplitudes Bn (in Eqn. 4.18)

and phases θn, are plotted in Fig. 4.17(a). In all following plots in this chapter, the

color coding of red for Bunch-1, green for Bunch-2 and blue for Bunch-3 is used to plot

the data from different bunches, unless specified.

The first bunch is unpolluted by previous bunches so the same algorithm of θIQ and

S determination was used as in single bunch operation, described in Section 4.2.1c).

The IQ phasors varied along a line at a specific angle ΘIQ with the I-axis. The angle

ΘIQ is the IQ rotation angle required to calculate the bunch position. To compare the
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Figure 4.17: Calibration of MQM13FF in a multi-train mode without signal subtrac-
tion.

IQ plots from the first and second bunches, concentric circles are plotted with their

centers at the origin and radii Rjk (for bunch j mover position k) equal to the mean

magnitudes of the phasors at each mover position. The change in the radius Rjk of the

circle with the change in the mover position gives the position scale factor (S).

As seen from Fig. 4.17(a), the amplitudes of the IQ vectors from the second bunch

are approximately 43% higher than the amplitudes from the first bunch. For a given

change in the mover position, the change in the signal amplitude for the second bunch

is not equal to the change for the first bunch. As both of the bunches are extracted

during a single extraction pulse, the second bunch is expected to arrive at the same

position of the first bunch. Even if the second bunch arrives at a different position

offset, the change in the phasor amplitudes from the two bunches for a mover position

change should always be equal because of its linear dependence on the position offset.

Clearly without subtraction, each bunch would require separate scale factors. It would

require a calibration for each bunch and it also depends on the signals from previous

bunches. The difference in rotation angle ΘIQ for the two bunches can be because of

the difference in the resonant frequencies of the dipole and reference cavities.

The phasors were rotated by the respective angle ΘIQ for each bunch using Eqn. 4.11.

The position was calculated by multiplying the rotated phasors I ′ (in Eqn. 4.12) with
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the scale factor S for the first bunch. The measured positions of both bunches as a

function of mover position are plotted in Fig. 4.17(b). The bunch positions y1 and y2

of the first and second bunches follow the change in the mover position ymover, but the

absolute values and amount of change in the position of the second bunch were higher

than those of the first bunch. The position of the second bunch was overestimated by

more than 43%, which was a large systematic offset.

To remove the signal pollution from the previous bunches, the signal subtraction algo-

rithm was applied on the CBPM signals. The subtracted amplitude A2 and phase φ2

for the second bunch were calculated using Eqn. 4.20. The subtracted phasors from

the reference cavity were also calculated using the same algorithm. The I and Q values

were calculated from the subtracted amplitudes and phases using Eqn. 4.10, and are

plotted in Fig. 4.18(a).
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Figure 4.18: CBPM system calibration in a multi-train mode with signal subtraction.

As expected, the magnitude of the phasors of the first and second bunches were now

similar and fall on same concentric circles. The change in the magnitude for both

bunches, for a cavity position change, are now equal. To calculate the bunch position,

the phasors were rotated by their respective angles ΘIQ using Eqn. 4.11. The posi-

tions calculated, by multiplying the rotated phasors with the scale factor S from the

first bunch, are plotted in Fig. 4.18(b). The average beam positions of both bunches

calculated at different mover positions, are listed in Table 4.5.
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The scale factor calculated from the first bunch was used to calculate the positions

of both bunches. When calculated without signal subtraction, the position offset of

the second bunches at each mover position were larger than that of the first bunches.

At larger offset of 600 µm, the error in second bunch position increased to 260 µm.

This systematic error, of 43%, in the second bunch position was due to the signal

pollution from the first bunch. After application of the signal subtraction algorithm,

the difference in position reduced to less than 2%. The results prove that the signal

subtraction algorithm removes the signal pollution effectively and the method works.

Table 4.5: Systematic error in bunch position measurement due to signal pollution, and
removal of signal pollution using signal subtraction algorithm

Mover Bunch 1 Bunch 2

Position Average Without signal subtraction After signal subtraction

ymover position y1 position y2 |y2 − y1| position y2 |y2 − y1|
(µm) (µm) (µm) (µm) (µm) (µm)

-200 -200.1 -286.1 86.0 -197.4 2.7

-300 -303.1 -434.4 131.3 -301.0 2.1

-400 -399.8 -572.7 172.9 -397.7 2.1

-500 -500.5 -716.3 215.8 -496.9 3.6

-600 -600.0 -858.5 258.5 -591.9 8.1

a) Dependence of IQ rotation angle on dipole and reference frequencies

As explained in Section 4.2.1, before multiplying with the position factor, the I and

Q phasors are rotated by the angle ΘIQ using Eqn. 4.11. As shown in Fig. 4.18 the

rotation angle for the second bunch is different from that for the first bunch. The

scale factors S for the first and second bunches become equal after signal subtraction.

Because ΘIQ for the two bunches are different, the calibration constants determined

from the single bunch calibration can not be used to calculate the position of the second

bunch. If the phase jump can be estimated, then it can be removed. The phase of a

signal with angular frequency ω would advance by ∆φ over a time span of ∆tb as,

∆φ = ω × ∆tb. (4.23)
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The processed phases of the signals with different frequencies, from a dipole (MQM13FF)

and reference (REFC1) cavities, are shown in Fig. 4.19. As shown in Eqn. 4.22, if the

frequencies of the dipole and reference cavities are different, then there will be a phase

difference ∆ΘIQ between the IQ rotation angles ΘIQ for consecutive bunches.
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Figure 4.19: Processed phases of the IF signals from cavities MQM13FF and REFC1,
induced by two bunches.

To confirm the hypothesis, bunch separation ∆tb was changed and the MQM13FF was

calibrated to calculate the phase difference ∆ΘIQ for the two bunch separations. The

dipole (MQM13FF) and reference (REFC1) cavities have their frequencies separated

by 1.1764 MHz. The IQ plots from the signal subtracted phasors for the two bunch

separations are shown in Fig. 4.20. It is clear from the plots that ∆ΘIQ changes with

the bunch separation.

The measured phase difference for the different bunch separations are compared to

their predicted values in Table 4.6. The phase difference agreed well with the predicted

values, which proves that the it is due to the difference in resonant frequencies of the

dipole and reference cavities.

Table 4.6: IQ rotation angle difference ∆ΘIQ between the first and second bunch
phasors, for different bunch separations ∆tb.

Bunch Separation Phase difference ∆ΘIQ (radian)

∆tb (ns) Theoretical Experimental

186.7 1.38 1.36

285.6 2.05 2.09
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Figure 4.20: IQ plots of subtracted phasors from calibrations of MQM13FF along the
y-axis, for two different bunch separations ∆tb.

The frequency difference can be measured by RF testing of the cavities and also from

the digitised IF signals. For a known frequency difference and bunch separation, the

expected phase jump can be predicted and removed during the calculation of I and Q

phasors as shown in Eqn 4.21. Now as the reason for the phase difference is established

and the position scales for both of bunches are equal, the calibration coefficients deter-

mined from a single bunch calibration can be used to derive the positions of any bunch

with a known bunch separation.

b) Second bunch with different position offset

It was convenient to interpret the two bunch calibration data with the second bunch

arriving at the same position offsets as the first bunch. If the second bunch is kicked

by a different amount by the extraction kicker, which is possible when it falls near the

edge of the kicker pulse, it may arrive at the CBPM at a different horizontal position

offset. The IQ diagram for a calibration of MQM11FF in the x-axis is shown in the

Fig. 4.22. The cavity was moved over a range of -200 to 200 µm around its nominal

position, with a step size of 100 µm.

As shown in Fig. 4.21, the amplitude of the IQ phasors, calculated without signal
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subtraction, from the second bunch do not agree with that of the first bunch. The

difference in phasor magnitudes for consecutive mover positions are compared in Ta-

ble 4.7. When the signal subtraction was not applied to the second bunch phasors, the

position scale factor for the first bunch was approximately 50 % higher than that for

the second bunch.
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Figure 4.21: IQ diagram from a calibration run of MQM11FF, without signal subtrac-
tion.

The IQ diagrams after signal subtraction are shown in Fig. 4.22(a) & Fig. 4.22(b).

Even after the signal subtraction is applied, the second bunch has different position

offsets compared to the first bunch. Even if the second bunch has different horizontal

position offset, for a change in the mover position, the change in the amplitude of the

IQ phasors for the first and second bunches should be equal.

Table 4.7: Comparison of the change in the amplitude of position signal for second
bunch, with and without signal subtraction

∆Rjk Bunch-1 (j = 1)
Bunch-2 (j = 2)

Without subtraction With subtraction

Rj2 − Rj1 0.1053 0.1506 0.1050

Rj3 − Rj2 0.1519 0.2265 0.1541

Rj4 − Rj3 0.0842 0.1185 0.0834

Rj5 − Rj4 0.1509 0.2217 0.1566

After signal subtraction, for each mover position change, the change in the amplitudes

of the IQ phasors for the second bunch agreed well with that for the first bunch,

even though their absolute values were different. The difference of more than 50 % in
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Figure 4.22: IQ diagrams from a calibration run of CBPM MQM11FF, with signal
subtraction, showing second bunches arriving at different position to the first bunch

the position scale reduced to less than 3.5 % after signal subtraction. Comparison of

position scale shows the effectiveness of the signal subtraction method irrespective of

the absolute bunch position values.

c) Beam jitter and SVD based jitter subtraction

To derive the resolution of CBPM MQM12FF in multi-bunch mode, sets of CBPM

signals from 100 machine pulses were recorded from the triplet of CBPMs. Bunch

positions were calculated using the signal subtraction, IQ rotation and position scale

factor S. The position measurement variation is normally dominated by the actual

variation in the beam position, which is typically two to three orders larger than the

system single bunch resolution. Once the beam position jitter is removed, the resolution

should be limited by the variation in the system gain, amplitude noise and phase noises

in the system.

For a fixed beam-line-optics, the positions recorded by different CBPMs at different

locations along the beam line should be correlated to a certain degree. Using correlation

techniques, beam position at the location of the cavity under test can be predicted using

other BPMs, which can be used to remove the beam position jitter. The beam position
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was predicted using a model independent analysis (MIA) technique [52]. A set of

coefficients cj can be determined, which linearly relate the position rki of an ith bunch

recorded by the kth CBPM to the positions rji of the same bunch recorded by other

CBPMs, given by,

rki =

M∑
j=1 , j 6=k

rji · cj , (4.24)

where M is the total number spectator cavities. Alternatively I ′ or I and Q could be

used instead of positions.

To find the coefficients, a matrix is formed from the positions recorded from N machine

pulse given by,



rk1

rk2

...

rkN


=



r11 r21 · · · rj 6=k 1 · · · rM1

r12 r22 · · · rj 6=k 2 · · · rM2

...
...

. . .
...

. . .
...

r1N r2N · · · rj 6=kN · · · rMN


·



c1

c2

...

cM


. (4.25)

The equation can be written in matrix notation as

Rk = R · C, (4.26)

from which the coefficient vector C can be determined as,

R−1 ·Rk = C. (4.27)

The matrix R can be inverted using singular value decomposition (SVD) technique as

follows [53]. Any non-singular N ×M matrix R (with N ≥ M) can be decomposed

into three matrices as

SV D(R) = U S VT, (4.28)

where U is N×M column orthogonal matrix, VT is a transpose of an N×N orthogonal

matrix and S is a diagonal matrix of singular values. The position matrix R can be
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inverted as,

R−1 = V S−1 UT. (4.29)

Using the inverted matrix R−1 in the Eqn. 4.27, the coefficients C can be calculated and

used to predict the bunch position at the CBPM under test. The predicted positions

can be considered as the variation in the beam position, and can be subtracted from

the measurement to find the system resolution. The built-in SVD function in a module

of SciPy was used to correlate the phasors.

To determine the position resolution for the second bunch after application of the sig-

nal subtraction algorithm, CBPM signals from 100 machine pulses were recorded and

bunch positions were calculated. Fig. 4.23(b) shows the histograms of the position

errors calculated for the y positions of the second bunch measured by the MQM12FF.

Gaussian curves are fitted to the peaks of the histograms using a least square minimi-

sation technique. The width of the Gaussian fit gives the error in the measurement. To

remove the error in position measurement due to actual beam position jitter, SVD based

jitter subtraction was applied using correlation with the x and y positions measured

by MQM11FF and MQM13FF.
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relation; the measured I ′ from MQM12FF were correlated to the measured I ′ from

MQM11FF and MQM13FF by 0.97 and 0.68 respectively. The same can be observed

in Fig. 4.23(a), where the I ′ measured with MQM12FF are weakly correlated to the

I ′ predicted by SVD with MQM13FF alone, than the I ′ predicted using SVD with

MQM11FF and MQM13FF both.

In addition to the original position error (without any jitter subtraction), Fig. 4.23(b)

also shows the histograms for the remaining position error after SVD based jitter sub-

traction. Because MQM12FF is weakly correlated to MQM13FF, the jitter subtraction

using only MQM13FF was less effective than using both of the CBPMs. The original

position jitter of 13.48 µm reduced to 1.81 µm after jitter subtraction using both of the

CBPMs. The error remaining, after position jitter subtraction, in the position mea-

surements for both bunches with the three CBPMs under test are listed in Table 4.8.

Table 4.8: Error in position measurement after SVD based beam position jitter sub-
traction.

CBPMs Error in position measurement (µm)

x position y position

Bunch 1 Bunch 2 Bunch 1 Bunch 2

MQM11FF 2.18 ± 0.62 2.15 ± 0.74 1.97 ± 0.47 3.01 ± 0.87

MQM12FF 1.53 ± 0.27 2.37 ± 0.68 1.03 ± 0.20 1.81 ± 0.46

MQM13FF 4.08 ± 1.13 7.29 ± 2.90 1.24 ± 0.34 1.74 ± 0.49

d) Effect of bunch arrival time error and filter limitations

In addition to the beam position jitter, the measured position error includes errors

because of the bunch arrival timing. In the signal subtraction algorithm it is assumed

that the bunch separation (∆tb) is constant, and the amplitude from the previous bunch

has decayed accordingly. If the bunch arrival and digitisation time changes by ∆t, it

adds an error in the position ∆yt,n of,

∆yt,n(∆t) = Bn−1e
−∆tb

τ

(
1 − e−

∆t
τ

)
× S, (4.30)
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where Bn is the net amplitude sampled during the previous bunch, S is the position

scale factor and τ is the time decay constant of the signal. All equations for error

calculation mentioned in this section can be used for a dipole as well as reference

signals.

The bunch arrival time jitter is determined from the rising edge of the reference signal

detected using a diode, as shown in Fig. 4.24(a). The variation in the bunch arrival time

during a calibration run is shown in Fig. 4.24(b), with a fitted Gaussian distribution.

The ∆t distribution has width of 50 ps, which includes the digitiser clock jitter, and

hence is the maximum possible variation.
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Figure 4.24: Determination of the bunch arrival time tb and its variation.

In the case of a longer bunch train, the signal amplitude Bn increases with the number

of bunches n. From Eqn. 4.30, the error in the position due to arrival time jitter should

increase for the bunches towards the end of the bunch train. The signal from CBPM

MQM13FF has an amplitude decay time constant τ of 316 ns. For two bunches at a

position offset of 400 µm and arrival time jitter of 50 ps, the error in the second bunch

position, calculated using Eqn. 4.30, should be of the order of 35 nm.

Other than the amplitude subtraction, the error in the timing will also add error to the

phase of a CBPM signal phase, given by,

∆φt = ∆t × ω, (4.31)
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where ∆φt is the phase change due to the change in the bunch arrival time, and ω

is the angular frequency of the digitised IF signal. From the jitter in the measured

phase (φ or θ), the timing error ∆t can be verified using Eqn. 4.31. For an IF signal

frequency of 26 MHz, the 50 ps error in tb should vary the phase by 0.008 radian. On

the other hand, the observed error in the DDC phase (φ1) for the first bunch, as shown

in Fig. 4.25, was of the order of 0.07 radian. The observed phase error is an order of

magnitude larger than that which could be induced by bunch arrival time variation,

the position error calculated using Eqn. 4.30 increases to 0.5 µm .
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Figure 4.25: Variation in DDC phase.

Another source of amplitude error is the filtering of the higher harmonic signal compo-

nents (with 2ω frequency) generated during the process of frequency down conversion,

which are removed using a low pass filter. The bandwidth of the LPF is limited by

the bunch separation. Depending on the digitisation rate, the digital filters suffer from

the limited number of samples available for filtering. To measure the position of an

individual bunch, only the sample points between consecutive bunch arrivals should be

used. This limitation on the window width limits the minimum cutoff frequency of the

digital LPF.

Fig. 4.26(a) shows the window width of the Gaussian LPF with different cutoff fre-

quencies. An ideal Gaussian filter of any bandwidth has an infinite width in time.

The effective temporal width of the filters was calculated by dermining the sample

number i at which the filter coefficient bi is reduced to 1/500th of the maximum value

b0. In between bunches separated by 154, 186.7 and 285.6 ns, the signal digitised at

103.95 Msamples/sec will have 16, 19 and 28 samples respectively. The corresponding
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4.4. CBPM signal from multiple bunches and signal subtraction

LPF bandwidth lower limits are 25, 19 and 13.2 MHz. The DDC amplitudes calculated

using Gaussian LPFs of different bandwidths are shown in Fig. 4.26(b). Because the

two bunches were separated by 186.7 ns the filters needed to have larger bandwidth than

19 MHz, otherwise the filter would extend into regions of signal from the neighbouring

bunches.

5 10 15 20 25 30 35 40
Cutoff frequency fc (MHz)

0

10

20

30

40

50

60

N
um

be
r

of
b i
>
m
a
x

(b
)/

50
0

Gaussian
∆tb = 285.6 ns
∆tb = 186.7 ns
∆tb = 154.0 ns

(a) Width of the convolution window of a Gaussian
LPF

40 60 80 100 120 140 160 180 200
Sample number

0

200

400

600

800

1000

1200

1400

1600

A
m

pl
it

ud
e

fc=11.57 MHz
fc=17.46 MHz
fc=23.35 MHz
fc=29.24 MHz
fc=35.12 MHz

(b) DDC amplitude from a CBPM signal calcu-
lated using Gaussian LPFs of different bandwidths

Figure 4.26: Effects of the digital LPF of different cutoff frequencies on the convolution
window and signal amplitude.

For an IF signal with frequency fIF of 26.3 MHz, the 2ω component has frequency

of 52.6 MHz, which is above the digitiser Nyquist frequency of 51.96 MHz. The at-

tenuation αLPF of the 2ω component calculated from the frequency responses of the

Gaussian LPFs with different bandwidths are plotted in Fig. 4.27(a). A filter with

cutoff frequency of 19 MHz should attenuate the amplitude of the 2ω component A2ω

by 250 dB. After mixing, the amplitude of the 2ω component will be the same as the

DC component A. After application of a LPF, the attenuated amplitude ADDC,2ω is,

ADDC,2ω = αLPF ×A. (4.32)

The error in the bunch position, because of the 2ω term, can be estimated as αLPF

times the measured position offset. For a position offset of 1 mm the error should be

of the order of 0.28 fm. Fig. 4.27(b) shows the error in the position measured with

MQM13FF along x and y-axis, when the signals were processed using LPFs of different
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Figure 4.27: Effects of digital LPF with different cutoff frequencies on signal processing
and resolution.

bandwidths. The position errors are after SVD based jitter subtraction with rest of the

two CBPMs. The jitter decreases with the decrease in the LPF cutoff frequency. With

LPF of bandwidth 17 MHz and below, the error in the y-position reduced to smaller

than 1.0 µm , which is considerably more than expected error of 476 nm.

Along with DDC amplitude, the 2ω term will also generate an error in the signal phase

∆φ2ω given by,

∆φ2ω = tan−1

(
A sin(∆φ) + A2ω sin(2ω∆t+ φ2ω)

A cos(∆φ) + A2ω cos(2ω∆t+ φ2ω)

)
, (4.33)

where φ is the phase of the cavity signal and φ2ω is the phase delay due to digital LPF

at 2fIF. For such a small expected value of ADDC,2ω and ∆t the error in phase due to

2ω component can be neglected.

4.4.2 Signal subtraction for three bunches

To test the signal subtraction method on three bunches, a cavity was calibrated during a

FONT shift, when the ATF was operated with three bunches separated by 154 ns. The

cavity MQM13FF was moved along the y-axis in three steps of 100 µm. At the first two

steps, signals from 50 pulses were recorded, while 500 pulses were recorded at the third
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4.4. CBPM signal from multiple bunches and signal subtraction

step to calculate the position error. To verify the performance of the signal subtraction

algorithm with three bunches, cavity signals were simulated using the signal simulation

code discussed earlier in this chapter. Experimental and simulated digitised signals,

induced from a machine pulse of three bunches, are shown in Fig. 4.28. Signals were

processed in a similar way as for two bunches, using the DDC process and a Gaussian

digital LPF of 25 MHz, to calculate the amplitude, shown in Fig. 4.28, and phase.
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Figure 4.28: Digitised raw signal and processed amplitude induced by three bunches.

I and Q phasors were calculated at sample time ts during the signals excited by each of

the three bunches, which are plotted in Fig. 4.29. The first column in Fig. 4.29 shows

the IQ diagrams from experimental signals, without and with signal subtraction. For

a time decay constant of 303 ns, the amplitude of the signal induced by a bunch had

decayed to only 60% when the next bunch arrived. Similar to the phasors from two

bunch data, the amplitudes of the phasors from the second and third bunches were

significantly overestimated.

An other point to notice is that the phase difference between the phasors from the

consecutive bunches ∆ΘIQ are not even. For a frequency difference of 1.1764 MHz

between the dipole and reference cavities, the phase difference after 154 ns should be

1.13 radian. The observed phase difference between the first and second bunch phasors

was 0.76, while it was 0.87 radian between the second and third bunch. The positions of

the second and third bunches calculated from these phasors, without signal subtraction,

were overestimated by 25% and 67% respectively. Similar to the experimental signals,
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Figure 4.29: IQ plots from experimental and simulated signals induced by three
bunches.

the phasors from the simulated signals also result in an over estimated position.

To remove the error, the signal subtraction algorithm was applied to the phasors.

As mentioned earlier, the decayed phasors measured during the second bunch were

subtracted from that of the third, and of the first from the second. The IQ phasors

after signal subtraction are plotted in the bottom left of Fig. 4.29. As the signal

pollution is removed, the error in position of second and third bunch reduced to 2%,

from 25% and 67% respectively. The phase difference between the consecutive bunches

are 1.16 and 1.14 radian, which agree well with the prediction of 1.13 radian. Similar to

the experimental data, after subtraction, the simulated phasors have same amplitude

and even phase difference between bunches.

The subtracted IQ phasors were rotated by rotation angle ΘIQ, and position of the
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4.4. CBPM signal from multiple bunches and signal subtraction

bunches were calculated using position scale factor S. A histogram of the position

residuals from the experimental and simulated data are plotted in Fig. 4.30. The trace

label B1-S26 means for the first bunch sampled at the 26th digitiser sample. The jitter

in experimental data grows with the bunch number, while simulated data shows no

increase. This can also be seen in the IQ diagrams of Fig. 4.29. As the simulation did

not include any non-linear effect in the processing electronics, it was suspected that

saturation occurs when the amplitude grows due to the addition of the signals.

26

42
26

42

Position residual Position residual

Figure 4.30: Histogram of jitter from experimental and simulated signals induced by
three bunches.

If the linearity in the electronics and digital processing of the CBPM signal is main-

tained, the DDC amplitude should retain its exponential decay. The amplitudes of

the CBPM signals recorded from 500 machine pulses, at the third mover position step

during the calibration were used to verify the exponential decay. Fig. 4.31 shows the

ratio of the DDC amplitude at a sample to the amplitude after 16 digitiser samples

(e.g. amplitude at sample 58 divided by amplitude at sample 74). For a dipole cavity

with decay time constant τd of 303 ns, the amplitude ratio should be 1.66. The sample

numbers from 58 to 66, after arrival of the third bunch, were used for the study.

When sampled at 58, the amplitude ratio had strong dependence on the amplitude, for

amplitude values higher than 5900 digitiser counts. The ratio decreases down to 1.5,

and the exponential relation was no longer valid. The most probable reason for this

nonlinear behaviour at higher amplitude can be some non-linearities in the electronics.

Sampling at a later time allowed to avoid this problem, either partially (sample number
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Figure 4.31: Plot of signal amplitude ratio, separated by 16 samples, as function of
amplitude at the first point.

62) or completely (sample number 66).

As shown during the linearity measurements in Fig. 4.5(a), the response of the RF

electronics card was linear over an input power range of more than 70 dB. The same

can be seen in Fig. 4.32, where the gain is plotted for different digitised output voltage.

The gain is almost constant for digitised amplitudes higher than 5900. To resemble

the decrease in the amplitude ratio of 9.6% (from 1.66 to 1.5), the gain should also be

compressed by corresponding amount, which was not observed.
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Figure 4.32: Gain at different digitised output signal amplitudes

The same subtraction algorithm was applied with the third bunch sampled at a sample

number of 66. The position scale factor was increased accordingly, assuming an expo-

nential decay. As shown in Fig. 4.30, the residual for the third bunch decreases to the

same level as the second bunch. Table 4.9 summarises the RMS values of the measured
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position. Although avoiding the nonlinear region reduces the RMS position for bunch

3, the variation in position of bunches 2 and 3 were almost four times larger than that

for the bunch 1.

Table 4.9: RMS position jitter measured for three bunches

Bunch RMS position residual (µm)

No 3rd Bunch Sample no

58 66

1 3.51 3.51

2 13.06 13.06

3 40.98 12.99

As nonlinearity in electronics is ruled out, another possible reason for the large position

jitter for bunch 2 and 3 could have been the effect of the FONT system. As the cavity

pulses were not recorded in synchronization with the FONT measurements, it is not

possible to verify if the FONT was kicking the third bunch and by what amount.

4.5 Summary

The processing of the CBPM signals induced by multiple bunches were studied at ATF2,

while the ATF was operated in two or three bunch modes. A signal induced by a bunch

was polluted by the signals induced from previous bunches, which overestimated the

bunch position by 67%. A signal processing method has been developed which removes

the signal pollution using a signal subtraction algorithm. The signal subtraction al-

gorithm was applied to the CBPM signals induced by two and three bunches in the

CBPMs at ATF2. The algorithm removed the signal pollution which reduced the mea-

surement error to less than 2%. The phase jump between the consecutive bunches was

studied and it was due to the frequency difference between the dipole and reference

cavities. With this study, it is possible to apply the calibration constants derived from

the single bunch calibration to calculate the bunch position of any bunch with a known

bunch separation. The application of signal subtraction algorithm extended the use

of the existing CBPM system, with relatively high Q cavities, to the next generation

accelerators using a beam with a shorter bunch separation.
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Chapter 5
Cavity BPM with pre-aligned and

separated dipole modes

Cavity design features, such as deliberate pre-orientation of the dipole modes by in-

troducing a resonant frequency split between x and y position signals to improve the

isolation, and extraction of beam position without any mechanical tuning of the cavity,

were studied through a collaborative project with Diamond Light Source. The project

was to design a prototype cavity BPM system for the proposed Next Light Source

(NLS). Because the NLS project has been postponed, it was decided to use the same

design for the Diamond Light Source. This chapter includes explanation of the design

and simulation of the CBPM, which is followed by the laboratory RF testing, and

finally some initial results from the beam testing are discussed. All design and simula-

tion work discussed in this chapter was carried out in collaboration with the Diamond

Light Source. The RF parameters of one of the fabricated cavities were tested at Royal

Holloway University of London (RHUL). The beam tests on the cavity were carried out

at the Accelerator Test Facility (ATF) at KEK in Japan.
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5.1. Next Light Source

5.1 Next Light Source

NLS is a proposed free electron laser (FEL) facility by the Science and Technology

Facility Council (STFC) of UK. Its conceptual design report was prepared and the

potential applications have been thought through. NLS will use FEL radiation from an

electron bunch to produce an ultra-intense and ultra-short laser pulses in the wavelength

range from THz to soft X-ray [54]. This synchrotron radiation will be used as a fast

and intense radiation source for various optical analysis experiments, based on the

diffraction and spectroscopic measurements. With its ultra-short laser pulses, NLS

should be able to provide the following scientific benefits [54],

• Nanometer scale imaging of arbitrary objects in their native state: Capturing a

living cell at nanometer resolution,

• Measure the mechanisms of physical and chemical processes at an atomic scale:

Making molecular movie,

• Control electronic processes in matter: Directing attosecond dynamics.

To perform above scientific studies, the NLS is proposed to generate laser pulses as

short as 20 fs pulse length, and in energy range from infrared (IR) to 5 keV soft X-ray.

The choice of the beam energy for NLS FEL is mostly limited by the tuning range

and polarisation of the radiator undulator [54]. To produce such a short high energy

laser pulses, 32 ps long bunches of 1010 electrons per bunch will be accelerated up to

2.25 GeV energy in NLS. The BPM project began as a project to design a cavity BPM

system for the NLS accelerator, which was then redirected to the Diamond Light Source

on postponement of NLS.

5.2 Diamond Light Source

Diamond Light Source is a third generation national synchrotron facility of United

Kingdom, opened in 2007 at Rutherford Appleton Laboratory (RAL) campus in Ox-
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5.2. Diamond Light Source

fordshire. It is a user facility which provides a high intensity synchrotron radiation

beam over a wave length range from infrared to X-rays [55].

The intense X-ray pulses generated at Diamond are used for various studies over many

scientific disciplines,such as Chemistry, Environmental study, Life science, Earth science

and Engineering. For example, pharmaceutical companies can study structural infor-

mation of the samples, using molecular crystallography with extreme time and spacial

resolution, to improve the performance of the drug [56]. Biological processes such as

protein denaturation, phase separation, binding and unbinding, are studied using the

non-crystalline diffraction techniques using X-rays. In material science, the structure

and morphology of a thin film object, such as a high temperature superconducting film,

are studied using diffraction of the high intensity X-rays.

5.2.1 Machine information

A schematic layout of the facility is shown in Fig. 5.1 [57]. Diamond Light Source can

be classified into three main sections, linac, booster ring and main storage ring. The

pre-injector linac provides a primary input beam to the booster ring. It can be operated

in a short or long pulse mode, with pulse duration of 1 ns or 300 - 1000 ns respectively

[58]. Pulses of 50 pC to 3 nC can be generated with pulse repetition rate from single

shot to 5 Hz. The electron gun consists of a thermionic dispenser cathode, which is

operated at -90 kV potential difference to the earth. The long pulse generated by the

gun is then bunched in a buncher system, which consists of the standing and traveling

wave structures at 500 MHz and 3 GHz respectively. The bunched beam is accelerated

using two accelerating structures, which have 156 cells and operates in 2π/3 mode at

3 GHz.

The accelerated pulses are inserted into a booster ring for further acceleration and

conditioning. The booster is formed of a normal focusing defocusing (FODO) lattice.

In the booster, an input beam of 100 MeV is accelerated up to 3 GeV [59]. The input

beam is accelerated using RF cavities, providing an accelerating voltage of 1.1 MV at

500 MHz. It is designed for 3 mA beam current and can be operated in a single long
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Figure 5.1: Model schematic layout of the Diamond Light Source.

bunch mode or a multi-bunch train mode.

The 3 GeV main storage ring is made of 24 straight cells and has circumference of

561 m [55]. As a third generation light source, it uses the advanced magnet concepts

such as superconducting and normal-conducting wigglers to produce the magnetic fields

up to 3.5 and 2.0 T [60] respectively. The energy lost through synchrotron radiation

of the stored beam current of 300 mA, is compensated by an accelerating structure

operating at 500 MHz. The design goal is to store a beam with 300 mA for 100 hours.

A beam of 100 mA has been successfully stored for 100 hours during the commissioning

of the storage ring [61]. The main parameters of the Diamond Light Source machine

are listed in Table 5.1.

The majority of the BPM system installed at Diamond are from LabCA [61, 62]. The

beam in the booster synchrotron and storage ring are monitored by 22 and 168 four

button BPMs respectively. The BPM signals are acquired and processed using a EPICS

and MATLAB based processing system, and results are used to correct the beam using

the fast and slow feedback systems. Using the feed back system, the beam size could
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Table 5.1: Major parameters of the Diamond Light Source storage ring.

Parameter Value

Electron beam energy (GeV) 3

Number of cells 24

Circumference (m) 561.5

Beam current (mA) 300

Beam emittance (nm-radian) 2.74 (horizontal) and 0.0274 (Vertical)

be reduced to the nominal emittances of 2.7 and 0.03 nm rad in the horizontal and

vertical directions respectively [61].

Well controlled injection into the storage ring provides a better starting conditions and

improves the performance of the storage ring. The new CBPMs were planned to be

installed in the extraction line, from the booster ring to the storage ring, to provide

better measurement of beam position. If installed in either of the rings, the system will

get saturated from the revolving high current beam. In addition, the required space

was available in the extraction line with minimum changes required.

5.3 Cavity BPM design and EM simulations

While designing a CBPM, each dimension can be chosen to improve the system resolu-

tion and to provide efficient post processing. With an increase in the resonant frequency

of a cavity, the size of entire CBPM structure decreases. A CBPM structure designed

in the C-band frequency range will be compact, while large enough to be machined with

sufficient accuracy. In addition, high quality components for the processing electronics

are available at cheaper price because of the advances in the radio communication field

in this frequency range. With all above factors, it was decided to design the CBPM in

the C-Band frequency range.

During the design process, after deciding the geometry shape and approximate values

of all dimensions, the CBPM structure is simulated using various electromagnetic codes

to predict its performance and to optimise the dimensions. The simulation process flow

and different simulation packages used for this study are explained subsequently.
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5.3. Cavity BPM design and EM simulations

5.3.1 Software packages for EM simulations and post-processing

The workflow of simulations through the softwares installed at different locations are

shown in Fig. 5.2. The 3-dimensional (3D) geometries of the CBPM structures were

first created in Cubit [63]. Cubit is a software toolkit, which is developed, distributed

and supported by Sandia and its sister laboratories in USA. The complex geometries

can be built using the standard 3D volumes, or from scratch using the geometry com-

ponents such as points, curves and surfaces. New geometries can be created by boolean

operations such as addition, subtraction or intersection of the existing geometry com-

ponents. The geometries can be divided by symmetry planes, and different boundary

conditions can be assigned. Individual volumes can be grouped together in a block to

assign them same properties, such as the volume material type. Cubit installed on a

stand alone desktop was capable to create the CBPM geometries for this study.

The actual EM simulations are performed using two software packages, GdfidL [64] and

ACE3P [65]. For GdfidL, a geometry created in Cubit was exported in the Standard

Tessellation Language (STL) file format. ACE3P codes accept a tetrahedral mesh in

the NetCDF format. The geometry was meshed in cubit using first or second order

tetrahedral elements, which was then exported as a Genesis file. The Genesis file was

converted into the NetCDF format using ACDTool [66].

GdfidL is a 3D EM simulation software, which can be operated on serial or parallel

computers [64]. GdfidL has a built-in module for geometry creation through a command

script, but Cubit was preferred because of its graphical interface and flexibility to

modify individual volumes. GdfidL can compute the EM fields in a lossless or lossy

structure. It has an internal mesh generator to produce cuboidal mesh with linear

mesh elements. GdfidL uses an Eigenmode solver to identify the resonant modes and

time domain solver to compute the EM fields in a geometry. From the computed

EM fields, the post-processors can compute various parameters such as, Q values,

shunt impedance, S-parameters and wakefields. At Royal Holloway, GdfidL runs on a

Beowulf cluster with 54 nodes.

Advanced Computational Electromagnetic 3D Parallel (ACE3P) is a finite element (FE)
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Figure 5.2: Simulation workflow and distribution of software on various computer sys-
tems.

based code suit which includes solvers for electromagnetic, particle tracking and thermal

simulations [65]. They can solve field problems for lossy and lossless materials. Within

the ACE3P suite, Omega3P is an Eigenmode solver used to simulate the resonant modes

of a structure [67]. It calculates electric and magnetic field patterns for each mode along

with surface current density. Omega3P also calculates the internal quality factor (Q0),

and external quality factor (Qext) if ports are defined. From the EM fields calculated
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by Omega3P, the normalised shunt impedance (R/Q) of an individual resonant mode,

experienced by a bunch traversing along a linear trajectory, can be calculated using

ACDTool.

The impedance matching between different parts of a CBPM can be simulated using

an S-parameter solver S3P. The S-parameters are derived as a ratio of the received and

transmitted voltages at ports, normalised to the line impedance [19]. S3P calculates

complex S-parameter values at specified frequencies, and writes them in a file in a

standard array format.

The beam coupling efficiency of a CBPM was studied, by simulating a charge particle

bunch passing through it, using a time domain solver T3P. User can specify the bunch

charge distribution, bunch length, speed and its linear trajectory of propagation. The

charge in a bunch is distributed only along its length (along the direction of propaga-

tion), while the bunch resembles only a point on the transverse plane. It calculates the

EM field induced by the moving bunch, from which its propagation or build up with

time can be studied. The wake potential that would be experienced by a following

bunch with different bunch separation can be calculated using T3P.

ACE3P codes were used on the supercomputers at National Energy Research Scientific

Computing (NERSC) facility, located in Berkeley California. The NetCDF geometry

mesh file and other simulation setup files were copied to NERSC, where they were

solved in parallel mode. The simulation results were copied back to user’s computer

for post-processing and visualisation. The simulated EM fields were visualised using

ParaView. The results from S-parameter simulations were processed using SciPy.

ParaView is an open source visualisation software which can work on multiple plat-

forms [68]. The electromagnetic fields simulated using Omega3P and T3P were viewed

and analyzed in ParaView. The fields can also be plotted on any cross-section plane.

The values of the electric and magnetic field components on a point, curve, surface

and inside a volume can be extracted for processing. The propagation or build up of

the fields inside any structure can also be visualised as moving time frames for better

understanding.
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ACE3P codes benefit from the tetrahedral mesh with curved elements and spacial dis-

cretisation. On other hand with GdfidL, user has more explicit control on the mesh

generation. Use of ACE3P codes had advantages from efficient parallel processing and

execution on vast computational resources, but required many different softwares dur-

ing a simulation cycle and data transfer. Using GdfidL had the benefits of integrated

software modules and local data availability, but it was limited by the resources avail-

able at Royal Holloway. It was preferred to use ACE3P over GdfidL, but GdfidL was

used when it was difficult to mesh any complex geometry using Cubit. Most of the

electromagnetic simulations during the project were cross compared by three different

packages, CST, GdfidL, and ACE3P. The GdfidL and ACE3P codes were used to simu-

late various models at Royal Holloway, while the same geometries were simulated using

CST at the Diamond Light Source [69].

5.3.2 Resonant cavity

The Diamond RF system runs at 499.654 MHz. It is foreseen to use a higher order

harmonic of the RF system frequency to provide local oscillator (LO) signal for the

electronics of the CBPM system. Even when an external LO source is used, the fre-

quency of the LO should be kept at an integer multiple of the RF system frequency to

phase lock the LO to use the CBPMs for position feed-back and correction.

a) Cavity Radius

The thirteenth harmonic of the machine RF system frequency falls at 6495 MHz, which

will be used as an LO frequency (fLO). An electronic frequency down conversion and

signal processing scheme, similar to the one discussed in Section 4.2 for the CBPMs

at ATF2 beam line, will be implemented for the CBPM system at Diamond as well.

From the Nyquist theorem, a digitiser with digitisation rate of 250 Mega-samples per

second limits the processing bandwidth to 125 MHz. For accurate frequency and phase

determination of the digitised signal, at least 5 sample points per signal cycle are

required. The IF signal with frequency (fIF = fRF − fLO) of less than 50 MHz will
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have enough oscillation cycles between the consecutive bunches, and it satisfies the

digitisation requirements. The choice of 20 MHz as the IF frequency sets target for the

BPM signal frequency to be at 6475 MHz, with lower limit at 6445 MHz.

To benefit from the previous design experience and for the ease of manufacturing, a

cylindrical cavity was chosen as the resonant structure. From Eqn. 2.4, the radius b of

a vacuum filled cylindrical cavity, corresponding to the dipole frequency of 6475 MHz

is calculated,

b =
1

2π

1√
µ0ε0

(
j11

f110

)
= 28.23 mm, (5.1)

where f110 is the resonant frequency of the dipole mode, j11 is the first zero of the

Bessel function (J1) which describes the electric field distribution of the dipole mode,

ε0 and µ0 are the permittivity and permeability of vacuum respectively.

The resonant frequencies of the monopole, second monopole and quadrupole modes of

a pillbox cavity with a radius of 28.33 mm, calculated using Eqn. 2.4, will be 4.0, 8.7

and 9.3 GHz respectively.

b) Cavity height

The amplitude of EM fields induced by a bunch in the cavity increases linearly with

the cavity length (Section 2.2.1). This linear increase is attenuated by the transit time

factor (αTT in Eqn. 2.10) because of the oscillating nature of the RF voltage. Fig. 5.3

shows the transit time factor for the monopole and dipole modes of a CBPM with

different cavity length l, and a constant radius of 28.33 mm.

From Fig. 5.3 increasing the cavity length reduces the excited monopole and dipole

mode, because of the transit time effect, although the dipole mode decreases faster.

The relative increase in the monopole mode compared with the dipole mode reduces

the system resolution due to the increased pollution of the high frequency tail of the

monopole mode at the dipole mode frequency. Also, as can be seen from Eqn. 2.21 and

2.22 the amplitudes of the signals dues to the bunch trajectory and tilts also increase

with the cavity length. Considering all these factors an inital value of 8 mm was used
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Figure 5.3: Transit time factor αTT for the monopole and dipole modes of a pillbox
cavity with different lengths.

for the simulation model.

It is known from previous design experiences that adding a beam pipe and coupling

structures to an ideal pillbox cavity reduces its resonant frequencies. Taking this into

account, a cavity model with slightly smaller radius was used to simulate the pillbox

cavity.

Fig. 5.4(b) shows a simulation model of pillbox cavity for Omega3P, and an axial elec-

tric field component for dipole mode. Only half of the pillbox cavity was solved with

l=
8

b=26.43

All dimensions are in 'mm' Beam
Direction

(a) Cross-sectional drawing of pillbox cavity. (b) Axial electric field of the dipole mode simu-
lated using Omega3P.

Figure 5.4: Simulation model of pillbox cavity.
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magnetic symmetry boundary condition on the x-plane. Imposing a symmetry bound-

ary condition restricts the modes which can be excited in the structure, but can save

considerable simulation time while solving larger models. The resonant frequencies of

major modes derived using Eigenmode solvers in the three different codes are compared

in Table 5.2. The simulated values were in good agreement with the theoretical and

the difference among the codes were less than 0.05 %.

Table 5.2: Resonant frequency of a pillbox cavity calculated using different Eigenmode
solver packages.

Mode

Resonant frequency fr,pillbox

Theory Variation from theory (MHz)

(MHz) CST GdfidL Omega Spread

3P

Monopole 4341.4 -0.2 0.0 1.0 1.2

Dipole 6917.3 -0.5 0.0 1.6 2.1

Quadrupole 9271.2 -1.2 1.1 2.3 3.5

The internal quality factor Q0 of a pillbox cavity can be calculated as [69],

Q0 =
1

δ

l

1 + l
b

, (5.2)

where the skin depth δ of the material is calculated as,

δ =
2√
µω σ

, (5.3)

where σ is the electrical conductivity of the cavity material, ω is the angular resonant

frequency of the mode and µ is the permeability of the material.

Table 5.3: Internal quality factor Q0 of a pillbox cavity derived using different Eigen-
mode solver packages.

Mode
Internal quality factor Q0,pillbox

Theory Variation from theory

CST GdfidL Omega Spread

3P

Monopole 6132 0 55 -7 62

Dipole 7729 2 75 -15 90

Quadrupole 8948 2 55 -24 79
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To design CBPM with relatively high quality factor, copper is the suitable material

because of its higher electric conductivity of 5.8× 107 S/m. The quality factors for the

three lowest order modes simulated using Eigenmode solver of three different codes, are

compared with their theoretical values in Table 5.3. The values are in good agreement

with the theoretical prediction, with spread of 1.5%.

c) Cavity with beam pipe

As shown in Fig. 5.5(a), the cylindrical beam pipes with radius a of 10 mm were

added at the both ends of the pillbox cavity to see the effect. Fig. 5.5(b) shows the

simulation model and axial electric field component of the dipole mode determined

using Omega3P. Simulation results for the primary resonant modes of the structure are

tabulated in Table 5.4. The resonant frequency of dipole and quadrupole dropped by

the addition of the beam pipe, while the frequency of monopole increased. The quality

factor Q0 did not change much by addition of the beam pipes.

a=
10

b=26.43

All dimensions are in 'mm'

l=
8

46

Beam
Direction

(a) Drawing of a cavity with beam pipes. (b) Simulation model of a pillbox cavity with
beam pipes, showing electric field of the dipole
mode.

Figure 5.5: Geometry model of a pillbox cavity with beam pipes, solved using Omega3P.

The normalised shunt impedance (R/Q0) for various modes were calculated using ACD-

Tool as a post process on the Eigenmode simulation results. The R/Q0 for bunch offset

of 1 mm showed that the monopole mode is 88 times strongly coupled than the dipole

mode, while the quadrupole is 270 times weakly coupled than the dipole mode. As the

geometry is symmetric in transverse plane, the orientation of the modes were fixed by
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even a small asymmetry in the mesh.

Table 5.4: Eigenmode simulation results of a model with cavity and beam pipes.

Mode

Resonant frequency fr (MHz) Quality factor Q0

(
R
Q0

)
1mm

fr fr − fr,pillbox Q0 Q0 −Q0,pillbox (Ω Cavity)

Monopole 4703.0 361.6 6266 +134 71.63

Dipole 6473.4 -443.9 7687 -42 0.81

Quadrupole 9004.5 -265.7 9077 +129 0.0031

The cutoff frequency of the lowest transmission mode TE11 for the cylindrical beam

pipe can be calculated using Eqn. 2.5, and it is 8.78 GHz. The two highly coupled

primary resonant modes, the monopole and dipole, are well below the cutoff frequency

of the beam pipe. The power coupled in these modes will not propagate through the

beam pipes, and will decay exponentially with length in the pipe.

5.3.3 Waveguide adapter with coaxial coupler

To couple the electromagnetic fields out of the resonant cavity, a slot coupled waveguide

was used because of its inherent characteristics as a high pass filter and the restrictions

it applies on the orientation of the coupled field. A rectangular waveguide structure is

chosen, over a cylindrical, for the following reasons:

• The magnetic field of the cavity dipole mode is aligned with the magnetic field of

TE10 mode of the rectangular waveguides, which improves the isolation between

x and y position measurements.

• The coaxial coupler is more effective with rectangular waveguide compared to

cylindrical.

• Because of manufacturing ease, as the coaxial coupler can be mounted more

accurately on a plane surface of a rectangular waveguide than on a cylindrical

surface.
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The dimensions of the waveguide can be chosen such that it restricts the monopole

from coupling into the waveguide (as explained in the Section 2.2.1). Fig. 5.6 shows

the simulation model of a waveguide adapter with coaxial coupler, along with the

dimensions and ports. From Eqn. 2.11, the width A of a rectangular waveguide, given

the cutoff frequency fc,10 of TE10 is,

A =
c

2

(
1

fc,10

)
, (5.4)

where c is the speed of light.

As mentioned in Table 5.4, the monopole and dipole frequencies of the cavity-beam

pipe structure are 4.7 and 6.47 GHz respectively. The cutoff frequency of the waveguide

should be between these two values. A waveguide with 28 mm width (A) will have cutoff

at 5.35 GHz, hence it will couple the dipole field while efficiently rejecting monopole.

A

B

C

g
Cr

C

Port-2

Port-1

Coaxial 
probe

Additional
conductor 
bead 

Figure 5.6: Simulation model of a waveguide adapter with coaxial coupler, showing
dimensions and ports.

Typically the height (B) of the waveguide is kept around half of its width. Reducing

the height increases the capacitance and hence improves the power coupling through

capacitive coaxial probe. The lower limit on height is imposed by the space required

for coupling probe structure, and possible tolerances.
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The guide-wavelength, inside the waveguide, corresponding to the cavity dipole mode

frequency can be calculated as [19],

λg,110 =
λ110√

1−
(
λ110
λc

)2
, (5.5)

where λ110 is the free space wavelength for the dipole frequency and λc is the cutoff

wavelength of the waveguide mode, which is twice of the waveguide width (2A) for the

TE10 mode of a rectangular waveguide. The interpretation of position signal becomes

complicated if the waveguide also resonates at the dipole frequency of the cavity. To

avoid resonance in the waveguide, the length (C) of the waveguide should not be an

integer multiple of the half guide wavelength (λg,110/2).

The field coupled into the waveguide from the monopole mode will propagate as an

evanescent mode, with power decaying along waveguide length by factor αevencent given

by,

αevencent = e
− 4π

c

√
f2
c − f2

r,010 = −4.64 dB/cm, (5.6)

where αevencent is the amplitude decay factor of the evencent mode, fc is the cutoff

frequency of the waveguide and fr,010 is the resonant frequency of the monopole. To

limit the structure length, the waveguide length was chosen to be 60 mm, for which

any power coupled from the cavity monopole mode will be decayed by -16 dB at the

position of the coaxial probe.

Power coupled into the waveguide is extracted out using capacitive coaxial probe (Fig. 5.6).

For maximum coupling of the field at certain frequency, the distance between the probe

and the waveguide end wall (the surface opposite to Port-1) should be a quarter of its

guide wavelength (λg/4).

The conventional capacitive coaxial couplers use a thin cylindrical central conductor,

without the additional conductor bead (shown in Fig. 5.6). In absence of the bead, the

gap gc has to be very small (of the order of 100 µm), and hence it is very sensitive to

fabrication errors. An adapter with a thin probe will have narrower bandwidth (BW),

and its transmission coefficients will vary within the dipole BW. To couple all power

116



5.3. Cavity BPM design and EM simulations

induced over the BW of the dipole modes, the BW of the waveguide adapter should

be wider than the BW of the cavity dipole modes. The transmission coefficient of

the coupler should be constant over the BW of the dipole modes. In addition, the

BW of the waveguide coupler is kept considerably wider than the cavity bandwidth to

accommodate the intentional frequency separation between x and y position signals,

and any frequency variation due to fabrication errors.

To overcome the limitations of the conventional adapter, an additional conductor bead

was added at the end of the coaxial probe as shown in Fig. 5.6. The capacitive bead

provides an additional capacitance, which makes it possible to increase the gap gc be-

tween the probe and opposite waveguide wall. To study the transmission and reflection

characteristics of the waveguide adapter, the S-parameters of the simulation model

shown in Fig. 5.6 were solved using S3P. The major simulation parameters are listed

in Table 5.5.

Table 5.5: Simulation parameters used for study of waveguide adapter

Parameter Value Unit

Solver package S3P

Average/Minimum mesh element
length

2 / 0.2 mm

Mesh type Tetrahedral with curved elements

Frequency step size 50 MHz

The simulated transmission and reflection responses of the waveguide adapters with

conductor beads of different radius’s rc are shown in Fig. 5.7(a) and 5.7(b). The gap

gc was kept constant at 3.6 mm. The geometry was solved using the S-parameter

solver S3P. The code does not produce meaningful results below the waveguide cutoff

frequency, and should be excluded from the analysis. Port-1 at the waveguide end was

used as an input port. The simulation showed that the adapter bandwidth increases

and its response becomes flatter with an increase in the bead radius. The bead of

radius 5 mm is used in the final design. For the bead with 5 mm radius, the reflection

at 6450 MHz (near dipole mode frequency) was -11.4 dB. The Minimum reflection of

-17.8 dB occurred at 7150 MHz. The maximum radius of the bead was limited by its

access into the waveguide, hence the bead with 6 mm radius could not be used even

though it provided lower reflection at the dipole frequency. Though the bead radius
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was limited to 5 mm, the coupler could be further optimised by changing the gap gc.
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(a) Reflection characteristics, S11
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Figure 5.7: Simulated S-parameter responses of the waveguide adapters with coaxial
beads of different radius rc, at constant gap gc

The simulated S-parameter responses of the adapter with different gap gc are shown

in Fig. 5.8(a) and 5.8(b). The adapter bandwidth increased with increase in gc, while

the transmission attenuation at dipole frequency reduced. The minimum reflection

occurred for the gap of 4.6 mm. The simulation showed that, because of the additional

conductor bead, it was possible to increase the gap and still achieve a wide bandwidth.
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Figure 5.8: Simulated S-parameter responses of the waveguide adapters with different
gap (gc), for constant bead radius (rc)

The waveguide adapter will be coupled to the cavity through a coupling slots at the

waveguide surface assigned as a Port-1 in Fig 5.6. The surface will be enclosed and
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will have a smaller opening in the form of a coupling slot. This modification changes

the transmission and reflection characteristics. The final tuning of the gap (gc) should

be carried out while simulating the complete CBPM geometry. In the final design, a

conductor bead of radius rc of 5 cm was kept at gap gc of 3.6 mm to reduce the effect

of the fabrication errors and to minimise the rotation of the fields inside the cavity.

5.3.4 Deliberate orientation of dipole modes using asymmetric slots

The EM field induced in the dipole mode of the cavity is coupled to the waveguides

through coupling slots (as shown in Fig. 5.9(a)). The slots are used because they

provide better isolation between the x and y position measurement. The slots also

provide better monopole rejection. The x − y isolation increases with the ratio of the

slot length to its width. The length of a slot is limited to the difference of the radius of

the cavity and beam pipe, and it is kept at the maximum possible value. The minimum

thickness of the slot is limited by the mechanical strength of the cavity material. In

the final design the slots were designed to be 1.5 mm thick and 13 mm long.

C
=6

0

A=28

61
a=

10

b=26.43 l=
8

All dimensions are in 'mm'

Coupling 
Slots

1.
5

13

(a) Simple cross-sectional drawing of a CBPM
design for Diamond, showing a cavity, beam
pipe, coupling slots and waveguides.

w
x

w
y

(b) Simulation model showing coupling
slows with different widths.

Figure 5.9: Simulation model to study effects of asymmetric coupling slots along x and
y axes.

Because an ideal cylindrical cavity is a symmetric structure, the orientation of the

induced dipole field is determined by the direction of the beam position offset. Even
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a small error in fabrication of CBPM breaks the symmetry and it can disorient the

modes which will no longer be aligned to the coupling slots or direction of the beam

offset. The disoriented modes degrades the x− y isolation and hence the measurement

accuracy. As the cavity is planed to be built without any mechanical tuning system,

it will not be possible to improve the isolation once it is fabricated. The isolation can

be improved by deliberate orientation of the dipole modes to the coupling slots along

x and y axes.

The orientation of the modes were fixed by breaking the symmetry of cylindrical cavity

using slots of different widths Wx and Wy along x and y axes respectively. Using

slots with different widths separates the dipole modes coupled to them and fixes their

orientation parallel to the slots axes. The two dipole modes will resonate at different

frequencies. As the modes are separated in frequency, the isolation can be further

improved by attenuating the other dipole mode signal using filters of bandwidth lower

than 5 MHz, in digital signal processing.

The minimum possible slot width is limited by the cavity material and output signal

strength, as the power coupled into the waveguide decreases with a decrease in the slot

width. The coupled power increases with the coupling slot width, but the x−y isolation

decreases, and the power coupled from the high frequency tail of the monopole increases.

Fig. 5.9(b) shows a simulation model of the cavity and waveguides coupled to it through

the slots. To examine the effects of asymmetric slots, the width Wy was changed while

keeping the width Wx constant. The models were solved using Eigenmode solver of

GdfidL to find their principle resonance modes. The important parameters of simulation

Table 5.6: Parameters of the simulation model to study mode separation

Parameter Value Unit

Solver package GdfidL Eigenmode solver

Average/Minimum mesh element
length

0.2 / 0.02 mm

computation system one quad-core node on cluster

Simulation time 8.0 hours/

solution

120



5.3. Cavity BPM design and EM simulations

models are listed in Table 5.6. GdfidL was used to compare the simulation results with

the results presented in section 5.6.3.

Fig. 5.10(a) shows the simulation model in GdfidL post processing software, and the

electric field of the mode coupled through the slots along y-axis. The frequency sepa-

ration between the two modes, introduced by different slot widths, are plotted in the

(a) Cavity model in GdfidL showing the electric
field of the mode coupled to the slots along the
y-axis.
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Figure 5.10: Simulation results from the study of the separation of the dipole modes
using asymmetric coupling slots along the x and y axes
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Fig. 5.10(b). Simulations showed that with a change in width Wy, the resonant fre-

quency fy of the dipole mode coupled to the slots along the y-axis decreased, and vice

versa. Along with fy, the resonant frequency fx of the dipole mode coupled to the slots

along x-axis also changed with change in Wy. The change in fx was smaller compared

to the change in fy.

Simulations showed that the modes were separated by 5 MHz by changing the slot

width by 2 mm. The frequency change was not linear in Wy. For a lower slot width,

the frequencies changed most, the slots would be more sensitive to fabrication errors

and less power would be coupled to the waveguide.

The equi-amplitude contours for the axial component of the electric field ~Ez of the two

dipole modes, for a model with slot widths Wx and Wy of 3 and 4 mm, are plotted

in Fig. 5.10(c) and 5.10(d) respectively. The two dipole modes were separated from

each other in frequency and were aligned to the slots. All plots in Fig. 5.10 confirm

the hypothesis that the dipole modes are deliberately pre-oriented to the slots and

separated in frequency. As the frequency separation will be affected by the addition

of the coaxial couplers, and the boundary conditions used at the waveguide ends, the

final design parameter optimisation should be done on the complete geometry model.

5.3.5 Simulation of complete cavity BPM geometry

After the above detailed studies, a complete geometry model of the CBPM was created

for final EM simulations. Fig. 5.11 shows the simulation model geometry created using

Cubit. Based on the study of mode separation, the waveguides along the x and y axes

were coupled to the cavity through 4 and 3 mm wide slots respectively. As shown in

Fig. 5.11(b), the port numbers are assigned in a counter clock wise direction, starting

with Port-1 assigned to the waveguide adapter coupled through the narrower slot along

the y-axis.

To find the optimum mesh setting, the geometry was meshed using Cubit with different

mesh densities, and was solved using Omega3P. Fig. 5.12 shows the resonant frequency

andQ0 of a dipole mode for solution with different mesh densities. For all mesh densities
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(a) 3D view of the simulation model.

Port-1

Port-2

Port-3

Port-4

(b) Semitransparent beam directional of the sim-
ulation model showing internal structures and as-
signed ports.

Figure 5.11: Simulation model of complete CBPM geometry.

tested, the simulation results were stable. Because curved mesh elements were used, the

geometry was defined accurately even with a coarse mesh. The variation in the dipole

frequency and Q0 were less than 1.6 MHz and 200 respectively, which are 0.025% and

2.5% of their values calculated at the highest mesh density. The variation in simulation

results were negligible above 450000 mesh elements. The same mesh has been used for

Eigenmode, S-parameter and time domain solutions.
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Figure 5.12: Cavity dipole frequency and Q0 as function of number of mesh elements.
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Electric fields of the four lowest frequency resonant modes, derived from the Eigenmode

simulation using Omega3P are plotted in Fig. 5.13. The dipole mode, which is coupled

out through the waveguides along the x-axis, measures the beam position offset along

the y-axis, and while the dipole mode coupled out through the waveguides along the

y-axis measures the position along x-axis.

Table 5.7 lists the results from the Eigenmode simulations. The resonant frequencies

of the lowest frequency resonant modes were reduced by the addition of the waveguide

adapters. As expected, the R/Q0 of the monopole and dipole did not change consider-

ably by insertion of the slots and waveguide coupler. The R/Q0 values were calculated

(a) Monopole mode. (b) y-dipole mode coupled through wider slots
along x-axis.

(c) Quadrupole mode (d) x-dipole mode coupled through narrow slots
along y-axis.

Figure 5.13: Field orientation of the lowest four frequency resonant modes derived from
the Eigenmode simulations of complete CBPM model.
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using ACDTool for bunch position offsets of 1 mm in x and y axes.

Table 5.7: Results of the Eigenmode simulations of the complete CBPM model, using
Omega3P.

Mode Simulation output Calculated from simulation

(Bunch fr Q0 Qext

(
R
Q0

)
QL τd Voltage

position (GHz) (Ω) (ns) attenuation

offset for
R/Q0)

after 2µs

Monopole 4.6985 6323 6.83× 1012 71.98 6322 428.2 9.37× 10−3

y-dipole 6.4552 7487 5117 0.818 3039 149.8 1.59× 10−6

(1 mm along
y-axis)

x-dipole 6.4596 7535 7388 0.825 3730 183.8 1.88× 10−5

(1 mm along
x-axis)

Quadrupole 8.7615 10148 1.27× 106 0.0017 10067 365.7 4.21× 10−1

(1 mm at 45◦

to x-axis)

The Q0 of the modes were in agreement with the theory and previous simulation results

of Table 5.4. The higher value of the external quality factor Qext for the monopole mode

verified that it did not couple into the waveguides, but it decayed through resistive

heating in the cavity walls. Lower value of Qext for the y-dipole mode than x-dipole

mode verified that more power was coupled through the wider slot along the x-axis

than the narrow slots along the y-axis. With higher Qext, the quadrupole was weakly

coupled out through the waveguide compared to the dipole modes.

From the simulated Q0 and Qext, the loaded quality factors QL and field amplitude

decay constants τ were calculated using equations 2.8 and 2.6. For a bunch separation

of 2 µs, the field amplitudes of the two dipole voltages will have decayed by -115 and

-94 dB by the time the next bunch arrives.

The S-parameters of the complete BPM model were simulated using S3P. Fig. 5.14(a)

shows the S-parameter simulation results over a frequency range covering monopole to
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5.3. Cavity BPM design and EM simulations

quadrupole modes. S-parameters were first simulated with a coarser frequency resolu-

tion of 100-MHz. The frequency regions of the individual modes were simulated with

a finer frequency resolution of 10 kHz. A typical total simulation time to solve 100

frequency steps using 120 CPUs on the Hopper super computer was 1 hour (120 CPU

hours). Because it is easier to interpret, the S-parameter are plotted in the decibel

magnitude format, which can be calculated as,

S (dB) = 20× log10 (|Scomplex|) , (5.7)

where Scomplex is the S-parameter value received from the simulation in a form of a

complex vector. As expected, the monopole was attenuated by more than -120 dB at

4698 MHz. The quadrupole was coupled better than -3 dB at 8762 MHz. Compared

to the dipole mode, the quadrupole mode is poorly coupled to the beam, and it will be

attenuated by the RF and digital filters.

3000 4000 5000 6000 7000 8000 9000
Frequency (MHz)

−140

−120

−100

−80

−60

−40

−20

0

S-
pa

ra
m

et
er

s
(d

B
)

M
on

op
ol

e

D
ip

ol
e

Q
ua

dr
up

ol
e

S11

S31

S22

S24

S21

S43

(a) S-parameters in frequency range from the
monopole to quadrupole modes.

6452 6454 6456 6458 6460
Frequency (MHz)

−80

−70

−60

−50

−40

−30

−20

−10

0

S-
pa

ra
m

et
er

s
(d

B
)

S11

S31

S22

S24

S21

S43

(b) Zoomed to the frequency region of the dipole
modes.

Figure 5.14: Results of S-parameter simulations of a complete CBPM geometry using
S3P.

The S-parameters within a frequency range of the dipole modes are shown in Fig. 5.14(b).

As listed in Table 5.8, the peaks of the reflection and transmission characteristics for

the two dipole modes were at 6455.2 and 6459.6 MHz, which agreed with the values

from the Eigenmode simulations. As shown by the traces of S11 and S22, the reflec-

tion for the both dipole modes were less than -45 dB. From the S31 and S42 traces,

the transmission loss between the coupled ports was less than -0.0002 dB. From the
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5.3. Cavity BPM design and EM simulations

transmission traces, the bandwidth of the modes were calculated as the difference of

the frequencies on both sides of the peaks at which the S-parameter magnitude is half

of the peak magnitude (3 dB point). The 3 dB bandwidth ∆f3dB, derived from the S31

and S24, were 0.86 and 1.2 MHz respectively. Using the peak frequencies fr and BWs

from the S-parameter curves, the loaded quality factors for the modes were calculated

using the following equation [19],

QL =
fr

∆f3dB
. (5.8)

Table 5.8: Results of S-parameter simulations of the complete CBPM model.

Parameters Dipole Region

Peak frequency Peak magnitude Bandwidth QL τvolt

fr (MHz) (dB) ∆f3dB (MHz) (ns)

Reflection

S11 6459.6 -46.3 – – –

S22 6455.2 -44.8 – – –

Transmission

S31 6459.6 -0.00015 0.86 7511 370

S42 6455.2 -0.00015 1.26 5123 253

Cross coupling

S21 6455.2 & 6459.6 -55.6 & -51.1 – – –

S43 6455.2 & 6459.6 -59.0 & -52.4 – – –

As tabulated, the loaded quality factor QL for the dipole modes were 7511 and 5123.

The QL derived from the S-parameter simulations were larger than the same derived

from the Eigenmode simulations, and hence should be verified using time domain sim-

ulation. As the same geometry mesh file, material properties, boundary conditions and

ports were used in the both (the Eigenmode and S-parameter) simulations, the reason

for the difference in the QL values was not clear. The x − y isolation was derived as

a difference between a transmission and cross coupling traces. The x− y isolation was

better than -50 dB at the frequencies of both dipole modes.
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5.3. Cavity BPM design and EM simulations

As the resonant frequencies are verified from two different solvers, the major param-

eter remaining to check is the beam coupling. To verify it, propagation of a bunch

through the CBPM model was simulated using T3P. The major parameters used in the

simulation are listed in Table 5.9. As the prototype cavity was planned to be tested

at the ATF2, the typical bunch parameters for the ATF were used in the simulation.

To simulate the passage of an 8 mm long bunch, the mesh element along the bunch

trajectory should be shorter than 2 mm. A total bunch length of 4σb was used to avoid

any spurious excitation of high frequency modes due to sharp bunch edges. To reduce

the simulation time, the model was simulated using a first order mesh setting.

Table 5.9: Parameters used for the time domain simulation of the complete CBPM
geometry.

Bunch Parameters Other parameters

Parameters Values Parameters Values

Bunch length σb 8 mm Maximum element along 1 mm

bunch trajectory

Total number of σb 4 Time step length 6 ps

Bunch charge 1.6 nC Number of CPUs used 120

Bunch offset 1 mm in y Total CPU time 6 (×120) hours

A single bunch was passed through the cavity along a linear trajectory parallel to the

cavity (z) axis, at 1 mm offset in the y-axis. To derive the coupled voltages at the ports,

the electric and magnetic field components were monitored at specific points near ports

inside the coaxial couplers. The positions of the point monitors were chosen such that

the coaxial radius vectors passing though them were parallel to the x or y-axis. At these

locations, only one axial component of the electric field,
−→
Ex or

−→
Ey, would be dominant,

which simplified their interpretation. The corresponding coaxial output voltage Vcoax

across a matched load resistance can be calculated from the monitored electric field

using [19],

Vcoax = |−→Eρ| ρ ln
(
rshield

rprobe

)
, (5.9)

where ρ is the radial distance of the point monitor in the coaxial coupler, |−→Eρ| is the

electric field magnitude at the monitor position, rshield and rprobe are the radius of the

128



5.3. Cavity BPM design and EM simulations

outer and inner conductors of the coaxial coupler respectively.

Fig. 5.15 shows the voltages Vy and Vx, calculated using the above equation, coupled

into the coaxial couplers along the x and y axes respectively. As the bunch position was

offset in the y-axis, the bunch energy should couple to the y-dipole mode (Fig. 5.13(b)),

which is coupled out through the waveguides along the x-axis into Port-2 and Port-

4. The amplitude of the output voltage Vy at the beginning of the signal in Port-2

was 1.5 V. An exponential decay function was fitted to the amplitude of the port

voltage. The voltage amplitude decayed to 0.367 times its initial maximum value after

265 ns, which agreed well with the decay time (τvolt in Table 5.8) calculated from the

S-parameter simulation.
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(a) Output voltages in the coaxial couplers calcu-
lated from the time domain simulation.
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(b) Spectral power density of the simulated port
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Figure 5.15: Results from time domain simulation of a complete CBPM geometry using
T3P.

The cavity output voltage can be analytically predicted using Eqn. 2.18, where the

Qext values mentioned in the Table 5.7 can be used. A single bunch of 8 mm length

and 1.6 nC charge, when passed at 1 mm position offset, should induce y-position peak

signal amplitude (Vy) of 1.3 V. The prediction using Qext agreed well to the port voltage

calculated from the time domain simulation.

The value of QL calculated from the Eigenmode simulation is lower compared to the

same from the S-parameter simulation. As the time domain simulation agreed with the

S-parameter simulation, the amplitude of the extracted voltage should be lower than
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5.4. Fabrication

the one calculated using the Qext from the Eigenmode simulation.

The peak amplitude voltage Vx of the signal coupled into Port-1 was 0.04 V. The spec-

tral power density (SPD) of x and y signals are shown in Fig. 5.15(b). The frequency

resolution of the SPD plot was 0.2 GHz, which was limited by the total number of sim-

ulation time samples. The power coupled into Port-2 was approximately 60 dB higher

than the power coupled into Port-1. The isolation from the time domain simulation

agreed well with the 55 dB isolation calculated from the S-parameter simulation.

5.4 Fabrication

The fabrication process was monitored by our collaborators at the Diamond Light

Source. Each cavity BPM was fabricated in four major sections, which were then

brought together. All the cavities were fabricated by FMB (Feinwerk- und Meßtechnik),

Berlin, Germany. One of the four fabricated cavities is shown in the Fig. 5.16. To

minimise the fabrication errors due to brazing, the cavity, waveguides and coupling

slots were machined as a single section. The open ends of the cavity and waveguide

Resonant
Cavity

Waveguide
section

Coaxial
coupler

Vacuum
flange

Figure 5.16: One of the four fabricated cavity BPMs for the Diamond Light Source.
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were enclosed by brazing metal caps to them. Both ends of the beam pipe were then

brazed to standard DN63-CF vacuum flanges. The coaxial couplers were fitted after

brazing all of the sections.

The cavity will be attached to the other accelerator components through vacuum

flanges. For accurate orientation of the cavity with support structure, reference holes

were drilled on cavity structure where the support can be fixed.

5.5 Benchtop RF measurements

After fabrication, the RF characteristics of all cavities were measured at the Diamond

Light Source. One of the four cavities was further studied in details through RF mea-

surements at Royal Holloway. Presented in this section are the various measurements

performed to determine the reflection and transmission characteristics, Q values, and

orientation of the modes.

5.5.1 Test instruments

A vector network analyzer (VNA) from Rohde & Schwarz, model number RS-ZVB20 [70],

has four ports for simultaneous measurement of the S-parameters. The measurements

can be performed from 10 MHz to 20 GHz, with frequency resolution of 1 Hz. The

typical dynamic range is 110 dB in the frequency region of interest. The typical am-

plitude and phase accuracy is better than 1 dB and 6◦ respectively. An automatic

calibration kit based on the short and open technique was available for the model. It

can be operated manually, or remotely through GPIB or LAN.

A precision mover system from Thorlabs was used to scan the position of a dielectric

bead, during mode orientation measurements. It can move in two axes in range of

10 cm, with position accuracy of 1.6µm. It has load capacity of 12 kg and can be

moved with maximum speed of 3 mm/s, to which it can accelerate at maximum rate

of 4.5 mm/s2.
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Figure 5.17: Block diagram of remote hardware control scheme for RF measurements.

Fig. 5.17 shows a block diagram explaining the scheme for the communication, control

and synchronisation between various test instruments. LabVIEW was used to syn-

chronise and sequence individual processes [71]. The VNA was controlled using SCPI

commands, issued through VISA communication library over LAN. The mover control

commands and readouts were executed through USB.

5.5.2 S-parameter measurements

Before starting the RF measurements for the CBPM, the VNA was first calibrated using

the calibration kit, to measure the intrinsic losses of the instrument and connections.

The calibration kit was then replaced with the device under test (DUT), which is a

cavity BPM in this case.

The experimental setup to measure the transmission and reflection characteristics of the

CBPM is shown in Fig. 5.18. All four ports of the BPM were connected to the individual

ports of VNA as noted in the Fig. 5.18(a). All of the 16 complex S-parameters were

recorded during a single frequency sweep. At first, the S-parameters were measured

over a wide frequency bandwidth, spanning from the monopole frequency to quadrupole

frequency. All 16 traces were exported to an ASCII data file. The exported data was

processed and plotted using SciPy.
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(a) Experimental setup.
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(b) Measured S-parameters of the cavity under
test.

Figure 5.18: Experimental setup to measure the S-parameters of a CBPM, and mea-
surement results.

The S-parameter magnitudes derived within the dipole frequency region are plotted in

Fig. 5.18(b). The frequency span of 20 MHz was traced with frequency resolution of

2 kHz for accurate post processing. The peak frequencies fp,exp and magnitudes Sp.exp

of the S-parameter traces calculated from the experimental measurements are tabulated

in Table 5.10, along with their difference from the values, fp,simu and Sp,simu, calculated

from the S-parameter simulation results, listed in Table 5.8. Two dipole modes had

the resonant frequencies of 6372.2 and 6377.7 MHz, which are lower by more than

81 MHz from the simulation results. The dipoles were separated by 5.5 MHz, which is

a wider separation than what was predicted by simulations. The peaks of the reflection

curves had magnitude between -5.5 to -8.5 dB, which are at least 36 dB higher than the

simulated results. The higher reflection values means that the dipole frequency signals

transmitted from the ports, towards the cavity, were reflected 4000 times more than

that found in the simulations, and the coupling was weaker than the predicted value.

From the transmission traces S31 and S42, the signals received at the coupled port were
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attenuated by 10.3 and 8.0 dB respectively. The transmission losses were much higher

than those expected from the S-parameter simulations, which means that the fields

induced in the cavity by a bunch will be attenuated more when extracted out into the

coaxial lines. The x− y isolation, calculated as the difference between the magnitudes

of S31 and S21 traces at the peak frequency of S31 trace, was equal to -13 dB. The

isolation was poorer compared to the simulated isolation of -55 dB.

As the monopole frequency was below the cutoff frequency of the waveguide, the

monopole was not visible and it was below the noise level, with amplitude attenuation

higher than -150 dB. No apparent peak could be identified in the expected monopole

frequency region. The quadrupole was coupled with transmission loss less than -4 dB.

One of the possible reasons for the poor transmission and isolation values for dipole

Table 5.10: Results of S-parameter measurements.

Param- Measured Simulated - Measured

eters Peak Peak Peak Peak

frequency magnitude frequency magnitude

fp,exp Sp,exp fp,simu − fp,exp Sp,simu − Sp,exp
(MHz) (dB) (MHz) (dB)

Reflection

S11 6377.6 -5.8 82.0 -40.5

S33 6377.7 -6.5 81.9 -39.8

S22 6372.2 -7.1 83.0 -37.6

S44 6372.2 -8.3 83.0 -36.5

Transmission

S31 6377.7 -10.3 81.9 +10.3

S42 6372.2 -8.0 83.0 + 8.0

Cross coupling (at peak frequencies of S31 and S42 traces)

S21 6377.7 & 6372.2 -23.4 & -24.2 81.9 & 83.0 -32.2 & -26.9

S43 6377.7 & 6372.2 -23.2 & -26.2 81.9 & 83.0 -35.8 & -26.2
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modes could be the disorientation of the modes due to fabrication errors. For better

understanding of cavity performance, the orientation of the modes were studied.

5.5.3 Calculation of Q-values using impedance method

The Q-values of a cavity can be calculated using different methods [19, 72]. The loaded

quality factor QL can be calculated from a transmission curve using Eqn. 5.8. The Q0

and Qext can be determined using an impedance method explained by Ginzton [72].

To apply this method the impedance of the waveguide coupler should be relatively

constant within the bandwidth of the mode. The impedance method can be explained

using a cavity equivalent circuit. Fig. 5.19 shows a cavity equivalent circuit reduced to

a single port connection. The source inside the VNA connected to a port of the cavity

can be represented by the source Vs on the circuit. The internal impedance of source

and VNA port together is represented by Z0. The coupling between the waveguide and

coaxial coupler is represented by an equivalent complex mutual coupling coefficient M

between the inductor of the cavity L and waveguide coupler L1. The resonant cavity is

represented by the LCR circuit, where the L, R and C are the equivalent inductance,

resistance and capacitance respectively. The loading effects from the remaining ports

are also accounted in the values of L, R and C for the cavity.

Z 0                                  1
L

a

a b

b

C

L

R

Vs

l

M

Figure 5.19: Cavity equivalent circuit reduced to a single port connection.

The effective impedance at the VNA output (line aa) can be reduced to the form written

as [72],
Zaa
Z0

= j
X1

Z0
+

(ωM)2

R+ j(ωL+ 1/ωC)
, (5.10)

whereX1 = ωL1 is the series reactance of the coupler. The equivalent complex reflection
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coefficient is calculated as,

Γaa =
Zaa/Z0 − 1

Zaa/Z0 + 1
. (5.11)

The complex reflection traces from the S-parameter measurements are plotted in Fig. 5.20(a).

The points corresponding to the resonant frequency peaks are highlighted as red circles.

The Q values can be determined from these plots after two processing steps:

1. Rotation of the curves to put the resonance peak points on the real S axis;

2. Shifting of the curves along the real S axis such that the QL calculated from the

impedance method matches the QL determined from the transmission curves.
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(a) Reflection S-parameter traces measured at four
ports.
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(b) Traces rotated around the origin.

Figure 5.20: Rotation of the S-parameter traces during calculation of Q values using
impedance method. Red circles represent the peak (resonant frequency) points on the
S-parameter traces. The black circle represents R=0 circle.

At the resonant frequency, the cavity equivalent impedance has a real value and the

peak point should lie on the real S axis of the vector S-parameter chart. The plots are

rotated due to the additional phase introduced within the couplers and transmission

lines. To compensate the phase difference, the traces are rotated around the center

such that the peak points fall on the real S axis of the plot. It is equivalent to inserting
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or removing a loss less transmission line, which will change only the phase of the signal.

The rotated smith charts are plotted in the Fig. 5.20(b).

If there are no losses within the waveguide coupler, the point diametrically opposite the

peak frequency should lie on the R = 0 circle. The waveguide couplers have inherent

losses which should be taken into account when shifting the traces. The losses in the

waveguides are already considered when calculating QL from the transmission traces.

Fig. 5.21(a) and 5.21(b) shows the rotated reflection traces shifted along the real S

axes. The quality factors Q0, QL and Qext can be calculated using the intersections

points between the S-parameter traces and the curves labelled as Q0, QL and Qext

respectively [72]. For example, the QL from S44 trace can be calculated using [72],

QL =
f(P0)

|f(P4)− f(P3)| , (5.12)

where f(P0) is the resonant peak frequency, f(P4) and f(P3) are the frequencies for

points at the intersection between the S44 trace and QL lines. The traces are shifted

along the real S axes such that the QL calculated using the above equation matchs

the QL calculated from the transmission traces. Determination of QL is an iterative
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(a) Traces shifted along real S axes
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Figure 5.21: Traces shifted to match calculated QL values to those from the transmis-
sion curves
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process. Each locus is moved individually. Moving the locus outward, towards R = 0

circle, increases the QL and vice versa. Similar to the QL, the values of Q0 and Qext

are calculated from the frequencies of the intersection points with the traces labeled as

Q0 and Qext. The curves Q0 are circles with radius
√

2 and centers at points (0,-1) and

(0,1). The curves Qext are circles with radius 1 and their centers at (-1,-1) and (-1,1).

The Q values calculated using impedance method, for all four reflection ports are listed

in Table. 5.11. As expected the Qext for the S22 and S44 are lower than those for S11

and S33, because more power is coupled through the wider slots. The derived Q0 value

for a port (for example for Port-1 from S11) include the loading effect from the other

coupled port (Port-3 from S33). The actual internal quality factor (Q0,absolute) can be

derived by removing the contribution from the coupled port as,

Q0,absolute =
Q0Qext,coupled

Qext,coupled −Q0
, (5.13)

where Qext,coupled is the Qext value derived for the coupled port.

Table 5.11: Q values calculated using impedance method.

Trace Peak Transmission Impedance method

frequency method

(MHz) QL,31 & QL,42 QL Q0 Qext Q0,absolute

S11 6377.6 QL,31 = 3729 4274 26794 5193

S33 6377.7 3727 3729 4355 24155 5201

S22 6372.2 QL,42 = 3096 3704 17408 4901

S44 6372.2 3096 3096 3729 15170 4849

These Q values can be used to predict the cavity output signal for the given bunch

parameters, using Eqn. 2.18. The QL values will be verified from the decay time of the

cavity signal during beam testing. The Qext can be verified during beam testing, if the

bunch charge and length are known from other diagnostics; and if the position offset at

the location of the CBPM can be predicted using correlation or beam optics relation

with the positions measured by other CBPMs.
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5.5.4 Field orientation measurements.

If the dipole fields are disoriented from the slots, a bunch with position offset along

x-axis will induce voltage into the dipole mode corresponding to y position signal,

which reduces the x − y isolation. With proper field orientation measurements, the

comparison between the S-parameters, field orientation and beam measurement should

give a clearer picture of the relation between cavity parameters and its performance as

a BPM.

The field orientations of the dipole and quadrupole modes are measured using bead-

pull perturbation technique [19, 72]. The EM field of a resonant cavity is perturbed

by inserting a small low loss dielectric bead inside the cavity. The perturbation will

change the resonant frequency, amplitude and phase of the field. The amount of change

in the field parameters are proportional to the volume and dielectric properties of the

bead material, as well as the strength of the EM field at the position of the bead. For a

same bead at different positions, the amount of perturbation is only dependent on the

field strength at the bead position. From one or more characteristics of the measured

S-parameters, it is possible to determine the relative or absolute amplitude of the EM

field component at the bead position. The relative change in the resonant frequency of

a mode due to the bead ∆f
f can be calculated as [19],

∆f

f
= −

∫
∆V

(
µrµ0H

2 − εrε0E2
)
dV∫

V (µ0H2 − ε0E2)dV
, (5.14)

where f is the resonant frequency of the mode, µr and εr are the relative permeability

and permittivity of the bead material, µ0 and ε0 are the permeability and permittivity

of free space, E and H are the electric and magnetic field strength at the bead position,

∆V and V are the volumes of the bead and cavity respectively. For a cavity with high

Q, the change in the phase ∆φ is related to the change in the resonant frequency by,

∆φ = tan−1

(
2Q

∆f

f

)
≈ 2Q

∆f

f
. (5.15)

Considering that the change in the electric field within the bead cross-section is very

small, the electric field strength at the bead position E⊥ be related to the measured
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phase change by,
E⊥
U
' ∆φ

2Q

1

πr2h
, (5.16)

where U is the energy stored inside the cavity, r and h are the radius and height of the

cylindrical bead respectively. For a cavity with relatively higher Q value, the change

in the phase is 2Q times higher than the change in the resonant frequency. The change

in the peak frequency and amplitude from a small plastic bead is difficult to detect

compared to the phase change. The use of the phase is limited to the measurements

with a small bead of low dielectric constant, due to the phase wrapping.

The experimental setup for bead-pull measurement is shown in Fig. 5.22. A cylindrical

bead of plastic was attached to a thin string. The cylindrical bead was used to maximise

the perturbation due to the axial dipole electric field. Plastic was used as a bead

material to minimise any explicit interaction with the magnetic field. Both ends of the

string were attached to a rigid holder, which was placed on the precision mover stage.

The cavity was kept vertically static, while the holder and bead position was scanned

in the xy-plane. The bead was installed in the vertical direction to reduce the position

error due to the gravitational pull and vibrations. All four ports of the cavity were

connected to the VNA. The port connections in reference to the mover axis are shown

Control
Computer

Precision
Mover

Cavity
BPM

Holder and string 
attached to the bead

VNA

(a) Experimental setup showing a control computer, bead
installation, precision mover and VNA.

(b) Top view of cavity installation show-
ing orientation of the ports with refer-
ence to the precision mover axis.

Figure 5.22: Experimental setup for field orientation measurements.
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5.5. Benchtop RF measurements

in the Fig. 5.22(b).

As discussed in Section 5.5.1, the mover stage and VNA were controlled remotely by

a control computer. A control sequence was written in LabVIEW to scan the mover

position, while recording all S-parameters. The front panel of the LabVIEW graphical

user interface (GUI) is shown in the Fig. 5.23. A user can change the position scan

range and the step size of the moves. The program also has options to change the VNA

measurement settings. The frequency range of the measurement can be changed along

with the number of frequency steps. User can change the format of the measurement,

such as ’Smith-chart’ or ’dB magnitude’. The VNA source power can be increased if

the transmission lines have higher losses.

Mover controls

Controls for VNA
Mover readout display

Figure 5.23: GUI interface screen of the LabVIEW program for field orientation mea-
surement scan.

To record a scan, the bead was first moved to the center of the cavity. This was

performed by manual observation. After applying appropriate settings for the mover

and VNA, the LabVIEW code was executed. The processes flow of the LabVIEW

program is shown in Fig. 5.24. The mover was first moved to the starting corner,

depending on the specified ranges along x and y axes. To avoid effect of vibration of

the bead, a time delay was used between the arrival of the mover at a position and the

beginning of S-parameter measurement. No apparent vibration was observed as the

mover was moved with low acceleration and the string was stretched appropriately. All

sixteen S-parameters were recorded at that position, which are exported as a data file,

which also contained the x and y positions of the mover.
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        Start

Record all
Sparameters

Export 
Sparameters

to file

Xposition 
= 

(±Range)

Move 
in X 

by ±step size

Yes
Move 
in Y 

by step size

Move back 
to cavity center

Move along X and Y 
by (Range)

Yposition 
= 

(Range)

        End

No

Yes

No

Wait for specified 
time delay

Figure 5.24: Program flow of the LabVEIW sequence for field orientation measurement
scan.

The mover was then moved along x-axis by specified step size, and S-parameters were

recorded at each step. After covering the position range along x-axis, the mover was

moved along y-axis by specified step size. The mover was now moved in −x-direction

until it covers the range along x-axis. In this way, the positions along x-axis were

scanned at each position steps along y-axis, until the range along y-axis was covered,

and S-parameters were recorded at each position step.

To process the exported S-parameter files, a python code was written which was oper-

ated in the parallel mode on the RHUL cluster. The list of the data files was divided

into the smaller sub-lists. At a time a master process sent one sub-list to each of the

slave processors to analyse. The communication between the processes was performed
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5.5. Benchtop RF measurements

through the message passing interface (MPI) system. Each slave process determined

the peak frequency and amplitude, or the signal phase at a specific frequency, from

all S-parameter files in the sub-list. The extracted results were then sent back to the

master process, which wrote them into an output file.

To measure the orientation of the dipole field, the mover was moved from -4 to +4 mm

along the x and y axes. In total 1600 S-parameter files were recorded per scan. In

each file, all sixteen S-parameters were recorded within frequency range of 6370 to

6380 MHz, with the frequency resolution of ∼4 kHz. The S-parameters were recorded

in the raw (complex smith-chart) format to provide flexibility during post processing.

Rather than recording the S-parameter over the bandwidth, measurement at only the

peak frequency, or the phase at the unperturbed peak frequency should give the same

results. The S-parameters were recorded over the bandwidth to cross compare the

results from phase, frequency and amplitude variation. The field orientation of the

dipole and quadrupole modes were recorded separately.

Fig. 5.25(a) and 5.25(b) show the phase of the reflected signals at the unperturbed

resonant frequencies of the dipole modes coupled to Port-1 and Port-2, measured for

different bead positions. The phase contour plot for S22 agreed well to an extent with

the simulated contour plots in Fig. 5.10(d), except it was not oriented parallel to the
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(a) Orientation of the dipole mode field coupled to
Port-1.
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(b) Orientation of the dipole mode field coupled to
Port-2.

Figure 5.25: Measurement of dipole field orientation using phase of the reflected signal.
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5.5. Benchtop RF measurements

y-axis. The shape of the phase contours from the S11 was different from that for the

S22, and it also was not oriented parallel to the x-axis. The angle of rotation, calculated

using the phase gradient, was 12.7◦.

Fig. 5.26(a) and 5.26(b) show the phase of the reflected waves at the quadrupole fre-

quency for different bead positions, measured at Port-1 and Port-2 respectively. The

shape of phase contours agreed well with the simulated contours plotted in Fig. 5.13(c).

The quadrupole modes were found to be rotated by 2.9◦ from the x and y axes.
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(a) Orientation of the quadrupole mode field cou-
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(b) Orientation of the quadrupole mode field cou-
pled to the Port-2.

Figure 5.26: Measurement of quadrupole field orientation using phase of the reflected
signal.

The field orientation plots created using amplitude of the S-parameter peaks agreed

well with the plots created using phase. The change in the resonant frequency for the

small plastic bead was very small, resulting in plots without sensible field shapes. The

corresponding x − y isolation Ix−y for a rotation angle ∆Θ of the dipole field can be

predicted using,

Ix−y = 20 × ln(cot ∆Θ). (5.17)

For ∆Θ = 12.7◦, the x − y isolation should be 13 dB, which agrees well with the iso-

lation calculated from the S-parameters in section 5.5.2. The study of field orientation

explained the poorer values of x − y isolation observed during S-parameter measure-

ments. The fields may be rotated because of any unknown asymmetry in the CBPM

geometry, due to fabrication errors. The possible reasons for rotation of fields and
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5.6. Study of fabrication errors by simulation reconstruction

their effects on the performance of the BPM were studied, which are presented in the

following sections.

5.6 Study of fabrication errors by simulation reconstruc-

tion

The cavities were fabricated with low tolerances in the sensitive areas such as slots.

Even with the specified low tolerances, the resonant frequencies of the dipole modes

were lower by 83 MHz from the simulated resonant frequencies. The transmitted signals

received at the coupled ports were attenuated more than 8 dB and the x− y isolation

was lower than 15 dB. The possible errors in fabrication which can change the cavity

parameters are studied using simulation.

The coupling and isolation between the ports should be the most sensitive to the

fabrication errors in the slots. With the copper as a cavity material, the modern

computer numerical control (CNC) machines can machine and measure geometry with

accuracy well below 100 µm. As the cavity is fabricated with tolerances well below

100 µm, it can be set as the upper limit for the errors in machining of the slots. An

other possible source of error can be the nonuniform fitting of the cavity enclosure cap.

Different scenarios were simulated with different fabrication error sizes and their effects

on the cavity parameters were studied.

5.6.1 Coupling slots shifted from its axis

If the slots are shifted towards either side of the axes, the magnetic field from the or-

thogonal dipole mode should cross-couple into the slots and decrease the x−y isolation.

Fig. 5.27(a) shows a diagram of a cavity BPM with two of its slots shifted by amount

dy, from the x-axis. All other dimensions were kept unchanged.

The CBPM geometries with two slots shifted by different position offsets dy were simu-

lated using S3P in the dipole frequency region. The S-parameters were simulated with
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(a) Drawing representing simulation model to
study the effects of the slots shifted from its
ideal position.
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(b) Simulated S-parameters of a CBPM model
with two slots offset by 100 µm along y-axis.

Figure 5.27: Simulation of S-parameter response of CBPM models with two slots shifted
from their ideal positions.

frequency resolution of 100 kHz, which is 10 points within the 3 dB bandwidth of the

dipole modes. The ports and boundary conditions were assigned similar to the model

of the ideal geometry.

Fig. 5.27(b) shows the S-parameters for a CBPM with slots shifted by 100 µm. When

slots were shifted along y-axis, the trace S21 examined the case where the slots along

x-axis were shifted towards the slot along +y-axis, and S43 examines the case when the

slots were shifted away from the slot along −y-axis. The slots were shifted over 0 to

100 µm in three steps.

The simulation results for different amount of shifts are summarised in Table 5.12.

The resonant frequencies of the dipole modes changed by less than 200 kHz. The

signals received at the coupled (opposite) ports were attenuated by less than 0.1 dB.

For slots offset by 100 µm, the isolation degraded up to 32 dB, which was not as low as

13 dB observed during S-parameter measurements. The fabrication errors due to slot

offset alone did not alter the cavity parameters by the amounts observed from the RF

measurements.
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5.6. Study of fabrication errors by simulation reconstruction

Table 5.12: Variation in frequency and isolation of the CBPMs with slots shifted by
different position offsets.

Slot offset Peak frequency (MHz) x− y isolation (dB)

∆y(µm) S42 S31 S31 - S21 & S42 - S21 &

S31 - S43 S42 - S32

0.0 6455.24 6459.69 51.13 & 52.37 59.01 & 55.58

33.0 6455.10 6459.50 51.63 & 38.50 49.11 & 48.89

66.0 6455.10 6459.60 40.04 & 28.79 35.61 & 35.80

100.0 6455.20 6459.50 35.20 & 32.51 46.94 & 49.24

5.6.2 Performance degradation due to rotated slots

Similar to shifted slots, an another possible scenario can be that the slots are rotated

around the cavity axis (z-axis). If the slots are not perfectly aligned to the x or y

axes, the axial symmetry is broken, which changes the orientation of the resonance

modes. Due to rotation of the field, the amount of cross-coupled magnetic field from

the orthogonal dipole mode increases, reducing the x− y isolation.

An example drawing of a CBPM, showing the slots along x-axis been rotated by an

angle ∆θ around z-axis, is shown in Fig. 5.28(a). The other two slots, along y-axis,

were kept at the same position. The slots were rotated by different angles up to 2◦, and

the transmission and reflection characteristics of the CBPMs were simulated using S3P.

The S-parameters calculated for the slot rotation of 1◦ are plotted in the Fig. 5.28(b).

The results of the simulations are listed in the Table 5.13. The x−y-isolation reduced to

23.7 dB when slots were rotated by 1◦ and further up to 16.5 dB for the rotation of 2◦.

How ever the resonance frequencies of the coupled modes varied within 300 kHz from

their ideal values. The attenuation of the transmitted signals were less than 0.2 dB for

all simulations.

This study replicates a scenario in which a CBPM would have been moved after machin-

ing two of the four slots, and then re-installed to cut the remaining two. The standard

way to re-align would be to scan a plane outer surface, for example a waveguide surface
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(a) Drawing of a CBPM model to study the
effects of the rotated slots.
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(b) S-parameters of a CBPM with two slots ro-
tated by 1◦.

Figure 5.28: Effect slots rotated around cavity axis.

parallel to the x-axis, using an alignment gauge. If the cavity is at an angle ∆θ to the

x-axis, the gauge at distance x, would have a variation of x tan(∆θ), which is noted in

the second column of Table 5.13. Even for a rotation angle of only 0.33◦, the linear

variation at the end of the waveguide is 230 µm, which is well above the detection

resolution of a typical position gauge.

The variations in the simulated resonance frequencies and transmission attenuation

Table 5.13: Change in frequency and x−y isolation for slots rotated by different angles.

Slot Arc length Peak frequency (MHz) x− y isolation (dB)

angle (at x=40 mm) S42 S31 S31- S21 & S42 - S12 &

∆θ (mm) S31 - S43 S42 - S32

0.00 0.00 6455.24 6459.69 51.13 & 52.37 59.01 & 55.58

0.33 0.23 6455.00 6459.50 25.04 & 25.16 27.04 & 27.52

0.66 0.46 6455.20 6459.50 26.95 & 27.13 28.28 & 28.19

1.00 0.70 6455.10 6459.50 23.82 & 23.71 24.50 & 24.60

1.50 1.05 6455.00 6459.70 17.76 & 17.82 19.41 & 19.32

2.00 1.40 6454.90 6459.80 16.55 & 16.62 17.69 & 17.83
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were not large enough to explain the observations of RF measurements. Based on the

simulations, the rotation of the slots should neither lower the resonance frequencies nor

degrade the x−y isolation as much as observed during the S-parameter measurements.

5.6.3 performance degradation due to misalignment of the enclosing

cap

The resonant cavity was fabricated in two pieces. As shown in Fig. 5.29, the opened

end of the cavity cylinder was enclosed using a metallic cap. The metallic cap was fitted

and then brazed to the cavity. During the heating cycle of the brazing, it is possible

that a thin gap of uneven thickness could have been created between the cavity and cap

due to the thermal expansion and contraction of the copper. In addition, it is possible

that the brazing material did not fill the gap uniformly around the cavity.

C
=6

0

A=28

a=
10

All dimensions are in mm

Point A
Point B

z

x

(a) Side view.

x

y
φ

PointA

PointB

(b) Top view.

Figure 5.29: Simplified drawings of a CBPM showing an uneven gap between cavity
and enclosing cap in a simulation model to reconstruct the fabrication errors.

As shown in Fig. 5.29(a) and 5.29(b), a gap was considered which has a minimum height

near Point-A, and the height is maximum at the other end of the diameter, marked as

Point-B. The vector
−→
AB points in the direction of positive height gradient. The gap

can be formed such that the
−→
AB is at any angle ∆φ with the x-axis.
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An uneven cylindrical gap of diameter 62 mm, height of 100 µm at Point-A and 250 µm

at Point-B, was inserted into the simulation model at different angles ∆φ. The height at

the Point-A is referred as the height of the gap for rest of this section. A CBPM models

with the cap rotated by different angles ∆φ were simulated using the Eigenmode solver

in GdfidL. GdfidL was used because the gap could not be meshed accurately using

Cubit for the ACE3P solvers. It should be possible to mesh the model using Cubit,

but it is easier to control the mesh in the GdfidL because of its explicit control on the

mesh parameters.

Fig. 5.30(a) and 5.30(b) shows the equi-amplitude contours of the electric fields of the

two dipole modes, when the cavity cap was rotated by 45◦. Unlike the dipole fields

in an ideal CBPM geometry (shown in Fig. 5.10(c) and 5.10(d)), the dipole fields in a

cavity with misaligned cap were not aligned to the coupling slots. The rotation of the

cavity cap, disorients the dipole fields from the slots along x and y axes. The rotation

angle of the cap was scanned between 0 to 180◦ and the rotation of the dipole field was

determined from the simulation results. As plotted in Fig. 5.31(a), the field rotation

angle ∆Θ increased with the cap rotation angle ∆φ. When the cap was rotated by 90◦,
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Figure 5.30: Rotation of the dipole fields due to the enclosing cap rotated by angle
∆φ = 45◦.
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the modes were realigned to the slots. The cap rotation of more than 90◦acted as a

supplementary angle, and rotated the modes in the opposite direction.

In addition to the rotation of fields, the frequency separation (fd2−fd1) between the two

dipole modes also changed with the rotation of cap. When the angle ∆φ was increased,

the thicker end of the gap at Point-B moved towards the narrower slots along y-axis.

The thicker gap reduced the frequency fd2, but increased the frequency fd1 of the dipole

mode coupled through the wider slots along x-axis.

To study the effect of different gap height, it was scanned from 50 to 200 µm, with

cap rotated by angel ∆φ of 45◦. The change in resonance frequencies (fd − fd,ideal) of

the dipole modes for gaps of different height are shown in Fig. 5.31(b). The resonance

frequencies of the dipole modes in absence of the gap, shown in Fig. 5.10(c) and 5.10(d),

was used as an ideal frequencies fd,ideal. The resonance frequencies decreased by more

than 35 MHz for a gap of 200 µm height.

0 30 60 90 120 150
Cavity cap angle ∆φ (◦)

−30

−20

−10

0

10

20

30

F
ie

ld
ro

ta
ti

on
an

gl
e

∆
Θ

(◦
)

∆Θ 1.0

2.2

3.3

4.5

5.7

6.8

8.0

f d
2
−
f d

1
(M

H
z)

fd2 − fd1

(a) Rotation angle of the dipole mode fields and fre-
quency separation between the dipole modes for differ-
ent cap rotation angle ∆φ.

0 50 100 150 200
Gap height at Point-A (µm)

−40

−35

−30

−25

−20

−15

−10

−5

0

f d
−
f d
,i

d
ea

l
(M

H
z)

fd1

fd2

(b) Change in the resonance frequencies of the dipole
modes with gap heights

Figure 5.31: Results from Eigenmode simulations to study the effects of a misaligned
cavity cap on the field orientation and resonance frequencies of the dipole modes

The simulation studies showed that any additional asymmetry in the cavity will dis-

orient the dipole mode fields from the slots. The asymmetry can be in the form of the

cavity cap rotated by angle ∆φ, or the asymmetric filling of the brazing material in
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the gap of a constant height. The resonance frequencies of the modes decreased with

increase in the gap height, and a gap of appropriate height should be able to decrease

the resonance frequencies by the observed difference. The difference in the cavity pa-

rameters can be due to a combined influence of more than one type of fabrication errors,

and it is difficult to carry any detailed experimental study as the cavity has already

been brazed.

5.7 Beam testing at ATF2 beam line

To test the beam coupling strength of the CBPMs, three of the four cavities were

installed at the Diamond Light Source, while the cavity tested at Royal Holloway was

installed at ATF2 extraction line at KEK in Japan. An existing operational cavity

BPM system and shorter bunches were the additional benefits in testing the CBPM at

ATF2. The typical bunch length at ATF2 is 8 mm, compared to 90 mm at Diamond

The design and operation of the ATF machine and ATF2 beam line were explained

in Section 4.1. As explained in the Section 4.1, a low emittance beam of relativistic

electrons was transferred through ATF2 beam line. The ATF2 beam line already had

an operational cavity BPM system, reading bunch positions using 36 cavities in the C-

and S-bands.

Fig. 5.32 shows the location of the prototype CBPM on a block diagram of ATF2

beam line, the installation setup, and near by machine components on the extraction

line. The NLS-cavity was installed on an existing precision mover system, labeled

as MFB2FF, which was fixed on a girder. The mover was able to scan position in

the transverse plane with position resolution of 1 µm . The vacuum bellows on both

sides suppressed any stress due to cavity movement, and enabled to move the cavity

independently of the neighbouring components. One of the neighbour cavities is shown

fixed to a quadrupole magnet. The new CBPM can use the electronics system from

one of the neighbor CBPMs.
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MFB2FF 

(a) Block diagram of machine components of the ATF2 beam line section, and the new CBPM installed
on MFB2FF mover.
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(b) NLS cavity installation setup showing cavity, precision movers
and neighboring machine components.

Figure 5.32: NLS cavity installation at ATF2.

5.7.1 Cavity response measurements using diode

As a first check, the RF output signals from the cavity were detected using the self

biased Schottky barrier diodes. Block diagram of a connection scheme for the beam

testing with the CBPM and diodes is shown in Fig. 5.33(a). The output from the

two cavity ports, one port each for x and y position measurement, were connected

to the diodes through high frequency cables. The output signals of the diodes were

transferred through the Heliax cables to outside of the accelerator tunnel. There the

signals were digitised for further processing. A digital oscilloscope, model ZT4611 from

ZTEC instruments, was used as a digitiser.

In the laboratory setups, the Schottky barrier diode is operated in the square law

region. Its output is detected across a high load impedance of value more than 1 MΩ
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Figure 5.33: Block diagram of a connection setup for beam measurement of the CBPM
with diode, and diode sensitivity at different load impedances.

for maximum sensitivity. As the characteristic impedance of the transmission cable

was 50 Ω, the diode output signal was getting reflected from the 1 MΩ load impedance

of the digitiser. Multiple signals were observed while detecting with the digitiser load

impedance of 1 MΩ due to multiple reflections between the digitiser impedance and

detector diode.

To avoid multiple reflections, the output of the diode was digitised with the load

impedance of 50 Ω. To check the diode sensitivity with the two load impedances,

a diode was calibrated with the load impedances of 1 MΩ and 50 Ω. As shown in

Fig. 5.33(b), for any input power, the output of the diode voltage across 50 Ω was

considerably lower than when measured across 1 MΩ. The calibration data was used

to calculate the input RF power from the output voltage of the diode.

A typical cavity output signal detected with a diode is plotted in Fig. 5.34(a). In

absence of any frequency filter, the power coupled out from the higher order modes of

the CBPM will also reach the diode input. The amplitude oscillations at the beginning

of the signal could be because of the higher order modes. An exponential function

was fitted to determine the amplitude decay constant for the x and y position signals,

which were found to be 124±2.4 ns and 133±2.7 ns respectively. The input power

to the diode was calculated from the output voltage, using the calibration curve for

the diode, plotted in Fig. 5.34(b). Signal attenuation of 1.5 dB in various cables was
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accounted while calculating the output power and voltage at the cavity output ports.
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Figure 5.34: Typical cavity output signal detected using diode and reverse calibration
curve for diode.

To determine the position sensitivities Sx and Sy of the CBPM, the cavity position was

scanned along x and y axes using the precision mover, and at each position a CBPM

signal from diode was recorded. While the cavity was scanned along x-axis, the scope

was triggered at a peak voltage of y position signal, and vice versa. Triggering the scope

at peak voltage of the other channel should reduce the effect of the charge fluctuations.

The peak power and voltage, at the cavity output, at different mover positions during

calibration scans along the x and y axes are shown in Fig. 5.35. The voltage Vx,

coupled through the wider slots along the y-axis, should be higher than Vy, which was

coupled through the narrower slots along x-axis. The position sensitivities Sx and Sy

for the x and y positions measurements were 0.768 and 0.695 V/mm respectively, which

were around 10% more than the voltage sensitivity predicted by inserting the cavity

parameters from the RF measurements and simulations, into the Eqn. 2.18.

In Table. 5.14, the amplitude decay constant (τ) and position sensitivity (Sx and Sy)

derived from the calibration are compared to the same calculated from the RF mea-

surements.

Even if the cavity was moved along one axis, for example x-axis as plotted in Fig. 5.35(b),
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(a) Cavity output power measured during position
scan along x-axis.
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(b) Cavity output voltage measured during posi-
tion scan along x-axis.
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(c) Cavity output voltage measured during posi-
tion scan along y-axis.
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(d) Cavity output voltage measured during posi-
tion scan along y-axis.

Figure 5.35: Calibration of CBPM along x and y axes, the cavity outputs were detected
using Schottky barrier diodes.

the output voltage Vy for the y-position signal also changed because of the cross cou-

pling. The voltage change in the cross coupled signal is more visible in Fig. 5.35(b)

Table 5.14: Results of beam measurements with signal detection using diodes.

Direction From RF Measurements From diode measurements

Decay time Sensitivity Decay time Sensitivity

(ns) (V/mm) (ns) (V/mm)

x 77 0.69 124±2.4 0.76

y 93 0.62 133±2.6 0.69
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5.8. Summary

compared to Fig. 5.35(d), because the cavity was kept at a higher constant position

offset along y-axis while scanning along x-axis. A cross-coupled sensitivity Scross−coupled

can be calculated from the normal sensitivity as,

Scross−coupled = S [sin (∆Θ) / cos (∆Θ)] , (5.18)

where ∆Θ is the dipole field rotation angle measured using bead perturbation method,

S is the normal sensitivity of CBPM derived from calibration in the corresponding

direction. The cosine term compensates for the error in the measurement of the normal

position sensitivity, due to the field rotation. The cross-coupling sensitivity, calculated

using S and field rotation angle ∆Θ of 12.9◦ in the above equation, should be 0.174

and 0.158 V/mm for the x and y position signals respectively. It was not possible

to calculate conclusive numbers of cross-coupling sensitivity from the recorded scans,

because of the smaller signal levels and the presence of the position and charge jitter.

As the data was not acquired synchronously, it was not possible to remove the charge

and position jitter.

5.8 Summary

As presented in this chapter, new concepts to design an efficient CBPM system on a

large scale have been studied. A cylindrical CBPM has been designed with two dipole

modes separated and pre-aligned to improve the x − y isolation without mechanical

tuning. The EM behavior of different CBPM designs were simulated using Eigenmode,

S-parameter and time domain solvers. The simulations showed that it was possible

to align and separate the dipole modes using coupling slots of different width along x

and y axes. The S-parameters, Q values and orientations of the resonance modes were

measured using RF bench top measurement setups. Possible sources of difference have

been studied, including slot displacement, rotation and end cap tilt. The end cap tilt

showed the most promise in describing the observed dipole mode frequency shift and

cross-coupling. The beam position sensitivity of a CBPM was tested on ATF2 extrac-

tion line, by detecting the cavity output signals using diodes as a preliminary test. The

cavity output voltage should be studied in detail, using filters and heterodyne detec-
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5.8. Summary

tion, in synchronisation with the charge and position measurements on other CBPMs.

Overall the sensitivity agreed with expectations as measured at the ATF, although the

cross-coupling could not be verified.
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Chapter 6
Conclusions and discussion

A set of studies carried to design a large scale RF cavity BPM system for electron

accelerators with closely spaced bunches are presented in this thesis. The required key

topics, such as a simpler cavity design, the effects of signal overlapping and effects of

ambient temperature variation, were identified. Each of these topics were examined in

detail on operational accelerators through collaboration projects. A simplified and more

efficient CBPM design for large scale production and operation was studied through

a CBPM design project in collaboration with the Diamond Light Source. The effects

of temperature variation and signal overlapping due to a shorter bunch spacing were

studied on the CBPM system operational at ATF2 in KEK, Japan. The outcomes of

the studies are summarized as follows.

6.1 Summary of multi-bunch signal processing study

A digital processing method, based on a signal subtraction algorithm, has been de-

veloped to remove the signal pollution from the previous bunches, when the temporal

bunch separation is small. The performance of the code was tested on the CBPM sig-

nals from beam as well as the simulated signals. A code was written to simulate the

CBPM signals from a bunch train with user defined parameters. To study the perfor-

mance of the algorithm with actual beam, ATF was operated in a multi-train mode.
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6.2. Summary of CBPM design study

The code was tested with two and three bunches, and for different bunch separations.

After signal subtraction, the error in the bunch position measurement was reduced from

67% to less than 2%. The jump in IQ phase, was studied with different bunch separa-

tions, and it was due to the difference between the resonance frequencies of dipole and

reference cavities. The signal subtraction algorithm was tested with different CBPMs.

The beam jitter in position measurement from a CBPM was subtracted using the SVD

based correlation with two neighbor CBPMs. As listed in Table 6.1, after SVD based

beam position jitter subtraction, the measurement error in y position were reduced to

1.08 and 1.81 µm for bunch 1 and 2 respectively.

Table 6.1: Error in position measurement after SVD based beam position jitter sub-
traction.

CBPMs Error in position measurement (µm)

x position y position

Bunch 1 Bunch 2 Bunch 1 Bunch 2

MQM11FF 2.18 ± 0.62 2.15 ± 0.74 1.97 ± 0.47 3.01 ± 0.87

MQM12FF 1.53 ± 0.27 2.37 ± 0.68 1.03 ± 0.20 1.81 ± 0.46

MQM13FF 4.08 ± 1.13 7.29 ± 2.90 1.24 ± 0.34 1.74 ± 0.49

6.2 Summary of CBPM design study

As discussed in Chapter 5, a cavity has been designed with its dipole modes pre-

aligned to the coupling slots and separated in frequency to improve the x− y isolation

without mechanical tuning. The dipole modes were forced to align by breaking cavity

symmetry using the coupling slots of different widths in the x and y planes. A simpler

geometry model was simulated with different slot widths, which showed that the dipole

frequencies are more sensitive and prone to fabrication errors with the narrow slots

than with wider slots.

A waveguide adapter has been designed which is less sensitive to the fabrication errors.

Inserting an additional conductor bead at the end of the central conductor probe in-

creased its capacitance, which allowed to increase the gap between the conductor probe
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6.2. Summary of CBPM design study

and waveguide wall from a typical value of 0.2 µm to 3.5 mm. Larger gap made it

less sensitive to the fabrication errors. Simulations showed that adding the conductor

bead also increased the frequency bandwidth of the adapter by more than 1 GHz and

made the transmission attenuation equal over the frequency range of the cavity dipole

modes.

The EM response of the CBPM design was predicted by simulations using the Eigen-

mode, S-parameter and time domain solvers of ACE3P. The simulation results from

different solvers were cross-compared, and they confirmed that the two dipole modes

were aligned to the coupling slots and separated in frequency by 4.5 MHz. The reflec-

tion at the peak frequencies were lower than -45 dB, while the x−y isolation was better

than 51 dB. The time domain simulation predicted the output signal sensitivity, from

an electron bunch at ATF2, to be 3 Vpp.

Out of the four cavities fabricated, RF parameters of one cavity were measured at Royal

Holloway. The S-parameter measurements using VNA showed that the dipole modes

were separated in frequency by 5.5 MHz, which is better than the simulation predictions.

On other hand, the transmission loss was up to -10.3 dB, while the maximum reflection

was -8.3 dB at one of the ports. The resonant frequencies of the dipole modes were

lower by more than 80 MHz, than those predicted by EM simulations. The Q values

were calculated using the transmission as well as an impedance method. QL of both

dipole modes agreed with the Eigenmode simulation, but the calculated Q0 were lower

than the simulated values. To understand the reasons for lower values of x−y isolation,

the orientation of the EM fields of the dipole and quadrupole modes were measured

using a dielectric perturbation technique. The study revealed that the two dipole modes

were not aligned to the coupling slots, but were rotated by 12.7◦. The rotation of fields

explained, and agreed well with, the measured x− y isolation of 13 dB.

Different fabrication errors, which can degrade the x− y isolation and rotate the fields,

were studied by simulation. The isolation was sensitive to the rotation of the coupling

slots, but it did not decrease the resonant frequencies by 80 MHz. The perturbations

due to misaligned cavity cap showed the most of the observed parameter variations,

such as the field rotation and reduction in resonant frequency. Because the cavity has
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6.2. Summary of CBPM design study

been brazed, it was not possible to experimentally verify the simulation results, without

destroying the cavity. The simulation studies gave good estimation of the influence of

different fabrication errors on the performance of a CBPM.

One of the four CBPMs was installed on the ATF2 extraction line to verify its beam

sensitivity. The output signal from the cavity was detected using Schottky diodes

and digitised for further processing. The cavity was calibrated by moving it along

the x and y axes using a precision mover. The CBPM showed sensitivity of 0.76 and

0.69 V/mm for x and y position offsets respectively, which were in agreement with the

values predicted using the cavity parameters determined from the RF measurements.

The issues of ambient temperature variation and signal overlapping were studied using

the existing CBPM system at ATF2. The variation in the dipole frequency of an S-Band

cavity was noted when the cavity was at different temperatures. The dipole frequency

decreased with increase in the temperature at the rate of -36 kHz/◦C. If the cavity

temperature changes, the variation in the dipole frequency can be estimated using this

study, and it can be taken in to account while calculating the beam position.

Overall, an economic and efficient design of cylindrical CBPM with separated dipole

modes was created, simulated, fabricated, and tested for RF and beam response. The

methods for simulation and testing were studied in detail. Deeper understanding of

the working principle of a CBPM was developed by comparing different simulations,

RF measurements and beam measurements, which can be used to predict its beam

response based on the bench top RF measurements. The study of signal subtraction

technique showed that the algorithm removes the large systematic error in the position

measurement due to the signal pollution from previous bunches. The signal subtrac-

tion technique extended the application of the CBPM systems, with relatively higher Q

cavities, to the accelerators with shorter bunch separation, which was not earlier pos-

sible. It also made it possible to apply the calibration coefficients derived from system

calibration in single bunch mode, to calculate the position of any bunch in a bunch

train with known bunch separation. The studies presented in this thesis serve as a set

of essential studies for design and operation of a large scale cavity BPM system on the

electron accelerators with challenging beam parameters.
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6.3. Discussion of open research questions

6.3 Discussion of open research questions

Even though the research topics identified at the beginning of the projects are studied

in detail, new topics of interest appeared during the course of their studies, which could

not be examined due to limited time. To study the effects of digital and analog filters

on the CBPM signals from multiple bunches and performance of the signal subtrac-

tion method, more CBPM signals should be recorded at different bunch separations.

The effects of analog filters and non-linearity in the electronic components should be

included in the signal simulation code. Even though it should be straight away pos-

sible to apply the signal subtraction technique to any CBPM signal at a harmonic of

the bunch arrival frequency, and processed in a homodyne mode; it should be studied

further in detail to apply it on the CBPM signals at other frequencies, higher to be

digitised accurately by the available digitiser systems.

The effects of fabrication errors should be checked experimentally using a set of cavity

components, with its different parts kept together using a clamp or holder setup and

conducting paste, without brazing. Different errors can be recreated and their effects

can be studied through RF measurements. The beam coupling and x − y isolation

of the new CBPM installed on ATF2 should be studied in detail, same as the other

CBPMs, using the electronic and digital signal processing. The position readouts from

new CBPM should be correlated with the position readout of the other CBPMs, and

the error due to beam jitter should be removed to determine the system resolution.
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Appendix A
Multibunch Signal calculation

Considering a CBPM with dipole at an angular resonance frequency of ωd and am-

plitude decay constant τd. The bunches are separated in time by ∆tb. The signal

extracted from the CBPM after passage of the first bunch can be written as,

V (ts,1) = A1,peak e
−
ts,1−tb,1

τd ei[ωd(ts,1−tb,1)]

= A1 e
i(ωdts,1−φd,1) (A.1)

where A1,peak is the initial peak amplitude of the signal induced by the first bunch and

tb,1 is the arrival time of the first bunch,

A1 = A1,peak e
−
ts,1−tb,1

τd ,

and

φd,1 = ωd tb,1.

Now considering ts,j − ts,j−1 = ∆tb for simplicity of calculation, the net signal after
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passage of the second bunch can be written in a similar way as,

V (ts,2) = A1,peak e
−
ts,2−tb,1

τd ei[ωd(ts,2−tb,1)] + A2,peak e
−
ts,2−tb,1−∆tb

τd ei[ωd(ts,2−tb,1−∆tb)]

= A1e
−∆tb

τd ei(ωdts,2−φd,1) + A2 e
i(ωdts,2−φd,1−∆φd)

= B2 e
i(ωdts,2−θd,2). (A.2)

If the resonance frequency of a cavity is not integer multiple of the bunch repetition

frequency ωb, then there will be a certain phase difference ∆φd between the signals

induced by consecutive bunches, otherwise the phase difference will be zero.

To find the amplitude and phase of the signal by the process of frequency down conver-

sion, the raw signal is mixed with an LO signal of unit amplitude and of frequency same

as that of the CBPM signal. The mixed signal is then filtered through low pass filter

to remove the high frequency signal component. The processed signal can be written

as,

V (ts,2) = A1e
−∆tb

τd e−iφd,1 + A2 e
−i(φd,1+∆φd)

= B2 e
−iθd,2 . (A.3)

As shown in the above equation that the net signal from the two bunches is a vector

addition of the two signals induced by the individual bunches, whose net amplitude

and phase can be calculated as,

B2 =

√√√√√√√√
(
A1e

−∆tb
τd cosφd,1 + A2 cos (φd,1 + ∆φd)

)2

+

(
A1e

−∆tb
τd sinφd,1 + A2 sin (φd,1 + ∆φd)

)2
(A.4)

and

θ2 = tan−1

A1e
−∆tb

τd sinφd,1 + A2 sin (φd,1 + ∆φd)

A1e
−∆tb

τd cosφd,1 + A2 cos (φd,1 + ∆φd)

 . (A.5)

Similar to the Eqn. A.3 for two bunches, the signal induced by three bunches can be
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calculated as,

V (ts,3) = A1e
− 2∆tb

τd e−iφd,1 + A2e
− 2∆tb

τd e−i(φd,1+∆φd) + A3 e
−i(φd,1+2∆φd)

= A3 e
−i(φd,1+2∆φd) + B2e

−∆tb
τd e−iθd,2

= B3 e
−iθd,3 , (A.6)

where

B3 =

√√√√√√√√
(
A3 cos (φd,3 + 2∆φd) + B2e

−∆tb
τd cos θd,2

)2

+

(
A3 sin (φd,3 + 2∆φd) + B2e

−∆tb
τd sin θd,2

)2
(A.7)

and

θ3 = tan−1

A3 sin (φd,3 + 2∆φd) + B2e
−∆tb

τd sin θd,2

A3 cos (φd,3 + 2∆φd) + B2e
−∆tb

τd cos θd,2

 . (A.8)

From Eqn. A.6 the signal induced by only third bunch can be calculated by subtracting

the decayed signal sampled during second bunch as,

A3 e
−i(φd,1+2∆φd) = B3 e

−iθd,3 − B2e
−∆tb

τd e−iθd,2 (A.9)

Eqn. A.9 shows that the signal pollution due to all previous bunches can be removed

by subtracting the phasors sampled during only the immediate previous bunch. The

phasors sampled during bunch 1 and bunch j will have phase difference of j ·∆φd.
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