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Abstract

The paper explores connections between asymptotic complexity
and generalised entropy. Asymptotic complexity of a language (a lan-
guage is a set of finite or infinite strings) is a way of formalising the
complexity of predicting the next element in a sequence: it is the loss
per element of a strategy asymptotically optimal for that language.
Generalised entropy extends Shannon entropy to arbitrary loss func-
tions; it is the optimal expected loss given a distribution on possible
outcomes. It turns out that the set of tuples of asymptotic complex-
ities of a language w.r.t. different loss functions can be described by
means of the generalised entropies corresponding to the loss functions.

1 Introduction

We consider the following on-line learning scenario: given a sequence of pre-
vious outcomes x1, x2, . . . , xn−1, a prediction strategy is required to output
a prediction γn for the next outcome xn.

Let the outcomes belong to a finite set Ω; it may be thought of as an
alphabet and sequences as words. We allow greater variation in predictions

∗A previous version of this paper was published in Proceedings of the 20th Annual Con-
ference on Learning Theory, COLT-2007, Lecture Notes in Computer Science, vol. 4539
Springer 2007.
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though. Predictions may be drawn from a compact set. A loss function
λ(ω, γ) is used to measure the discrepancy between predictions and actual
outcomes. The performance of the strategy is measured by the cumulative
loss

∑n
i=1 λ(xi, γi) and the learner’s goal is to make the loss as small as

possible. Different aspects of this prediction problem have been extensively
studied; see [CBL06] for an overview.

One is tempted to define complexity of a string as the loss of an optimal
strategy so that elements of “simple” strings x are easy to predict and ele-
ments of “complicated” strings are hard to predict and large loss is incurred.
However this intuitive idea is difficult to implement formally because it is
hard to define an optimal strategy. If x is fixed, the strategy can be tailored
to suffer the minimum possible loss on x (0 for natural loss functions such as
square, absolute, or logarithmic). If there is complete flexibility in the choice
of x, i.e., “anything can happen”, then every strategy can be tricked into
suffering large loss and being greatly outperformed by some other strategy
on some sequences x.

One approach to this problem is predictive complexity introduced in
[VW98] and studied in [Kal02, KVV04, KVV05]. This approach replaces
strategies by the class of semi-computable superloss processes. Under cer-
tain restrictions on the prediction space and loss function this class has a
natural optimal element. Predictive complexity of a finite string is defined
up to a constant and is similar in many respects to Kolmogorov complexity;
predictive complexity w.r.t. the logarithmic loss function equals the negative
logarithm of Levin’s a priori semi-measure.

This paper takes a different approach and introduces asymptotic com-
plexity, which is in some respects easier and more intuitive. It is defined for
languages (infinite sets of finite strings and sets of infinite sequences) and
it equals the asymptotically optimal loss per element. This idea leads to
several versions of complexity that behave slightly differently. An impor-
tant advantage of this approach is that asymptotic complexity exists for all
loss functions λ thus eliminating the question of existence, still partly un-
solved for predictive complexity. One can consider effective and polynomial-
time versions of asymptotic complexity by restricting oneself to computable
or polynomial-time computable strategies. The existence of corresponding
asymptotic complexities follows trivially.

There are other approaches to universality in prediction, e.g., those as-
suming the existence of a probability law generating the outcomes (see, e.g.,
[Hut04, Rya11]). We do not make this assumption. While a distribution
always lurks in the background, the main definitions are formulated in a
worst-case fashion.
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In this paper we study the following question. Consider K different
prediction environments, i.e., several different loss functions. How does the
asymptotic complexity of a language vary from environment to environment?
If we know the complexity w.r.t. one environment, what can we say about
the complexities w.r.t. others?

We answer this question by describing the set

(AC1(L),AC2(L), . . . ,ACK(L)) ⊆ RK ,

where ACk is an asymptotic complexity w.r.t. the kth environment and L
ranges over all non-trivial languages. The set turns out to have a simple ge-
ometric description in terms of generalised entropy also known as Bayes loss
(see [GD04] for a discussion of this concept). The set depends on the type
of asymptotic complexity and may be different for different complexities 1.

Connections between Shannon entropy and complexity have long been
studied; see [Rya86] and Theorem 2.8.1 in [LV08]. This paper was inspired
by [FL05] and directly generalises its main result. In Section 6 we show how
the concepts of predictability and dimension from [FL05] relate to asymp-
totic complexities and derive the result of [FL05] from our main theorem.
Note that we strengthen the result by showing that the pairs of predictabil-
ities and dimensions actually fill in the respective set.

While [FL05] restricts itself to polynomial-time computable strategies,
we formulate three parallel versions of the main result, “non-effective”, ef-
fective, and polynomial-time computable. The computational aspects of
on-line prediction in the framework we are interested in do not appear to
be well developed, so we included a number of auxiliary statements about
computability and polynomial-time computability in appendixes.

The structure of the paper is as follows. In Section 2 we introduce the
main concepts including entropy hulls, lattices, and closures in RK . Section 3
defines asymptotic complexities. In starts with non-effective versions and
then proceeds to effective and polynomial-time versions. The key definitions
related to the computational model are given in Section 3.2.1.

In Section 4 we formulate the main theorem and discuss its statement.
In Section 4.2 we present several two-dimensional illustrations.

The proof of the main result is given in Section 5. We start by discussing
some geometric properties of lattices and entropies in Section 5.1. Then in
Section 5.2 we formulate and prove the recalibration lemma, which is the
main tool of the proof. In Section 5.3 we show that tuples of complexities

1Note that the statement of the main theorem in the conference version [KVV07] of
this paper was inaccurate in this respect. Details are given in Section 4.
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must belong to certain sets in RK and in Section 5.4 we show that the tuples
fill those sets.

In Section 6 we apply the main result to the concepts of predictability
and dimension and their computable and polynomial-time counterparts.

2 Preliminaries

We use Z to denote the set of integers and N to denote the set of non-negative
integers {0, 1, 2, . . .}.

2.1 Games, Strategies, and Losses

The notation in the paper mostly follows [KV08].
A game G is a triple 〈Ω,Γ, λ〉, where Ω is an outcome space, Γ is a

prediction space, and λ : Ω× Γ → [0,+∞] is a loss function.
We assume that Ω = {ω(0), ω(1), . . . , ω(M−1)} is a finite set of cardinality

M < +∞. If M = 2, then Ω may be identified with B = {0, 1}; we will call
this case binary. We denote the set of all finite sequences of elements of Ω
by Ω∗ and the set of all (one-sided) infinite sequences by Ω∞. Sets of finite
sequences and sets of infinite sequences, i.e., subsets of Ω∗ and Ω∞, will be
sometimes referred to as languages.

Bold letters x, y etc. are used to refer to both finite and infinite se-
quences. By |x| we denote the length of a finite sequence x, i.e., the num-
ber of elements in it. The set of sequences of length n is denoted by Ωn,
n = 0, 1, 2, . . .. We will also be using the notation ]ix for the number of ω(i)s
among elements of x. Clearly,

∑M−1
i=0 ]ix = |x| for any finite sequence x.

We use x|n to denote the prefix of length n of a (finite of infinite) sequence
x. If x is finite and y is finite or infinite, we denote the concatenation of x
and y by xy. If X is a set of finite strings and Y is a set of finite or infinite
strings, X × Y denotes the set of all concatenations xy, where x ∈ X and
y ∈ Y . We use ωn to denote the string consisting of n identical elements
equal to ω and ω∞ to denote the infinite string consisting of ωs.

We also assume that Γ is a compact topological space and λ is continuous
w.r.t. the topology of the extended half-line [0,+∞]. We treat Ω as a discrete
space and thus the continuity of λ in two arguments is the same as continuity
in the second argument.

In order to take some important games into account we must allow λ
to attain the value +∞. However we assume that the set Γfin = {γ ∈ Γ |
maxω∈Ω λ(ω, γ) < +∞} is dense in Γ. In other words, every prediction
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γ0 leading to infinite loss can be approximated by predictions giving finite
losses2.

The following are examples of binary games with Ω = B and Γ = [0, 1]:
the square-loss game with the loss function λ(ω, γ) = (ω−γ)2, the absolute-
loss game with the loss function λ(ω, γ) = |ω−γ|, and the logarithmic game
with

λ(ω, γ) =
{
− log2(1− γ) if ω = 0
− log2 γ if ω = 1

.

A prediction strategy A : Ω∗ → Γ maps a finite sequence of outcomes
to a prediction. We say that on a finite sequence x = x1x2 . . . xn ∈ Ωn

the strategy A suffers loss LossG
A(x) =

∑n
i=1 λ(xi,A(x1x2 . . . xi−1)). By

definition, we let LossG
A(Λ) = 0, where Λ is the sequence of length 0. The

upper index G will be omitted if it is clear from the context.
We need to define one important class of games. A game G = 〈Ω,Γ, λ〉

is weakly mixable if for every two prediction strategies A1 and A2 there is a
strategy A and a function α : N → R such that α(n) = o(n) as n → +∞
and

LossG
A(x) ≤ min (LossA1(x),LossA2(x)) + α(|x|) (1)

for all finite sequences x ∈ Ω∗.
It is easy to describe weakly mixable games in geometric terms. An M -

tuple
(
s(0), s(1), . . . , s(M−1)

)
∈ [0,+∞]M is a superprediction w.r.t. G if there

is a prediction γ ∈ Γ such that λ(ω(i), γ) ≤ s(i) for all i = 0, 1, . . . ,M − 1.
We say that a game G with the set of superpredictions S is convex if the
finite part of the set of superpredictions, S ∩ RM , is convex.

Proposition 1 ([KV08], Theorem 7). A game is weakly mixable if and only
if it is convex.

It is easy to check that the square-loss, absolute-loss, and logarithmic
games are convex and therefore weakly mixable.

2.2 Generalised Entropies

The term “generalised entropy” was introduces in [GD04], where entropy
was extensively studied in a context similar to ours. This concept has long

2In [KV08] and other earlier papers it was required that for every γ0 ∈ Γ such that
λ(ω∗, γ0) = +∞ for some ω∗ ∈ Ω there should be a sequence γ1, γ2, . . . ∈ Γfin converging to
γ0. If Γ is a metric space, then the existence of converging sequences is clearly equivalent
to the denseness of Γfin in Γ. However, if Γ is a topological space, then the denseness of
Γfin does not always imply the existence of converging sequences; see, e.g., Section 12.11
in [GO03]. Fortunately, these sequences are not really needed for our purposes. We thus
require that Γfin should be dense, which is more general.
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been known in statistical decision theory under the name of Bayes loss or
Bayes risk (see [DeG70], Section 8.2).

Fix a game G = 〈Ω,Γ, λ〉. Let P(Ω) be the set of probability distributions
on Ω. Since Ω is finite, we can identify P(Ω) with the standard (M − 1)-
simplex PM =

{(
p(0), p(1), . . . , p(M−1)

)
∈ [0, 1]M |

∑M−1
i=0 p(i) = 1

}
.

Generalised entropy H : P(Ω) → R is the infimum of expected loss over
γ ∈ Γ, i.e., for p∗ =

(
p(0), p(1), . . . , p(M−1)

)
∈ P(Ω) we have

H(p∗) = inf
γ∈Γ

Ep∗λ(ω, γ) = inf
γ∈Γ

M−1∑
i=0

p(i)λ(ω(i), γ) .

Since p(i) can be 0 and λ(ω(i), γ) can be +∞, we need to resolve a possible
ambiguity. Let us assume that in this definition 0× (+∞) = 0.

The infimum in the definition is actually achieved on a γ0 ∈ Γ and we
can replace inf by min in the definition of H because λ is continuous and Γ is
compact. One cannot use the standard theorem from analysis to prove this
because λ is not a “standard” continuous function and can take infinite val-
ues. However it is easy to check directly. Fix p∗ =

(
p(0), p(1), . . . , p(M−1)

)
∈

PM and let γ1, γ2, . . . ∈ Γ be such that the expectations
∑M−1

i=0 p(i)λ(ω(i), γn)
converge to the infimum of the expectation for this p∗ and γn → γ0 ∈ Γ as
n → ∞. If λ(ω, γ0) is finite for all ω ∈ Ω, then the infimum is achieved at
γ0 by the continuity of λ. Now suppose that λ(ω, γ0) are infinite for some
ω(i). Clearly, the corresponding components p(i) must be zero, or otherwise
the expectations

∑M−1
i=0 p(i)λ(ω(i), γn) converge to infinity. Therefore we can

drop the corresponding terms from the sum and obtain the desired result
by the continuity of λ.

The assumption (made in Section 2.1) that any prediction leading to
an infinite loss can be approximated by predictions with finite losses implies
that the infimum in the definition of H can be taken over the values of γ ∈ Γ
such that λ(ω, γ) < +∞ for all ω ∈ Ω.

In the binary case Ω = B the definition can be simplified. Let p be
the probability of 1. Clearly, p fully specifies a distribution from P(B) and
thus P(B) can be identified with the line segment [0, 1]. We get H(p) =
minγ∈Γ[(1 − p)λ(0, γ) + pλ(1, γ)]. For the logarithmic game this gives us
Shannon entropy hence the term “generalised entropy” for arbitrary games.

Take K ≥ 1 games G1,G2, . . . ,GK with the same finite set of outcomes
Ω. Let Hk be the Gk-entropy for k = 1, 2, . . . ,K. The G1/G2/ . . . /GK-
entropy set is the set {(H1(p),H2(p), . . . ,HK(p)) | p ∈ P(Ω)} ⊆ RK . The
convex hull of the G1/G2/ . . . /GK-entropy set is called the G1/G2/ . . . /GK-
entropy hull.
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Remark 2. If outcomes are i.i.d. (independent identically distributed) ran-
dom values according to a distribution p∗, then H(p∗) is the optimal average
loss per element of a prediction strategy. That is why entropy plays such an
important role in the study of optimal prediction strategies in general and
asymptotic complexities in particular.

2.3 Lattices and Closures

A set M with a partial order is a lattice if every two elements from M have
a least upper bound and a greatest lower bound in M.

For x = (x1, x2, . . . , xK) and y = (y1, y2, . . . , yK) let x ≤ y if xi ≤ yi for
all i = 1, 2, . . . ,K. This relation is a partial order. Let max (x1, x2, . . . , xn),
where xi =

(
x

(1)
i , x

(2)
i , . . . , x

(K)
i

)
∈ RK , i = 1, 2, . . . , n, be the component-

wise maximum(
max

(
x

(1)
1 , x

(1)
2 , . . . , x(1)

n

)
, . . . ,max

(
x

(K)
1 , x

(K)
2 , . . . , x(K)

n

))
and min (x1, x2, . . . , xn) be the componentwise minimum. We will also use
the notation maxM for the componentwise maximum of a possibly infinite
set M⊆ RK provided each maximum

max
{

x(1) |
(
x(1), x(2), . . . , x(K)

)
∈M

}
max

{
x(2) |

(
x(1), x(2), . . . , x(K)

)
∈M

}
. . .

max
{

x(K) |
(
x(1), x(2), . . . , x(K)

)
∈M

}
exists; the same applies to the componentwise minimum minM. Clearly,
max(x, y) is the least upper bound and min(x, y) is the greatest lower bound
of x and y in RK w.r.t. the partial order ≤, i.e., RK with ≤ is a lattice.

A set M ⊆ RK is a sublattice3 of RK if for every x, y ∈ M it con-
tains their greatest lower bound min(x, y) and least upper bound max(x, y).
Clearly, a sublattice contains the maximum and minimum of any finite sub-
set. (In what follows we will speak about sublattices without mentioning
RK or ≤ as this set and this relation will always be assumed.)

Similarly, a set M with a partial order ≤ is an upper semilattice if every
two elements from M have a least upper bound in M and a lower semilattice

3Note that a set M ⊆ RK can be a lattice w.r.t. ≤ without being a sublattice of RK ;
cf. [Bir48, II.4]. For example, M = {(−1,−1), (1, 0), (0, 1), (2, 2)} ⊆ R2 is of this kind.
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if every two points from M have a greatest lower bound in M. A set
M⊆ RK is an upper subsemilattice (of RK w.r.t. ≤) if for every x, y ∈M it
contains max(x, y). A set M ⊆ RK is a lower subsemilattice (of RK w.r.t.
≤) if for every x, y ∈M it contains their greatest lower bound min(x, y).

The ≤-closure of a set M⊆ RK is the smallest sublattice containing M.
Respectively, the upper ≤-closure of a set M ⊆ RK is the smallest upper
subsemilattice containing M and the lower ≤-closure of a set M ⊆ RK is
the smallest lower subsemilattice containing M. The ≤-closure of M exists
and it is the intersection of all sublattices containing M; the same applies
to the upper and lower ≤-closures. The ≤-closure contains the upper and
lower ≤-closures because each sublattice is a subsemilattice.

Note that the definitions of≤ and all subsequent concepts are coordinate-
dependent.

3 Asymptotic Complexities

In this section we define measures of complexity for languages, i.e., sets of
sequences. The finite and infinite sequences should be considered separately.
Let a game G = 〈Ω,Γ, λ〉 have a finite outcome space Ω.

3.1 Non-effective Case

We start by giving basic definitions with no regard to computability.

3.1.1 Finite Sequences

Consider L ⊆ Ω∗. We will call the values

AC(L) = inf
A

lim sup
n→+∞

max
x∈L∩Ωn

LossA(x)
n

, (2)

AC(L) = inf
A

lim inf
n→+∞

max
x∈L∩Ωn

LossA(x)
n

(3)

the upper and lower asymptotic complexity of L w.r.t. the game G. As with
generalised entropies, we will use subscripts for AC to specify a particular
game if it is not clear from the context.

In order to complete the definition, we must decide what to do if L con-
tains no sequences of certain lengths at all. In this paper we are concerned
only with infinite sets of finite sequences and asymptotic complexity of a
finite or an empty language L ⊆ Ω∗ is undefined. Thus by assumption there
are strings of infinitely many lengths in L.
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Still there may be no strings of a certain length in L. Let us assume that
the limits in (2) and (3) are taken over all the values n1 < n2 < . . . such
that L ∩ Ωni 6= ∅.

3.1.2 Infinite Sequences

There are two natural ways to define complexities of nonempty languages
L ⊆ Ω∞.

First we can extend the notions we have just defined. Indeed, for a
nonempty set of infinite sequences consider the set of all finite prefixes of
all its sequences4. The language thus obtained is infinite and has upper and
lower complexities. For the resulting complexities we will retain the notation
AC(L) and AC(L). We will refer to these complexities as uniform.

The second way is the following. Let

AC(L) = inf
A

sup
x∈L

lim sup
n→+∞

LossA(x|n)
n

, (4)

AC(L) = inf
A

sup
x∈L

lim inf
n→+∞

LossA(x|n)
n

. (5)

We will refer to these complexities as non-uniform.
The concept of asymptotic complexity generalises certain complexity

measures studied in the literature. The concepts of predictability and di-
mension studied in [FL05] can be easily reduced to asymptotic complexity:
dimension is lower non-uniform complexity w.r.t. a multidimensional gener-
alisation of the logarithmic game and predictability equals 1 − AC, where
AC is lower non-uniform complexity w.r.t. a multidimensional generalisation
of the absolute-loss game; see Section 6 for derivations.

3.2 Effective Versions of Complexities

In this section we define effective versions of games, strategies, and com-
plexities.

3.2.1 Computability Model

While computability over the real domain is a relatively well-known area,
polynomial-time computability with real numbers is less popular. We will

4As pointed out by an anonymous reviewer, this mapping of subsets of Ω∞ to subsets
of Ω∗ is not injective. Indeed, L1 =

S∞
n=0 (0n1∞) and L2 = L1 ∪{0∞} have the same sets

of prefixes. Therefore subsets of Ω∞ cannot be identified with their sets of prefixes.
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describe a computational model along the lines of [Ko91] (see also [Wei00,
Sections 7 and 9.4]) in detail to avoid ambiguity.

A dyadic rational number is a number of the form n/2m, where n and
m are integers. We call a triple r = 〈b, x,y〉, where b ∈ B is a bit and
x = (x1x2 . . . xu),y = (y1y2 . . . yv) ∈ B∗ are binary strings, a representation
of a dyadic number d if x1 = 1 and

d = s

(
u−1∑
i=0

xu−i2i +
v∑

i=1

yi2−i

)
, (6)

where s = 1 if b = 1 and s = −1 if b = 0. Intuitively, b represents the sign
of d and x.y is a finite binary expansion of |d|. Let d map correctly formed
triples into dyadic numbers according to (6). We will call v the precision of
the triple r and write v = prec(r).

For every x ∈ R let CFx be the set of sequences of triples, i.e., functions φ
from non-negative integers to representations of dyadic numbers, such that
prec(φ(m)) = m and |d(φ(m)) − x| ≤ 2−m for all m = 1, 2, . . .. Any ele-
ment of CFx can be thought of as a representation of x. A number x ∈ R is
computable if CFx contains a computable function φ. If there is a Turing ma-
chine taking a unary representation of m as input and finishing work in time
polynomial in m and computing φ(m) for all m ∈ N, then x is polynomial-
time computable (we use unary notation in line with Definitions 2.6 and 2.7
from [Ko91] so that the running time of the machine is polynomial in the
length of the input). A point x = (x1, x2, . . . , xK) ∈ RK is (polynomial-
time) computable if all its coordinates x1, x2, . . . , xK are (polynomial-time)
computable.

Let Ω be a finite set. A function f : Ω∗ → R is computable if there is
a Turing machine that given a finite string x = x1x2 . . . xn ∈ Ω∗ and non-
negative integer precision m outputs a representation r of a dyadic number
such that prec(r) = m and |f(x) − d(r)| ≤ 2−m. In other words, for every
x ∈ Ω∗ the machine calculates a function from CFf(x). If the machine takes
the unary representation of m as input and there is a polynomial p(·, ·)
such that the machine always finishes work in time p(n, m), we say that
f is polynomial-time computable. A function f = (f1, f2, . . . , fK) : Ω∗ →
RK is (polynomial-time) computable if all its components f1, f2, . . . , fK are
(polynomial-time) computable.

A function f : M → R, where M ⊆ R, is computable if there is an
oracle Turing machine that given a non-negative integer precision m and
an oracle evaluating some φ ∈ CFx outputs a representation r of a dyadic
number such that prec(r) = m and |f(x) − d(r)| ≤ 2−m. Suppose that
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the machine takes the unary representation of m as input and works with
the oracle in the following way. When it needs an approximation of x with
precision 2−k it prints the unary representation of k (say, on a special tape
reserved for this purpose), requests an approximation, and gets it in one
unit of time (say, on another special tape). If there is a polynomial p(·) such
that the machine finishes work in time p(m) for all x ∈ M and m ∈ N, we
say that f is polynomial-time computable. It is easy to see that the classes
of computable and polynomial-time computable functions are closed under
composition (for the latter recall the unary input rule). Computable and
polynomial-time computable functions on M ⊆ RK and M × Ω∗ to R and
RK are defined in a similar fashion.

Some important properties of computable and polynomial-time com-
putable functions are outlined in Appendix A.

3.2.2 Computable Games

We call a game G = 〈Ω,Γ, λ〉 (polynomial-time) computable if Γ ⊆ Rm for
some positive integer m, (polynomial-time) computable points are dense in
Γ and the function e−λ(·,·) : Ω×Γ → [0, 1] is (polynomial-time) computable.
Note that we do not postulate computability of λ itself because if would
have implied boundedness of λ.

A (polynomial-time) computable strategy w.r.t. G is a (polynomial-time)
computable function Ω∗ → Γ.

We need an effective version of mixability. We will give a definition
that is very weak but sufficient for the purposes of this paper. A game
G = 〈Ω,Γ, λ〉 is (polynomial-time) computably very weakly mixable if for
every two (polynomial-time) computable prediction strategies A1 and A2

and ε > 0 there is a (polynomial-time) computable strategy A and a function
αε : N → R such that αε(n) = o(n) as n → +∞ and

LossG
A(x) ≤ min (LossA1(x),LossA2(x)) + ε|x|+ αε(|x|) (7)

for all finite sequences x ∈ Ω∗.
In order to get an effective version of Proposition 1, one needs to restate

results of [KV08] in an effective fashion. The procedures used in [KV08] are
essentially effective (and efficient) but require certain properties of Γ and
λ; otherwise the prediction space and the loss function can be distorted in
such a way as to make the procedures from [KV08] unusable. Formalising
these properties in a simple form appears to be a difficult task. Instead
we will formulate a proposition with simple and concise conditions that are
sufficient and rather general but by no means necessary.
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Proposition 3. If a (polynomial-time) computable game G has a convex
prediction space Γ and a convex in the second argument loss function λ,
then G is (polynomial-time) computably very weakly mixable.

This statement is proved in Appendix B.

Remark 4. As demonstrated by Lemma 56 and Remark 58 in the appendix,
for many games the conclusion of proposition can be strengthened so that
ε|x| can be dropped from (7) but that is unnecessary for the purposes of this
paper and will only make the statements of the theorems more complicated.
The complete investigation of this question is outside of the scope of this
paper.

Remark 5. In [KV08] the concept of weak mixability was introduced dif-
ferently by means of a merging strategy (see Section 2.2 in [KV08]) that
outputs the predictions of A given the predictions of A1 and A2. While the
two definitions are clearly equivalent for the uncomputable case, the effec-
tive versions present a problem. We leave out the complete investigation of
the equivalence outside of this paper and use the simple definition of mixa-
bility as more consistent with the goal of the paper. However we would like
to point out that the proofs in Appendix B essentially construct effective
merging strategies.

3.2.3 Effective Complexities

The effective asymptotic complexities ACE, ACE, ACE, and ACE w.r.t. a
game G are defined as in Section 3.1 except that the infimums in (2), (3),
(4), and (5) are restricted to computable strategies A.

The polynomial-time asymptotic complexities ACP, ACP, ACP, and
ACP w.r.t. a game G are defined as in Section 3.1 except that the infi-
mums in (2), (3), (4), and (5) are restricted to polynomial-time computable
strategies A.

3.3 Simple Relations between Complexities

3.3.1 Inequalities

Since for every sequence of real numbers αn the lower limit does not exceed
the upper limit, lower complexities never exceed the corresponding upper
complexities. We get AC(L) ≥ AC(L) for all infinite languages L ⊆ Ω∗

and AC(L) ≥ AC(L) for all infinite languages L ⊆ Ω∗ and all nonempty
languages L ⊆ Ω∞.

12



For nonempty languages L ⊆ Ω∞ we can compare upper uniform and
nonuniform complexities. Since for every infinite string y ∈ L ⊆ Ω∞ and
every positive integer n the inequality

max
x∈L

Loss(x|n)
n

≥ Loss(y|n)
n

holds, uniform complexities never exceed the corresponding non-uniform
complexities; we get AC(L) ≥ AC(L) and AC(L) ≥ AC(L). Since for
nonempty languages L ⊆ Ω∞ all four complexities exist, we can draw the
“quadrangle” of inequalities:

AC(L) ≥ AC(L)
≥ ≥

AC(L) ≥ AC(L)
(8)

The same inequalities, including the quadrangle, hold for effective and
polynomial-time complexities.

The set of all strategies includes computable strategies and the set of
computable strategies includes all polynomial-time computable strategies.
Therefore we get

AC(L) ≤ ACE(L) ≤ ACP(L)

for every language L and complexity AC such that AC(L), ACE(L), and
ACP(L) are defined.

3.3.2 Differences

Let us show that the complexities we have introduced are different and
generally speaking the quadrangle does not collapse.

First let us show that upper and lower complexities differ. For example,
consider the absolute-loss game. Recall that 0n is the sequence of n zeros and
let Ξn = {0n}×Bn. Consider the language L =

∏∞
i=0 Ξ

22i ⊆ B∞. Informally,
L consists of sequences that have alternating constant and random segments
of rapidly increasing lengths. At the end of a constant segment the optimal
loss per element is low and at the end of a random segment it is high. It is
easy to see that AC(L) = AC(L) = 1/2, while AC(L) = AC(L) = 0. This

follows from
∑i−1

j=1 22j ≤
∑2i−1

k=1 2k = 22i−1+1 − 1 = o(22i
) as i → +∞.

Secondly let us show that uniform complexities differ from non-uniform.
Once again, consider the absolute-loss game. Let L ⊆ B∞ be the set of
all sequences that have only zeros from some position on. In other terms,

13



L = ∪∞n=0(Bn×{0∞}), where 0∞ is the infinite sequence of zeros. Informally,
L consists of sequence that start from a random segment and then stabilise
to 0. For every sequence the optimal loss per element goes to zero if we take
sufficiently long chunks; however for every n there are sequences that have
not stabilised yet so uniform optimal loss must be substantial. We have
AC(L) = AC(L) = 0 while AC(L) = AC(L) = 1/2.

In Appendix C.1 we discuss these arguments in more details and show
how they generalise.

Let us show that non-effective complexities AC differ from their effective
counterparts ACE. Again consider the absolute-loss game. There are count-
ably many computable strategies. It is easy to see that weak mixability can
be extended to countable families and construct a strategy S capturing the
power of all computable strategies. The differentiating language L ⊆ Ω∞

will consist of a single string x = ω1ω2 . . .. We construct x by induction.
Let γ be the prediction output by S on ω1ω2 . . . ωn. If λ(0, γ) ≥ 1/2 take
ωn+1 = 0 and otherwise take ωn+1 = 1. For every computable strategy A

we get
n

2
≤ LossS(x|n) ≤ LossA(x|n) + o(n)

and thus ACE(L) ≥ 1/2 for all complexities ACE. On the other hand, our
procedure is deterministic and there is a strategy that predicts elements of
x exactly; thus AC(L) = 0.

The same idea can be used to differentiate polynomial-time complexi-
ties from effective. This requires some technical steps though: we need an
effective version of mixability for countable families and an effective enu-
meration of all Turing machines calculating polynomial-time computable
strategies. Still there is a computable strategy S capturing the power of all
polynomial-time computable strategies.

There is a computable infinite sequence x such that LossS(x|n) ≥ 0.4n
(for every γ there is ω such that λ(ω, γ) ≥ 1/2 and by calculating e−λ with
a sufficient precision we will find ω such that λ(ω, γ) ≥ 0.4). On the other
hand, there is a computable strategy that precalculates the elements of x
and suffers zero loss on prefixes x|n.

More details are given in Appendix C.2.
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4 The Main Result and Discussion

4.1 The Main Theorem

We can now formulate the main result of this paper5

Theorem 6. Suppose that games G1,G2, . . . ,GK (K ≥ 1) have the same
finite outcome space Ω and are weakly mixable. Then the ≤-closure of the
G1/G2/ . . . /Gk-entropy hull coincides with the following sets (here ACk is
asymptotic complexity w.r.t. Gk, k = 1, 2, . . . ,K):

• {(AC1(L),AC2(L), . . . ,ACK(L)) | L ⊆ Ω∗ and L is infinite};

• {(AC1(L),AC2(L), . . . ,ACK(L)) | L ⊆ Ω∞ and L 6= ∅};

•
{(

AC
1
(L),AC

2
(L), . . . ,AC

K
(L)
)
| L ⊆ Ω∞ and L 6= ∅

}
.

The upper ≤-closure of the G1/G2/ . . . /Gk-entropy hull coincides with the
following sets:

•
{(

AC1(L),AC2(L), . . . ,ACK(L)
)
| L ⊆ Ω∗ and L is infinite

}
;

•
{(

AC1(L),AC2(L), . . . ,ACK(L)
)
| L ⊆ Ω∞ and L 6= ∅

}
;

•
{(

AC1(L),AC2(L), . . . ,ACK(L)
)
| L ⊆ Ω∞ and L 6= ∅

}
.

If the games G1,G2 . . . , GK are computable and computably very weakly mix-
able, the same holds for effective complexities. If the games G1,G2 . . . , GK

are polynomial-time computable and polynomial-time computably very weakly
mixable, the same holds for polynomial-time complexities.

In Section 4.2 we illustrate the statement of the theorem by drawing
entropy hulls and their closures in two dimensions where entropy hulls are
easy to visualise. In most natural cases (e.g., if the games involved are the
square-loss, absolute-loss, or logarithmic) the entropy hull is a sublattice.
However this is not true of all games as shown by an example in Section 4.2
so the closures cannot be dropped from the statement of the theorem.

Section 5.1 discusses shapes of the entropy hull in the general case. Ac-
cording to Corollary 22, the ≤-closure and the upper ≤-closure of an entropy
hull are compact and convex sets.

5The statement of the main theorem in the conference version of this paper was in-
accurate: it claimed that all the sets coincided with the upper ≤-closure. Comments for
Lemma 34 and Remark 31 uncover an omission that led to the inaccuracy.

15



Let us discuss some other requirements in the statement of the theo-
rem. The requirement of weak mixability cannot be omitted. For example,
consider the simple prediction game 〈B, B, λ〉, where λ(ω, γ) is 0 if ω = γ
and 1 otherwise. The convex hull of the set of superpredictions w.r.t. the
simple prediction game coincides with the set of superpredictions w.r.t. the
absolute-loss game. Geometric considerations imply that their generalised
entropies coincide. Thus the maximum of the generalised entropy w.r.t. the
simple prediction game is 1/2 (see Section 4.2). On the other hand, it is easy
to check that AC(B∗) = 1, where AC is any of the asymptotic complexities
w.r.t. the simple prediction game.

The statement of the theorem does not apply to pairs (AC1(L),AC2(L))
or pairs (AC1(L),AC

2
(L)). Indeed, let G1 = G2. Then H1 = H2 and

the entropy hull with its ≤-closure are subsets of the bisector of the first
quadrant. However we know that upper and lower complexities differ and
thus there will be pairs outside the bisector.

The theorem is proven in Section 5.

4.2 Entropy Hulls in Two Dimensions

In this section we consider entropy hulls of two games and construct an
example showing that the entropy hull is not necessarily an upper subsemi-
lattice.

For planar sets the following simple criterion holds.

Proposition 7. A compact convex set U ⊆ R2 is an upper subsemilattice if
and only if maxU ∈ U . A compact convex set S ⊆ R2 is

• an upper subsemilattice if and only if maxS ∈ S;

• a sublattice if and only if maxS,minS ∈ S.

Proof. The only if part is trivial: the componentwise maximums and mini-
mums are achieved on some points because of compactness and their least
upper and greatest lower bounds belong to corresponding subsemilattices.

The if part follows from convexity. Let x∗ = maxU ∈ U . Take u, v ∈ U .
The triangle with the vertices u, v, and x∗ is a subset of U and max(u, v) is
in the triangle.

Remark 8. This criterion does not hold in higher dimensions. Let M⊆ R3

be the triangle with the vertices (1, 0, 0), (0, 1, 0) and (1, 1, 1). The set M
is convex and compact and it contains its maximum (1, 1, 1). However

max((1, 0, 0), (0, 1, 0)) = (1, 1, 0) /∈M .
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Figure 1: The graph of
the ABS-entropy

1
p

1/2

1/4

HSQ(p)

Figure 2: The graph of
the SQ-entropy

1
p

1/2

HLOG(p)1

Figure 3: The graph of
the LOG-entropy

Corollary 9. Let G1 and G2 be two games with the same number of pos-
sible outcomes; let H1 be the generalised entropy w.r.t. G1 and H2 be the
generalised entropy w.r.t. G2. Then the G1/G2-entropy hull is

1. an upper subsemilattice if and only if

arg maxH1 ∩ arg maxH2 6= ∅ ;

2. a sublattice if and only if

arg maxH1 ∩ arg maxH2 6= ∅ ,

arg min H1 ∩ arg min H2 6= ∅ .

The corollary relies on Corollary 22, which will be proven later.
The rest of this section contains examples of entropy sets and hulls in

two dimensions.
It is easy to check by direct calculation that the entropy for the absolute-

loss game is given by HABS(p) = min(p, 1−p), the entropy for the square-loss
game is given by HSQ(p) = p(1 − p), and the entropy for the logarithmic
game is given by HLOG(p) = −p log2 p − (1 − p) log2(1 − p), and thus it
coincides with Shannon entropy. The graphs of the entropies are shown in
Figures 1, 2, and 3. The entropy hulls for the pairs of games are shown on
Figures 4, 5, and 6; the corresponding entropy sets are represented by bold
lines. Since all the three games are symmetric, it should come as no surprise
that the entropy hulls are sublattices in R2.

Let us construct an entropy hull that is a not an upper subsemilattice.
It follows from Corollary 9 that the example must be rather artificial. Let
G1 = 〈B, [0, 1], λ1〉, where

λ1(ω, γ) =

{
γ, if ω = 0
1− γ

2 , if ω = 1,
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1/2

1

ABS

LOG

Figure 4: The
ABS/LOG-entropy
set and hull

1/2

SQ

1/4
ABS

Figure 5: The
ABS/SQ-entropy
set and hull

LOG

SQ

1

1/4

Figure 6: The
SQ/LOG-entropy
set and hull

and let G2 = 〈B, [0, 1], λ2〉, where

λ1(ω, γ) =

{
1 + γ

2 , if ω = 0
3
2 − γ, if ω = 1.

The corresponding entropies are as follows:

H1(p) = min
γ∈[0,1]

(
p
(
1− γ

2

)
+ (1− p)γ

)
= min

γ∈[0,1]

(
γ

(
1− 3

2
p

)
+ p

)
= min

(
p, 1− p

2

)
(the last equality holds because the minimum of a linear function is achieved
at either γ = 0 or γ = 1) and

H2(p) = min
γ∈[0,1]

(
p

(
3
2
− γ

)
+ (1− p)

(
1 +

γ

2

))
= min

γ∈[0,1]

(
γ

(
1
2
− 3

2
p

)
+ 1 +

p

2

)
= min

(
1 +

p

2
,
3
2
− p

)
.

The graph of H1 consists of two line segments joining at p = 2/3 and the
graph of H2 consists of two line segments joining at p = 1/3. Thus the
entropy set is the broken line passing through the points (0, 1),

(
1
3 , 7

6

)
,
(

2
3 , 5

6

)
,

and
(

1
2 , 1

2

)
. Figure 7 shows the G1/G2-entropy hull, which is not an upper

subsemilattice. Figure 8 shows the upper ≤-closure, and Figure 9 shows its
≤-closure.
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Figure 8: The upper
≤-closure

Figure 9: The ≤-
closure

5 Proof of the Main Theorem

In this section we prove Theorem 6. We start with a discussion of entropy
hulls and their geometric properties in Section 5.1. In Section 5.2 we obtain
a lemma of independent interest about the optimisation of prediction strate-
gies. Then in Section 5.3 we proceed to show that every tuple of complexities
belongs to an appropriate closure of the entropy hull and in Section 5.4 we
complete the proof by showing that every point in the closure corresponds
to the tuple of complexities of some language.

5.1 Shapes of Entropy Hulls

In this subsection we discuss geometric aspects of entropy hulls and lattices.
The results of this subsection clarify the statement of the main theorem and
will be used in the proof.

It follows from our definition that every game has a prediction leading
to finite losses. This implies that generalised entropy is finite and bounded.
It can also be shown to be continuous.

Proposition 10. Generalised entropy is a continuous function on its do-
main.

Proof. Let G = 〈Ω,Γ, λ〉 be a game with M outcomes. Let us show that the
entropy H : PM → R is a continuous function.

First let λ be bounded and L > 0 be such that λ(ω, γ) ≤ L for all
ω ∈ Ω, γ ∈ Γ. For all distributions p1 =

(
p
(0)
1 , p

(1)
1 , . . . , , p

(M−1)
1

)
and p2 =
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(
p
(0)
2 , p

(1)
2 , . . . , , p

(M−1)
2

)
from PM we have

H(p2) = min
γ∈Γ

M−1∑
i=0

p
(i)
2 λ(ω(i), γ)

= min
γ∈Γ

M−1∑
i=0

(
p
(i)
1 λ(ω(i), γ) +

(
p
(i)
2 − p

(i)
1 )
)

λ(ω(i), γ)
)

≤ H(p1) + L

M−1∑
i=0

∣∣∣p(i)
2 − p

(i)
1

∣∣∣ .

The continuity follows.
In order to obtain continuity for the unbounded case we need Lemma 15

from [KV08]. We include its statement for completeness.

Lemma 11. For every game G = 〈Ω,Γ, λ〉 and ε > 0 there is a number
Lε with the following property. For every γ ∈ Γ there is γ∗ ∈ Γ such that
λ(ω, γ∗) ≤ Lε and λ(ω, γ∗) ≤ λ(ω, γ) + ε for all ω ∈ Ω.

For ε > 0 let Γε = {Ω,Γ, λε}, where λε(ω, γ) = min(λ(ω, γ), Lε), and Hε

be the generalised entropy for Gε. Since λε ≤ λ everywhere, we get Hε ≤ H.
On the other hand, H ≤ Hε + ε by the definition of Lε. The functions Hε

thus uniformly converge to H as ε → 0 and the continuity of each Hε implies
the continuity of H.

Since the simplex PM is compact, every entropy set is a compact set (i.e.,
bounded and closed) w.r.t. the standard Euclidean topology. The same holds
for the entropy hull:

Corollary 12. The entropy hull is a compact set w.r.t. the standard Eu-
clidean topology.

Proof. The convex hull of a compact set is compact (see, e.g., [Egg58], The-
orem 10).

We need to show that the same applies to its upper and lower ≤-closures.
We will obtain a number of properties of ≤-closures first.

Proposition 13. Let S be the ≤-closure and U be the upper ≤-closure of a
set M⊆ RK . Then

1. if M is bounded, then S and U are bounded;

2. if M is a lower subsemilattice, then U is a lower subsemilattice;
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3. if M is compact in RK , then S and U are compact in RK ;

4. if M is convex, then S and U are convex.

Similar statements can be formulated for the lower ≤-closure but we skip
them for brevity.

Proof of Proposition 13. Part 1 of the proposition is trivial. If a coordinate
of points of M is bounded, the corresponding coordinate of points in S and
U has the same bound.

For the rest of the proof we need the following technical statements.

Lemma 14. Let M⊆ RK . Then its upper ≤-closure coincides with the set
U = {max(x1, x2, . . . , xK) | x1, x2, . . . , xK ∈M}.

Proof of Lemma 14. The set U is contained in the upper ≤-closure of M.
Let us show that it is an upper subsemilattice. Take two points u, v ∈
U . There are y1, y2, . . . , yK ∈ M and z1, z2, . . . , zK ∈ M such that u =
max(y1, y2, . . . , yK) and v = max(z1, z2, . . . , zK). The maximum max(u, v)
has K components and each one is contributed by one of the vectors yi or zi.
Therefore we can select K vectors from the set {y1, y2, . . . , yK , z1, z2, . . . , zK}
such that their componentwise maximum coincides with max(u, v).

Remark 15. It is not sufficient to take a number less than K. Indeed,
consider M consisting of K unit vectors e1, e2, . . . , eK (all coordinates of
the vector ei equal zero except the i-th, which equals 1). Their least upper
bound (1, 1, . . . , 1) can only be obtained as the maximum of all K of them.

Lemma 16. For all vectors xi,j (i = 1, 2, . . . , n and j = 1, 2, . . . ,m) of the
same dimension

min(max(x1,1, x1,2 . . . , x1,m), . . . ,max(xn,1, xn,2 . . . , xn,m)) =
max{min(x1,i1 , x2,i2 . . . , xn,in) | i1, i2, . . . , in = 1, 2, . . . ,m} .

Proof of Lemma 16. It is sufficient to prove the lemma for one-dimensional
vectors, i.e., real numbers. A number x can be identified with the half-line
(−∞, x] so that the half-line corresponding to max(x, y) is the union and
the half-line corresponding to min(x, y) is the intersection of the half-lines
corresponding to x and y. The statement of the lemma thus follows from
the distributivity of ∪ and ∩.

Remark 17. This lemma essentially states that the lattice RK with the
relation ≤ is distributive (see [Bir48], Chapter IX).
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Now we can prove Part 2. Let M be a lower subsemilattice and U
be its upper ≤-closure. Let u, v ∈ U . In order to show that U is a
lower subsemilattice, we need to prove that min(u, v) ∈ U . Lemma 14
implies that u = max(y1, y2, . . . , yK) and v = max(z1, z2, . . . , zK) for some
y1, y2, . . . , yk, z1, z2, . . . , zK ∈ M. It follows from Lemma 16 that min(u, v)
can be represented as the maximum of minimums of some yi and zi. Since
M is a lower subsemilattice, the minimums belong to M and since U is an
upper subsemilattice, their maximum belongs to U . Part 2 follows.

Corollary 18. The ≤-closure of a set equals each of the following:

• the upper ≤-closure of its lower ≤-closure;

• the lower ≤-closure of its upper ≤-closure.

Proof. The lower ≤-closure L of a set M is a subset of S, the ≤-closure of
M. The upper ≤-closure U of L is a subset of S too. We have shown that U
is a lower subsemilattice, and therefore a sublattice. Thus it coincides with
S.

We need another technical lemma.

Lemma 19. Let vectors xi,j (i = 1, 2, . . . , n and j = 1, 2, . . . ,∞) be of
the same dimension and such that limj→∞ xi,j exists for all i = 1, 2, . . . , n.
Then

lim
j→∞

max{xi,j | i = 1, 2, . . . , n} = max{ lim
j→∞

xi,j | i = 1, 2, . . . , n} .

Proof of Lemma 19. It is sufficient to prove the lemma for one-dimensional
vectors. Let M = max{limj→∞ xi,j | i = 1, 2, . . . , n}. Those sequences
xi,j , j = 1, 2, . . . that converge to numbers less than M will go below M
from some j0 on and will not contribute to max{xi,j | i = 1, 2, . . . , n} for
large j. The sequences converging to M will be within an ε-vicinity of
M from some jε on and so will be max{xi,j | i = 1, 2, . . . , n}. Thus the
maximum will converge to M .

Let us prove Part 3 of Proposition 13. Let u1, u2, . . . ∈ U . We need to
show that uj has a subsequence converging to a limit in U .

For each uj there are points xi,j ∈ M, i = 1, 2, . . . ,K, such that uj =
max{xi,j | i = 1, 2, . . . ,K}. Since M is compact, the sequence x1,m, m =
1, 2, . . ., has a converging subsequence x1,mk

, k = 1, 2, . . .. The sequence
x2,mk

, k = 1, 2, . . ., in turn has a converging subsequence etc. Arguing in
this way, we obtain a sequence of indices j1 < j2 < . . . such that for all
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i = 1, 2, . . . ,K the sequence xi,jn , n = 1, 2, . . ., converges to a limit in M.
Lemma 19 implies that ujn = max{xi,jn | i = 1, 2, . . . ,K} converges to a
limit in M.

We have shown that the set U is compact. The set S is compact as the
lower ≤-closure of the compact U .
Remark 20. Note that topological closeness of M in Rk does not imply
closeness of U . Indeed, let M = {(x, y) | x, y < 0, xy ≥ 1} ⊆ R2. It is a
closed subset of R2. However its upper ≤-closure U = {(x, y) | x, y < 0} is
not closed.

We need another technical lemma.

Lemma 21. For all x1, x2, . . . , xn, y1, y2, . . . , yn of the same dimension

max(x1, x2, . . . , xn)+max(y1, y2, . . . , yn) = max{xi+yj | i, j = 1, 2, . . . , n} .

Proof of Lemma 21. It is sufficient to prove the lemma for one-dimensional
vectors. The expression on the left-hand side is greater than or equal to
each of the sums xi + yj and equals one of them.

In order to prove Part 4 of Proposition 13 let u1, u2 ∈ U and α ∈ (0, 1).
We need to show that αu1 +(1−α)u2 ∈ U . There are points x1, x2, . . . , xK ,
y1, y2, . . . , yK ∈M such that

u1 = max(x1, x2, . . . , xK) ,

u2 = max(y1, y2, . . . , yK) .

We have

αu1 + (1− α)u2 = α max(x1, x2, . . . , xK) + (1− α) max(y1, y2, . . . , yK) =
max(αx1, αx2, . . . , αxK) + max((1− α)y1, (1− α)y2, . . . , (1− α)yK) =

max{αxi + (1− α)yj | i, j = 1, 2, . . . ,K} .

Since all convex combinations of xi and yj belong to M, this belongs to U .
Therefore U is convex and S is convex as the lower ≤-closure of the convex
U .

Corollary 22. The ≤-closure, the lower ≤-closure, and the upper ≤-closure
of the entropy hull are compact and convex sets.
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The following statements describe relations of closures and projections.
For a set M ⊆ RK and pairwise different indices in, 1 ≤ in ≤ K, n =

1, 2, . . . , N , the projection of M onto the coordinate hyperplane correspond-
ing to coordinates i1, i2, . . . , iN is the set of points x =

(
x(1), x(2), . . . , x(N)

)
such that there is y =

(
y(1), y(2), . . . , y(K)

)
∈ M with x(n) in position in,

i.e., such that y(in) = x(n), n = 1, 2, . . ..
Sometimes we will be speaking of the projection as of the set of x =(

x(1), x(2), . . . , x(K)
)

such that x(in) = y(in), n = 1, 2, . . . , N , and x(i) = 0
for other indices.

The following simple lemma contains important properties of projections.

Lemma 23. For every set M⊆ RK and its projection M̃ onto a coordinate
hyperplane

1. the convex hull of M̃ is the projection of the convex hull of M;

2. the upper ≤-closure of M̃ is the projection of the upper ≤-closure of
M̃;

3. the ≤-closure of M̃ is the projection of the ≤-closure of M̃.

Proof. Part 1 follows from a representation of the convex hull of M as the
set of linear combinations

∑M
m=1 αmxm, where xm ∈ M and αm ∈ [0, 1],

m = 1, 2, . . . ,M , and
∑M

m=1 αm = 1. (Indeed, each combination belongs to
the convex hull and they all form a convex set.)

Part 2 follows from the representation of the upper closure provided by
Lemma 14. Clearly, a similar statement holds for the lower closure.

Part 3 follows from Part 2 and Corollary 18.

Corollary 24. Take K ≥ 2 games G1,G2, . . . ,GK with the same set of
outcomes Ω. Then

1. the G1/G2/ . . . /GK−1-entropy set is the projection of the
G1/G2/ . . . /GK-entropy set,

2. the G1/G2/ . . . /GK−1-entropy hull is the projection of the
G1/G2/ . . . /GK-entropy hull,

3. the upper ≤-closure of the G1/G2/ . . . /GK−1-entropy hull is the pro-
jection of the upper ≤-closure of the G1/G2/ . . . /GK-entropy hull, and

4. the ≤-closure of the G1/G2/ . . . /GK−1-entropy hull is the projection
of the ≤-closure of the G1/G2/ . . . /GK-entropy hull,
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where all projections are taken onto the coordinate hyperplane corresponding
to the first K − 1 coordinates.

Proposition 7 implies that constructing the ≤-closures and upper ≤-
closures of compact convex two-dimensional sets is easy: one should add the
coordinate-wise maximum and minimum (or just the maximum) to the set
and take the convex hull.

Construction of ≤-closures in more than two dimensions can be reduced
to the two-dimensional case.

Proposition 25. Let M ⊆ RK and K ≥ 2. Then its ≤-closure S equals⋂
1≤i<j≤K Cij, where Cij ⊆ RK is the cylinder over the ≤-closure of the

projection of M onto the coordinate plane corresponding to coordinates i
and j.

Proof. Let C =
⋂

1≤i<j≤K Cij . First, note that each Cij is a lattice w.r.t. ≤
and so is their intersection. Thus S ⊆ C.

We will prove that C ⊆ S using induction in K. The case K = 2 is
trivial. Suppose that the statement is true in dimension K − 1 and take
x =

(
x(1), x(2), . . . , x(K)

)
∈ C. Let M̃ ⊆ RK−1 be the projection of M onto

the hyperplane corresponding to the first K−1 coordinates and let x̃ be the
projection of x (i.e., x without the last coordinate). The point x̃ belongs to
the intersection of cylinders over closures of two-dimensional projections of
M̃. By the inductive hypotheses it belongs to the ≤-closure S̃ of M̃. By
Lemma 23, S̃ is the projection of S and hence x̃ is the projection of some
u ∈ S. The first K − 1 coordinates of u coincide with those of x. Let the
last coordinate of u be u(K). If u(K) = x(K), there is nothing more to prove.
Let u(K) 6= x(K).

Since x ∈ C, we get x ∈ CiK for i = 1, 2, . . . ,K − 1. Therefore the
projection x̄i of x onto the coordinate plane corresponding to coordinates i
and K belongs to the ≤-closure of the corresponding projection of M, i.e.,
to the projection of S. There is xi ∈ S that coincides with x in coordinates
i and K.

Now we need to consider two cases.
Case u(K) > x(K). Take y = max(x1, x2, . . . , xK−1) ∈ S. The last

coordinate of y equals x(K) and all other coordinates are greater than or
equal to corresponding coordinates of x.

The point min(y, u) belongs to S and equals x. Thus x ∈ S.
Case u(K) < x(K). Similarly, x = max(min(x1, x2, . . . , xK−1), u) ∈ S.
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Remark 26. This proposition cannot be extended to one-sided closures. Take
K = 3 and let M be the triangle (with its interior) having the vertices
(1, 1, 0), (1, 0, 1), and (0, 1, 1). The upper ≤-closure of M is the set of points
(x, y, z) ∈ [0, 1]3 such that x + y + z ≥ 2. The projection of M onto each
two-dimensional coordinate plane is the triangle with the vertices (0, 1),
(1, 0), and (1, 1). It is easy to see that the intersection of cylinders over
these triangles contains the point (0.5, 0.5, 0.5). However the point does not
belong to the upper ≤-closure of M.

Let U ⊆ RK be a compact convex upper subsemilattice. Its projection
onto any coordinate hyperplane is a compact convex upper subsemilattice
too. Let U1 ⊆ RK−1 be the projection of U onto the hyperplane correspond-
ing to the first K − 1 coordinates, i.e.,

U1 =
{(

x(1), x(2), . . . , x(K−1)
)
|(

x(1), x(2), . . . , x(K−1), x(k)
)
∈ U for some x(k)

}
. (9)

Define the function ϕ : U1 → R by

ϕ
(
x(1), x(2), . . . , x(K−1)

)
=

max
{

x(k) |
(
x(1), x(2), . . . , x(K−1), x(k)

)
∈ U

}
; (10)

this function parametrises the upper part of the boundary of U .

Proposition 27. For every compact convex upper subsemilattice U let the
set U1 and the function ϕ : U1 → R be defined by (9) and (10). Then ϕ has
the following properties:

1. ϕ is concave on U1;

2. ϕ is monotone, i.e., for all u, v ∈ U1 if u ≤ v then ϕ(u) ≤ ϕ(v);

3. ϕ achieves its maximum at the point

x∗ = maxU1 =
(
x

(1)
∗ , x

(2)
∗ , . . . , x

(K−1)
∗

)
,

where x
(i)
∗ is the maximum of the i-th coordinate of points in U1, i =

1, 2, . . . ,K − 1;

4. for every sequence u1, u2, . . . ∈ U1 converging to u0 such that u0 ≤ ui

for all i = 1, 2, . . . we have limi→∞ ϕ(ui) = ϕ(u0).
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Proof. Part 1 is trivial. To prove Part 2 consider the two points (u, ϕ(u))
and (v, ϕ(v)) ∈ U . Since U is an upper subsemilattice,

max((u, ϕ(u)), (v, ϕ(v))) = (v,max(ϕ(u), ϕ(v))) ∈ U

and the definition of ϕ implies that

ϕ(v) ≥ max(ϕ(u), ϕ(v)) ≥ ϕ(u) .

In order to prove Part 3 we first need to show that x∗ ∈ U1. Since U1 is
compact, the maximum of the i-th coordinate is achieved on some ui ∈ U
and since U is an upper subsemilattice, max(u1, u2, . . . , uK−1) = x∗ belongs
to U1. For every u ∈ U1 we have u ≤ x∗ and therefore ϕ(u) ≤ ϕ(x∗).

Let us prove Part 4. Part 2 implies that ϕ(u0) ≤ ϕ(ui) for all i = 1, 2, . . ..
If ϕ(ui) do not converge to ϕ(u0), there is δ > 0 such that ϕ(uik) ≥ ϕ(u0)+δ
for an infinite sequence i1 < i2 < i3 < . . .. However since U is compact,
the sequence (uik , ϕ(uik)), k = 1, 2, . . ., has a converging subsequence. It
must converge to (u0, r) ∈ U such that r ≥ ϕ(u0) + δ. This contradicts the
definition of ϕ(u0).

Remark 28. Part 4 states a weak form of continuity for ϕ. By a classical
theorem of convex analysis (e.g., Theorem 24 in [Egg58]) concavity of ϕ
implies its continuity on the relative interior of U1. However the authors
do not know if a form of continuity stronger than that claimed by Part 4
actually holds on the relative boundary of U1.

The following two simple axillary lemmas relate to closed (not necessarily
bounded) semilattices.

Lemma 29. Let U be a closed upper subsemilattice. Then for any bounded
M⊆ S the componentwise supremum supM belongs to S.

Proof. Let supM = u =
(
u(1), u(2), . . . , u(K)

)
. Take ε > 0. For every

k = 1, 2, . . . ,K there is xk ∈ M with the k-th coordinate greater than or
equal to u(k) − ε. The maximum x = max(x1, x2, . . . , xK) belongs to U and
‖x − u‖2 ≤ Kε2, where ‖ · ‖ is the Euclidean norm. Since U is closed, we
conclude that u ∈ U .

Lemma 30. Let U ⊆ RK be a closed upper subsemilattice and

ui =
(
u

(1)
i , u

(2)
i , . . . , u

(K)
i

)
,
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i = 1, 2, . . ., be a bounded sequence of points from U . Then the component-
wise upper limit

u =
(
u(1), u(2), . . . , u(K)

)
,

where u(k) = lim supi→∞ u
(k)
i , k = 1, 2, . . . ,K, belongs to S.

Proof. Take ε > 0 and let Mε be the set of all ui such that u
(k)
i ≤ u(k) + ε,

k = 1, 2, . . . ,K. It contains all but finitely many points from the sequence.
We have uε = supMε ≥ u. On the other hand,

uε ≤
(
u(1) + ε, u(2) + ε, . . . , u(K) + ε

)
and thus uε converges to u. By Lemma 29 uε belongs to U and since U is
closed, u ∈ U .

Remark 31. Lemma 30 does not hold for lower limits. Indeed, let U =
{(x, y) | x, y ≥ 0, x+y ≥ 1}. It is a closed upper sublattice. Let u2n = (0, 1)
and u2n−1 = (1, 0), n = 1, 2, . . .. The componentwise lower limit (0, 0) does
not belong to U .

5.2 Recalibration Lemma

The following lemma allows us to “optimise” the performance of a strategy
w.r.t. several games. We will call it the recalibration lemma.

Lemma 32. Let A1,A2, . . . ,AK (K ≥ 1) be prediction strategies for games
G1,G2 . . . , GK , respectively, with the same outcome space Ω of size M and
let ε > 0. Then for every finite string x ∈ Ω∗ there are distributions
p1, p2, . . . , pN ∈ PM and q = (q1, q2, . . . , qN ) ∈ PN (N = N(x, ε), pi =
pi(x, ε), i = 1, 2, . . . , N , and q = q(x, ε)) such that

• for all k = 1, 2, . . . ,K

N∑
i=1

qiHk(pi) ≤
LossGk

Ak
(x)

|x|
+ ε ,

where Hk is the generalised entropy w.r.t. Gk;

• for every weakly mixable game G there is a prediction strategy S and
a function f : N → R (S = SG,ε and f = fG,ε so they are independent
of x) such that f(n) = o(1) as n →∞ and

LossG
S(x)
|x|

≤
N∑

i=1

qiH(pi) + ε + f(|x|) ,
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where H is the generalised entropy w.r.t. G.

If all the games A1,A2, . . . ,AK and all the strategies G1,G2 . . . , GK are
(polynomial-time) computable, and G is (polynomial-time) computable and
(polynomial-time) computably very weakly mixable then S can be chosen to
be (polynomial-time) computable.

The idea behind the lemma can be described informally as follows. Con-
sider a predictor outputting, say, the likelihood of rain. Suppose that by
analysing its past performance we have found a pattern of the following
kind. Whenever the predictor outputs the value of 70%, it actually rains in
90% of cases. We can thus improve the predictor by recalibrating it: if we
see the prognosis of 70%, we replace it by 90%. Generally speaking, we may
observe that whenever a predictor outputs a prediction γ1, a more appropri-
ate choice would be γ2. By outputting γ1, the predictor signals us about a
specific state of the nature; however γ2 is a better prediction for this state.
The loss per element of the optimised strategy on outcomes preceded by γ1

is close to the generalised entropy w.r.t. some distribution and the overall
loss per element is their convex combination. This gives us the lower bound
from the first part of the lemma. To obtain the second part of the lemma
observe that we can use the data output by our predictor to predict other
seemingly unrelated things. Suppose that whenever the predictor outputs
the value of 70%, the stock market goes down in 60% of cases. We can make
use of this fact and construct a stock market prediction strategy.

Another interpretation of the lemma6 is as follows. Predictions of dis-
cretised strategies allow us to split a string into several (generally speaking,
not contiguous) substrings. The discretised strategies tell us nothing of the
behaviour of outcomes within the substrings so we can assume that inside
each substring the outcomes are i.i.d. (independent identically distributed)
and construct a new strategy exploiting this. The loss per element of the
new strategy will be a convex combination of entropies w.r.t. the distribu-
tions of outcomes from the substrings and this gives us the second part of
the lemma. By observing that the new strategy performs better or nearly
as well as the original strategies we get the first part of the lemma.

These ideas will be implemented as follows. Given a pool of prediction
strategies, we will discretise them and consider all possible mappings from
the tuples of their possible outputs to predictions from a discrete set. We
will then make use of weak mixability and merge the strategies generated
by all the mappings.

6Along the lines suggested by a reviewer.
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Proof. Let Ω =
{
ω(0), ω(1), . . . , ω(M−1)

}
. For every k = 1, 2, . . . ,K let Gk =

〈Ω,Γk, λk〉 and let Hk be the generalised entropy w.r.t. Gk; let G = 〈Ω,Γ, λ〉
be a weakly mixable game.

The first part of this proof is the construction of S. First let us perform
an ε-quantisation of Ak.

Lemma 33. For any G = 〈Ω,Γ, λ〉 and ε > 0 there is a finite set Γ(ε) such
that for any γ ∈ Γ there is γ∗ ∈ Γ(ε) such that λ(ω, γ∗) ≤ λ(ω, γ) + ε for
every ω ∈ Ω.

Proof of Lemma 33. Lemma 11 (which is Lemma 15 from [KV08]) implies
that it is sufficient to consider bounded loss functions λ. If λ is bounded,
the lemma follows from continuity of λ and compactness of Γ.

Lemma 57 provides an effective version of this statement.
Let Γ(ε) ⊆ Γ and Γ(ε)

k ⊆ Γk, k = 1, 2, . . . ,K, be such subsets. There
are strategies A

(ε)
k that output only predictions from Γ(ε)

k and such that
LossGk

A
(ε)
k

(x) ≤ LossGk
Ak

(x)+ε|x| for all x ∈ Ω∗, k = 1, 2, . . . ,K. By Lemma 57

if the games and strategies are (polynomial-time) computable, then A
(ε)
k can

be chosen to be (polynomial-time) computable.
The set Γε = Γ(ε)

1 × Γ(ε)
2 × . . . × Γ(ε)

K is finite. Let |Γε| = L. As we run
the strategies A

(ε)
1 ,A

(ε)
2 , . . . ,A

(ε)
K on the same sequence of outcomes, we can

say that on every step they collectively output one of the tuples γ ∈ Γε.
For a mapping σ : Γε → Γ(ε) consider a strategy Sσ that works as

follows. It runs A
(ε)
1 ,A

(ε)
2 , . . . ,A

(ε)
K and when they produce γ ∈ Γε it outputs

σ(γ). There are finitely many (
∣∣Γ(ε)

∣∣L, to be precise) such mappings σ
and strategies Sσ. Since G is weakly mixable, there is a strategy S that
performs as well as any of them up to small o in the string length. If G is
(polynomial-time) computably very weakly mixable, then S can be chosen
to be (polynomial-time) computable at the cost of suffering possible extra
loss not exceeding ε|x|.

The second part of the proof consists of analysing the properties of S

and obtaining the desired loss bounds.
For a finite sequence x of length n, let γ1, γ2, . . . , γN (N ≤ L and N ≤

|x|), be an enumeration (without repetitions) of all elements of Γε that
are output at least once as strategies Ak predict elements of x. Let n

(m)
j

(j = 1, 2, . . . , N and m = 0, 1, . . . ,M − 1) be the number of times when,
while predicting elements of x, the strategies Ak output the tuple γj on a step
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Table 1: Predictions and outcomes for a given sequence x

Predictions Number of ω(0)s . . . Number of ω(M−1)s
γ1 n

(0)
1 . . . n

(M−1)
1

γ2 n
(0)
2 . . . n

(M−1)
2

...
... . . .

...
γj n

(0)
j . . . n

(M−1)
j

...
... . . .

...
γN n

(0)
N . . . n

(M−1)
N

when the outcome ω(m) occurs. We get Table 1, where the j-th row contains
the numbers n

(m)
j . Note that

∑N
j=1 n

(m)
j = ]mx for all m = 0, 1, . . . ,M − 1.

Let us construct an auxiliary strategy Sx for the game G. The strategy
“knows” Table 1 and aims to predicts elements of x as well as it can on the
basis of this information. It runs the strategies A

(ε)
k , k = 1, 2, . . . ,K, and

then uses Table 1 to calibrate their output to predict x.
If on some step they output γj ∈ Γε, we know that we are on the j-th

line of the table. We can use this information to optimise our performance.
Let γ∗j be an element of Γ(ε) where the minimum

min
γ∈Γ(ε)

M−1∑
m=0

n
(m)
j λ(ω(m), γ) (11)

is attained. The strategy Sx outputs γ∗j each time A
(ε)
k output γj . If A

(ε)
k

output some γ ∈ Γε not in the table (this cannot happen while predicting
elements of x and therefore Sx is not particularly concerned), let Sx predict
some fixed element of Γ(ε), say, γ1.

Minimum (11) can be approximated using the generalised entropy H.
Line j of the table specified a distribution on Ω. Put p

(m)
j = n

(m)
j /

∑M−1
r=0 n

(r)
j

(since A
(ε)
k output γj at least once while predicting elements of x, the denom-

inator is not 0); the M -tuple pj =
(
p
(0)
j , p

(1)
j , . . . , p

(M−1)
j

)
is a distribution

on Ω. We have

M−1∑
m=0

n
(m)
j λk(ω(m), γ) =

(
M−1∑
m=0

n
(m)
j

)
M−1∑
m=0

p
(m)
j λk(ω(m), γ)
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and thus(
M−1∑
m=0

n
(m)
j

)
H(pj) ≤

M−1∑
m=0

n
(m)
j λk(ω(m), γ∗j ) ≤

(
M−1∑
m=0

n
(m)
j

)
(H(pj) + ε)

(12)
(the former inequality holds because H(pj) is the minimum of the expecta-
tion and the latter inequality holds because the prediction where H(pj) is
attained can be closely approximated by an element from Γ(ε)).

The total loss of Sx on x is LossG
Sx

(x) =
∑N

j=1

∑M−1
m=0 n

(m)
j λk(ω(m), γ∗j ).

Put qj =
(∑M−1

m=0 n
(m)
j

)
/n so that

∑N
j=1 qj = 1. Summing (12) over j yields

n
N∑

j=1

qjH(pj) ≤ LossG
Sx

(x) ≤ n
N∑

j=1

qjH(pj) + nε . (13)

To obtain the second part of the statement of the lemma, note that the
behaviour of Sx is identical to Sσ for some mapping σ : Γε → Γ(ε) and use
the second inequality in (13). For the (polynomial-time) computable case
we need to replace ε by ε/2 from the start.

To get the first part of the statement of the theorem consider Sx for the
game G = Gk. Both A

(ε)
k and Sx use predictions from Γ(ε)

k but Sx does it
in an optimal way on x. Therefore

LossGk
Sx

(x) ≤ LossGk

A
(ε)
k

(x) ≤ LossGk
Ak

(x) + |x|ε .

Combining this with the first inequality in (13) completes the proof.

5.3 Bounds for the Tuples of Complexities

The proofs in this subsection hold without changes for non-effective and
effective complexities.

5.3.1 Tuples of Lower Complexities Belong to the Closure of the
Entropy Hull

For every k = 1, 2, . . . ,K let Gk = 〈Ω,Γk, λk〉 and let Hk be the generalised
entropy w.r.t. Gk; let |Ω| = M and Ω =

{
ω(0), ω(1), . . . , ω(M−1)

}
. Let

ACk be an asymptotic complexity w.r.t. Gk, k = 1, 2, . . . ,K. We will start
show that the tuples of lower complexities belong to the ≤-closure of the
G1/G2/ . . . /GK-entropy hull.

The proof relies on Proposition 25.
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We start from the case K = 1. The G1-entropy hull coincides with its ≤-
closure and equals the interval [minp∈PM

H1(p),maxp∈PM
H1(p)]. Lemma 32

implies that for every ε > 0 there is a strategy S1 such that for every finite
sequence x we have

LossG1
S1

(x) ≤ |x| max
p∈PM

H1(p) + ε|x|+ o(|x|)

and therefore AC1(L) ≤ maxp∈PM
H1(p) for all languages L and complexities

AC1. On the other hand, by taking p = ei, i.e., the vector of all zeroes with
1 at the i-th position, we get

H1(ei) = min
γ∈Γ1

λ1(ω(i), γ)

and therefore minp∈PM
H1(p) ≤ λ1(ω, γ) for all ω ∈ Ω, γ ∈ Γ1. Hence for

every strategy S and every finite sequence x

LossG1
S (x) ≥ |x| min

p∈PM

H1(p)

and AC1(L) ≥ minp∈PM
H1(p) for all languages L and complexities AC1.

Now consider the case K = 2.
Let S be the ≤-closure of the G1/G2-entropy hull H and L be a language

of a type for which a lower complexity AC is defined. Our goal is to show
that the point

(AC1(L),AC2(L)) = s =
(
s(1), s(2)

)
belongs to S.

The projection S1 of S onto the first coordinate line is the ≤-closure
of the G1-entropy hull by Corollary 24. The case K = 1 considered above
implies that s1 ∈ S1.

Let ϕ : S1 → R parametrise the upper part of the boundary of S as
in (10). The sublattice S is an upper subsemilattice and Proposition 27 holds
for S, S1, and ϕ. We will show that s(2) ≤ ϕ

(
s(1)
)
. If s(1) = max(S1), then it

is sufficient to notice that s(2) ≤ maxs∈S1 ϕ(s) = ϕ(s1). Let s(1) < max(S1).
Let AC = AC be uniform complexity. The equality AC1(L) = s(1)

implies that for every ε > 0 there a strategy S1 w.r.t. G1 such that for
infinitely many positive integers n the inequality

LossG1
S1

(x)
n

≤ s(1) + ε

holds for all x ∈ L ∩ Ωn if L ⊆ Ω∗ or for all x that are prefixes of length
n of elements of L if L ⊆ Ω∞. If complexity is effective or polynomial,
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then S1 can be chosen to be computable or polynomial-time computable,
respectively.

Let AC = AC be non-uniform complexity. Now AC
1
(L) = s(1) implies

that for every x ∈ L there are infinitely many positive integers n such that
the inequality

LossG1
S1

(x|n)
n

≤ s(1) + ε

holds. Again, if complexity is effective or polynomial, then S1 can be chosen
to be computable or polynomial-time computable, respectively.

Each one of these cases can be reformulated as follows. For every ε > 0
there is a strategy S1 such that for all x from a certain infinite set L′ ⊆ Ω∗

the inequality
LossG1

S1
(x) ≤

(
s(1) + ε

)
|x| (14)

holds. The exact form of the set L′ depends on the type of complexity AC.
By Lemma 32 there is a strategy S2 (which can be chosen to be com-

putable or polynomial-time computable if S1 is) such that for every x ∈ L′

there is
v =

(
v(1), v(2)

)
∈ H ⊆ S

such that
LossG2

S2
(x) ≤ (v(2) + ε)|x|+ o(|x|)

and
v(1)|x| ≤ LossG1

S1
(x) + ε|x| ≤

(
s(1) + 2ε

)
|x| .

We have v(2) ≤ ϕ
(
v(1)
)
. Since ϕ is non-decreasing, ϕ

(
v(1)
)
≤ ϕ

(
s(1) + 2ε

)
(provided ε > 0 is sufficiently small for ϕ

(
s(1) + 2ε

)
to be defined). Thus

for every x ∈ L′ the inequality

LossG2
S2

(x) ≤
(
ϕ
(
s(1) + 2ε

)
+ ε
)
|x|+ o(|x|) (15)

holds. By Proposition 27 if we take a sequence of positive numbers εn

converging to 0, we get ϕ
(
s(1) + 2εn

)
→ ϕ

(
s(1)
)

as n →∞. Thus

s(2) = AC(L) ≤ ϕ(s1) . (16)

A similar statement holds if we swap G1 and G2. Inequality (16) implies
that there are a1, a2 ≥ 0 such that s + aiei ∈ S, i = 1, 2. But s = min(s +
a1e1, s + a2e2) and therefore s ∈ S.

Now consider an arbitrary K > 2. Let S be the ≤-closure of the
G1/G2/ . . . /GK-entropy hull H and L be a language of a type for which
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a lower complexity AC is defined. The proof for the case of two games can
be applied to any two games Gi and Gj with 1 ≤ i < j ≤ K. We see that
the tuple of complexities of L belongs to the cylinder over the ≤-closure of
the projection of S onto the coordinate plane corresponding to coordinates
i and j. By Proposition 25 the intersection of cylinders equals S.

5.3.2 Tuples of Upper Complexities Belong to the Upper Closure
of the Entropy Hull

In this subsection we show that the tuples of upper complexities belong to
the upper ≤-closure of the G1/G2/ . . . /GK-entropy hull.

Let U be the upper ≤-closure of the G1/G2/ . . . /GK-entropy hull H and
L be a language of a type for which an upper complexity AC is defined. We
need to show that the point

(AC1(L),AC2(L), . . . ,ACK(L)) = s =
(
s(1), s(2), . . . , s(K)

)
belongs to U . The proof is by induction in K.

The base case of K = 1 is identical to Section 5.3.1.
Now we will assume the desired result holds for K − 1 games and prove

it for K games, K ≥ 2.
Let us single out one coordinate of s, e.g., the last one and put s =(

s1, s
(K)
)
, where s1 ∈ RK−1. By the induction hypothesis, s1 belongs to the

upper ≤-closure of the G1/G2/ . . . /GK−1-entropy hull. Corollary 24 implies
that s1 belongs to the projection U1 of U onto the first K − 1 coordinates
hyperplane.

Let ϕ : U1 → R parametrises the upper part of the boundary of U as
in (10). We will show that s(K) ≤ ϕ(s1); see Figure 10 for an illustration
with K = 3 and U1 ⊆ R2.

If AC = AC is uniform complexity, then the equality ACk(L) = s(k)

implies that for every ε > 0 there a strategy Ak w.r.t. Gk such that for all
sufficiently large integers n the inequality

LossGk
Ak

(x)

n
≤ s(k) + ε

holds for all x ∈ L ∩ Ωn if L ⊆ Ω∗ or for all x that are prefixes of length n
of elements of L if L ⊆ Ω∞.

If AC = AC is non-uniform complexity then ACk(L) = s(k) implies that
for every x ∈ L there is a positive integer N such that for all n ≥ N the

35



inequality
LossGk

Ak
(x|n)

n
≤ s(k) + ε

holds. In both the cases if complexity is effective or polynomial, then Ak can
be chosen to be computable or polynomial-time computable, respectively.

The sets of finite strings for which the respective inequalities hold can be
intersected and the result is a set of the same type. Thus for every ε > 0 there
are strategies A1,A2, . . . ,AK−1 such that for all x from a certain infinite set
L′ ⊆ Ω∗ the inequalities

LossGk
Ak

(x) ≤
(
s(k) + ε

)
|x| (17)

hold for k = 1, 2, . . . ,K − 1. The exact form of the set L′ depends on the
type of complexity AC.

By Lemma 32 there is a strategy AK (which can be chosen to be com-
putable or polynomial-time computable if A1,A2, . . . ,AK−1 are) such that
for every x ∈ L′ there is

v =
(
v(1), v(2), . . . , v(K)

)
∈ H ⊆ U

(again let v =
(
v1, v

(K)
)
, where v1 ∈ RK−1) such that

LossGK
AK

(x) ≤ (v(K) + ε)|x|+ o(|x|)

and
v(k)|x| ≤ LossGk

Ak
(x) + ε|x| ≤

(
s(k) + 2ε

)
|x| ,

for k = 1, 2, . . . ,K − 1. We get

LossGK
AK

(x) ≤ (ϕ(v1) + ε)|x|+ o(|x|) (18)

and
v1 ≤

(
s(1) + 2ε, s(2) + 2ε, . . . , s(K−1) + 2ε

)
. (19)

Put

U (2ε) = U∩((
−∞, s(1) + 2ε

]
×
(
−∞, s(2) + 2ε

]
× . . .×

(
−∞, s(K−1) + 2ε

]
× R

)
;
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U1

s(1) + 2ε

s(2) + 2ε

(
s(1), s(2)

)
(
v
(1)
∗ , v

(2)
∗

)

Figure 10: This illustrates the inductive step in the proof of Section 5.3.1
in K − 1 = 2 dimensions. For the picture the point s1 =

(
s(1), s(2)

)
was

chosen on the boundary of U1 and the overall configuration was chosen so
that v∗ =

(
v

(1)
∗ , v

(2)
∗

)
does not coincide with

(
s(1) + 2ε, s(2) + 2ε

)
; these

arrangements demonstrate important special cases.

clearly, it is a compact convex sublattice. The set

U (2ε)
1 = U1∩((

−∞, s(1) + 2ε
]
×
(
−∞, s(2) + 2ε

]
× . . .×

(
−∞, s(K−1) + 2ε

])
is its projection onto the first K−1 coordinates hyperplane. The bounds (18)
and (19) imply that

ACK(L) ≤ max
v1∈U(2ε)

1

ϕ(v1) + ε .

By Proposition 27, ϕ achieves the maximum on U (2ε)
1 at

v∗ =
(
v

(1)
∗ , v

(2)
∗ , . . . , v

(K−1)
∗

)
= maxU (2ε)

1 .

The definition of U (2ε)
1 implies that s(k) ≤ v

(k)
∗ ≤ s(k) + 2ε for every k =

1, 2, . . . ,K − 1 and therefore v∗ converges to s as ε → 0. Proposition 27
implies that

s(K) = AC(L) ≤ ϕ(s1) . (20)

We can apply this argument to every dimension and thus there are ak ≥
0, k = 1, 2, . . . ,K, such that u+akek ∈ U . We now need a lemma providing
a kind of lower bound for u.
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Lemma 34. Let G1,G2, . . . ,GK be games with the same outcome space
Ω. For every upper7 asymptotic complexity AC and every suitable lan-
guage L there is w from the G1/G2/ . . . /GK-entropy hull such that w ≤
(AC1(L),AC2(L), . . . ,ACK(L)), where ACk is upper complexity w.r.t. Gk,
k = 1, 2, . . . ,K.

Proof. For every k = 1, 2, . . . ,K let Gk = 〈Ω,Γk, λk〉 and let Hk be the
generalised entropy w.r.t. Gk; let |Ω| = M and Ω =

{
ω(0), ω(1), . . . , ω(M−1)

}
.

For the entropy hull H define the set

S = {x ∈ RK | x ≥ v for some v ∈ H} .

Proving the lemma amounts to showing that

(AC1(L),AC2(L), . . . ,ACK(L)) ∈ S .

Note that the set S is closed. Indeed, for every sequence x1, x2, . . . ∈ S
there is a sequence v1, v2, . . . ∈ H such that vi ≤ xi, i = 1, 2, . . .. Since H
is compact, the sequence of vis has a converging subsequence and its limit
ensures that the limit of xi (if it exists) belongs to S.

Let Ak be a prediction strategy w.r.t. Gk, k = 1, 2, . . . ,K. By taking
p = ei, i.e., the vector of all zeroes except for 1 at the i-th position, we get

Hk(ei) = min
γ∈Γk

λk(ω(i), γ)

and therefore for every finite sequence x we get

LossGk
Ak

(x) ≥
M−1∑
i=0

]ix min
γ∈Γk

λk(ω(i), γ) =
M−1∑
i=0

]ixHk(ei) .

Thus(
LossG1

A1
(x)

|x|
, . . . ,

LossGK
AK

(x)
|x|

)
≥

M−1∑
i=0

]ix

|x|
(H1(ei), . . . ,HK(ei)) ,

i.e., the point on the left-hand side belongs to S.
Lemmas 29 and 30 imply that componentwise supremums of bounded

sets of points in S and componentwise upper limits of bounded sequences of
points from S belong to S.

The tuples of upper complexities of a language may be thus approxi-
mated by points from S to any degree of precision and therefore belong to
S.

7The previous version of this paper mistakenly claimed that this holds for all asymptotic
complexities.
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We will finally use the convexity of U to show that u ∈ U .

Lemma 35. Let M⊆ RK be convex and u ∈ RK be such that u+akek ∈M
for some ak ≥ 0 for all k = 1, 2, . . . ,K. If there is w ∈M such that w ≤ u,
then u ∈M.

Proof. By applying a shift we can ensure that u = 0 = (0, 0, . . . , 0). Then
w =

(
−w(1),−w(1), . . . ,−w(K)

)
, where w(k) ≥ 0, k = 1, 2, . . . ,K, and u +

akek = akek.
If a(k) = 0 for some k, there is nothing to prove, so suppose this is not

the case. Let qk = w(k)/ak, k = 1, 2, . . . ,K. We get −w +
∑K

k=1 qkakek = 0.
We can normalise the vector (1, q1, q2, . . . , qK) so that its components sum
up to 1. Thus u is a convex combination of points from M.

Remark 36. The proofs in this section and Section 5.3.1 are quite similar.
Note an important difference though. In Section 5.3.1 we link together pairs
of complexities. Inequality (14) cannot be extended to more than one game,
because the sets of strings x for different games do not necessarily have an
intersection of the required type (of, for that matter, any intersection at
all). This is due to the nature of lower limits. It is only Proposition 25
that allows us to make a step from cylinders over two-dimensional sets to
the closure. By contrast, (17) holds for K − 1 games because we deal with
upper limits there.

5.4 Filling in the Closures of The Entropy Hull

In this subsection we finish the proof of the main theorem by showing that
every point in a suitable closure of the entropy hull corresponds to a tuple
of complexities.

5.4.1 Building Blocks

Let |Ω| = M and Ω =
{
ω(0), ω(1), . . . , ω(M−1)

}
as usual. Take a distribution

p =
(
p(0), p(1), . . . , p(M−1)

)
on Ω. We will now define a “basic building block”

we will use to construct languages. Let I(p) ⊆ {0, 1, . . . ,M − 1} be the set
of indices of non-zero elements of p and Ω(p) =

{
ω(i) ∈ Ω | i ∈ I(p)

}
be the

support of the distribution p. Consider the set Ξ(p)
n ⊆

(
Ω(p)

)n
of sequences

x of length n with the following property. For each i ∈ I(p), the number
of ω(i)s among the elements of x is between the numbers npi − n3/4 and
npi + n3/4, i.e., npi − n3/4 ≤ ]ix ≤ npi + n3/4.

The following lemma summarises the properties of a building block.
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Lemma 37. Let p =
(
p(0), p(1), . . . , p(M−1)

)
∈ PM . For every game G with

the outcome space Ω of size M and the generalised entropy H there are
constants C = C(p, G) and D = D(p, G) such that:

1. there is a prediction strategy A such that

LossG
A(x) ≤ nH(p) + Cn3/4

for all x ∈ Ξ(p)
n and positive integer n; if the game G is (polynomial-

time) computable, then for every ε > 0 we can choose a (polynomial-
time) computable A achieving

LossG
A(x) ≤ nH(p) + εn + Cn3/4

for all x ∈ Ξ(p)
n and n;

2. if

n ≥ N0(p) = max
i∈I(p):p(i)<1

(
1(

p(i)
)4 ,

1(
1− p(i)

)4
)

+ 1 (21)

then for every prediction strategy A there is x ∈ Ξ(p)
n such that

LossG
A(x) ≥ nH(p)−Dne−2

√
n .

In the definition of N0 we assume max ∅ = 0 (this covers the case when
the distribution is concentrated on one element of Ω).

Proof. Let G = 〈Ω,Γ, λ〉.
We start with a degenerate case when pj = 1 for some j, i.e., p = ej .

Here I(p) = {j} and Ξ(p)
n =

{
ω(j)ω(j) . . . ω(j)

}
consists of one finite string.

On this string every strategy suffers loss greater than or equal to nH(p) and
a strategy that predicts γ∗ ∈ arg minγ∈Γ λ

(
ω(j), γ

)
suffers loss nH(p). We

can thus take C = D = 0.
For the rest of the proof assume that p(i) < 1 for all i = 0, 1, . . . ,M − 1.

Take γ∗ ∈ arg minγ∈Γ
∑

i∈I(p) p(i)λ
(
ω(j), γ

)
and consider the strategy A that

always predicts γ∗. The number C ′ = maxi∈I(p) λ
(
ω(j), γ∗

)
is finite because

H(p) is finite. If x ∈ Ξ(p)
n then by adding or removing no more than n3/4

elements equal to ω(i), i ∈ I(p), we can ensure that there are exactly np(i)

elements ω(i) in the string (imagine we can add or remove a fraction of the
element and say that in some position the string has a fraction of ω(i)). After
this operation the loss of A will be H(p)n. The loss of A on the original x
differs from this value by no more than C ′Mn3/4. Put C = C ′M .
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If the game is (polynomial-time) computable, one can replace γ∗ with
a (polynomial-time) computable approximation γ̄∗ suffering on every step
extra loss not exceeding ε. This proves the first part of the lemma.

The proof of the second part of the lemma uses a probabilistic argument.
Let ξ

(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
n be independent random variables that accept the values

ω(i) with probabilities p(i), i ∈ I(p).
We need the Chernoff bound in Hoeffding’s form (see Theorem 1 in

[Hoe63]).

Proposition 38 (Chernoff bound). If ξ1, ξ2, . . . , ξn are independent random
variables with finite first and second moments and such that 0 ≤ ξi ≤ 1 for
all i = 1, 2, . . . , n then

Pr{ξ − µ ≥ t} ≤ e−2nt2 ,

for all t ∈ (0, 1− µ), where ξ = (ξ1 + ξ2 + . . . + ξn)/n and µ = Eξ.

It is easy to see that if t ∈ (0,min(µ, 1− µ)) then the bound implies

Pr{|ξ − µ| ≥ t} ≤ 2e−2nt2 .

For every ξ
(p)
j and i ∈ I(p) we can consider the random variable ]iξ

(p)
j

equal to 1 if ξ
(p)
j = ω(i) and 0 otherwise. The expectation of this variable is

p(i) and ]iξ
(p)
1 , ]iξ

(p)
2 , . . . , ]iξ

(p)
n satisfy the conditions of the Chernoff bound.

Take t = n−1/4. If n ≥ N0 then 0 < t < mini∈I(p)

(
p(i), 1− p(i)

)
. For

every i ∈ I(p) the Chernoff bound implies

Pr
{∣∣∣]i

(
ξ
(p)
1 ξ

(p)
2 . . . , ξ(p)

n

)
− pin

∣∣∣ ≥ n3/4
}
≤ 2e−2

√
n . (22)

For a set S we denote by Prp(S) the probability that the string ξ
(p)
1 ξ

(p)
2 . . . ξ

(p)
n

belongs to S. We get Prp

(
Ωn \ Ξ(p)

n

)
≤ 2Me−2

√
n.

Consider a strategy A. First let us assume that λ is bounded and D′ =
maxω∈Ω,γ∈Γ λ(ω, γ). We get

H(p)n ≤ ELossA

(
ξ
(p)
1 ξ

(p)
2 . . . , ξ(p)

n

)
≤ Pr

p

(
Ξ(p)

n

)
max

x∈Ξ
(p)
n

LossA(x) + Pr
p

(
Ωn \ Ξ(p)

n

)
D′n

≤ max
x∈Ξ

(p)
n

LossA(x) + Pr
p

(
Ωn \ Ξ(p)

n

)
D′n
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(the first inequality follows from the definition of H(p) and to get the second
we can use upper bounds on the loss of A on Ξ(p)

n and Ωn \Ξ(p)
n ). Therefore

there is a sequence x ∈ Ξ(p)
n such that

LossA(x) ≥ H(p)n− Pr
p

(
Ωn \ Ξ(p)

n

)
D′n ≥ H(p)n− 2D′Mne−2

√
n

provided n ≥ N0. We can take D = 2D′M .
Now let λ be unbounded. Take λ(D) = min(λ, D), where D > 0 is a

constant, and let G(D) = 〈Ω,Γ, λ(D)〉. For every prediction strategy A and
every finite string x ∈ Ω∗ we have

LossG(D)

A (x) ≤ LossG
A(x)

because the λ(D)-loss is less than the λ-loss of the same prediction for all
outcomes.

If D′ = 2H(p)/ mini∈I(p) p(i) then

H(p) = min
γ∈Γ

M−1∑
i=0

p(i)λ
(
ω(i), γ

)
= min

γ∈Γ

M−1∑
i=0

p(i)λ(D′)
(
ω(i), γ

)
.

Indeed, let the latter minimum be less than H(p) and let it be achieved on
γ ∈ Γ. For all i ∈ I(p) we get

p(i)λ(D′)
(
ω(i), γ

)
< H(p)

and thus

λ(D′)
(
ω(i), γ

)
< H(p)/p(i) ≤ D′ .

Therefore λ(D′)
(
ω(i), γ

)
= λ

(
ω(i), γ

)
for all i ∈ I(p) and the same γ ensures

that the former minimum is also less than H(p).
Repeating the above argument for the bounded game G(D′) we conclude

that for every strategy A there is x ∈ Ξ(p)
n such that

LossG
A(x) ≥ LossG(D′)

A (x)

≥ H(p)n− 2D′Mne−2
√

n .

Again we can take D = 2D′M .
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Remark 39. We do not explicitly mention the dependency on M in C and
D; it comes in through p and G. We would like to warn the reader against
assuming that C and D do not depend on M in a family of similar games
parametrised by M . The values of C and D are however independent of n,
the length of the block.

We will now combine basic building blocks into a more advanced block.
Let p1, p2, . . . , pN be distributions on Ω and let q = (q1, q2, . . . , qN ) ∈ PN

(some qi may be zero; we will keep those for padding). Take a positive
integer n and put

n0 = 0 ,

n1 = bq1nc ,

n2 = b(q1 + q2)nc ,

...
nN−1 = b(q1 + q2 + . . . + qN−1)nc ,

nN = n .

If some qi = 0, then ni = ni−1. Define

Ξn(p1, p2, . . . , pN ; q1, q2, . . . , qN ) = Ξ(p1)
n1−n0

× Ξ(p2)
n2−n1

× . . .× Ξ(pN )
nN−nN−1

.

If qi = 0, then in this expression the ith term disappears.
The following counterpart of Lemma 37 holds.

Lemma 40. Let p1, p2, . . . , pN ∈ PM and q = (q1, q2, . . . , qN ) ∈ PN . For ev-
ery game G with the outcome space Ω of size M and the generalised entropy
H there are constants

C = C(p1, p2, . . . , pN ; q1, q2, . . . , qN ;G) ,

D = D(p1, p2, . . . , pN ; q1, q2, . . . , qN ;G)

such that:

1. there is a family of prediction strategies An, n = 1, 2, . . ., such that

LossG
An

(x) ≤ n

N∑
i=1

qiH(pi) + Cn3/4

for all x ∈ Ξn(p1, p2, . . . , pN ; q1, q2, . . . , qN ); if, moreover, the game G

is (polynomial-time) computable, then for every ε > 0 we can choose
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a uniformly computable family An (i.e., An(y) can be computed from
n and y (in time polynomial in n and |y|)) such that

LossG
An

(x) ≤ n
N∑

i=1

qiH(pi) + εn + Cn3/4

for all x ∈ Ξn(p1, p2, . . . , pN ; q1, q2, . . . , qN );

2. if

n ≥ N0(p1, p2, . . . , pN ; q1, q2, . . . , qN ) = max
i=1,2,...,N,qi>0

N0(pi) + 1
qi

,

(23)
where N0(p) is as in (21), then for every prediction strategy A there
is x ∈ Ξ(p)

n such that

LossG
A(x) ≥ n

N∑
i=1

qiH(pi)−D .

Proof. Combining the strategies from the first part of Lemma 37 we can
construct a strategy A that on elements from ni−1+1 to ni (provided qi > 0)
suffers loss less than or equal to

(ni − ni−1)H(pi) + C(pi,G)(ni − ni−1)3/4 ,

where n0 = 0 and C(pi,G) is the constant guaranteed by Lemma 37. Let
us use bounds ni − ni−1 ≤ qin + 1 (rounding-up can give the interval no
more than one “extra” point on the left and can only “remove” points on
the right) and (qin + 1)3/4 ≤ (n + 1)3/4 ≤ 23/4n3/4 ≤ 2n3/4. Taking C ′ =
maxi=1,2,...,N,qi>0 C(pi,G) leads to the bound

LossG
A(x) ≤ n

N∑
i=1

qiH(pi) +
N∑

i=1

H(pi) + 2C ′Nn3/4 .

for all x ∈ Ξn(p1, p2, . . . , pN ; q1, q2, . . . , qN ). We can take C =
∑N

i=1 H(pi)+
2C ′N .

Suppose that the game G is (polynomial-time) computable. Take ε > 0.
Let r1, r2, . . . , rN−1 be dyadic approximations of q1, q1 + q2, . . . , q1 + q2 +
. . . + qN−1 such that

∣∣∣ri −
∑i

j=1 qi

∣∣∣ < ε, i = 1, 2, . . . , N − 1. Let γ̄∗i be a
(polynomial-time) computable approximation to γ∗i defined by pi as in the
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proof of Lemma 37 so that γ̄∗i suffers on every step extra loss not exceeding
ε, i = 1, 2, . . . , N − 1.

We will now describe a uniform family of strategies An. Given n and y
we calculate brinc, i = 1, 2, . . . , N−1 with precision 0.5 (in time polynomial
in n). Taking the floor will give us an approximation to ni accurate to within
εn + 2. Then we compare the length |y| against the approximations of ni

and depending on the result output the suitable γ∗i . If

E = max
i=1,2,...,N ; j∈I(pi)

λ(ω(j), γ∗i ) ,

then

LossG
An

(x) ≤ n
N∑

i=1

qiH(pi)+
N∑

i=1

H(pi)+2C ′Nn3/4+εn+(E+ε)(εn+2)(N−1)

for all x ∈ Ξn(p1, p2, . . . , pN ; q1, q2, . . . , qN ). We can adjust ε and C to get
the desired inequality.

In order to prove the second part of the lemma first note that ni−ni−1 ≥
qin − 1 and n ≥ N0 guarantees that ni − ni−1 ≥ N0(pi) provided qi > 0.
Since N0(pi) ≥ 1, we also have qin ≥ 2. For an arbitrary strategy A we can
use the second part of Lemma 37 to construct a “hard to predict” string for
the interval from ni−1 +1 to ni where A suffers loss greater than or equal to

(ni − ni−1)H(pi)−D(pi,G)(ni − ni−1)e−2
√

ni−ni−1 .

Take D′ = maxi=1,2,...,N,qi>0 D(pi,G) and q = mini=1,2,...,N,qi>0 qi. For the
exponent we can use the bound

e−2
√

ni−ni−1 ≤ e−2
√

qn−1 ≤ e−2(
√

qn−1) = e2e−2
√

qn .

We can now put together those hard strings and obtain a string x ∈
Ξn(p1, p2, . . . , pN ; q1, q2, . . . , qN ) such that

LossG
A(x) ≥ n

N∑
i=1

qiH(pi)−
N∑

i=1

H(pi)−D′e2ne−2
√

qn .

The last term tends to zero as n →∞ and we can take

D = max

(
N∑

i=1

H(pi), max
n=N0,N0+1,...

D′e2ne−2
√

qn

)
.
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5.4.2 Regular Languages

Take a game G = 〈Ω,Γ, λ〉. We call a language L ⊆ Ω∞ regular if the quad-
rangle (8) collapses and all four complexities coincide: AC(L) = AC(L) =
AC(L) = AC(L).

Similarly, we will call a language L ⊆ Ω∞ effective regular if all its effec-
tive complexities coincide and polynomial-time regular if all its polynomial-
time complexities coincide.

Lemma 41. A nonempty language L ⊆ Ω∞ is regular w.r.t. a game G =
〈Ω,Γ, λ〉 and

AC(L) = AC(L) = AC(L) = AC(L) = c

if and only if

1. for every ε > 0 there is a prediction strategy A w.r.t. G such that

max
x∈L

LossG
A(x|n) ≤ (c + ε)n + o(n)

as n →∞;

2. for every prediction strategy A w.r.t. G there is x ∈ L such that

LossG
A(x|n) ≥ cn− o(n)

as n →∞.

The same criteria hold for effective and polynomial-time regularity provided
we restrict ourselves to computable or polynomial-time computable strategies.

The lemma immediately follows from the definitions of complexities.
We will now use Lemma 40 to construct a regular language of complexity∑N

i=1 qiH(pi). Take a positive integer

T0 ≥ N0(p1, p2, . . . , pN ; q1, q2, . . . , qN )

(see (23) for the definition) and put

L(T0; p1, p2, . . . , pN ; q1, q2, . . . , qN ) =
∞∏

k=1

ΞkT0(p1, p2, . . . , pN ; q1, q2, . . . , qN ) =

ΞT0(p1, p2, . . . , pN ; q1, q2, . . . , qN )× Ξ2T0(p1, p2, . . . , pN ; q1, q2, . . . , qN )×
Ξ3T0(p1, p2, . . . , pN ; q1, q2, . . . , qN )× . . . ∈ Ω∞ .
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Proposition 42. Let p1, p2, . . . , pN ∈ PM and q = (q1, q2, . . . , qN ) ∈ PN .
For every T0 ≥ N0(p1, p2, . . . , pN ; q1, q2, . . . , qN ) and for every game G with
the outcome space Ω of size M and the generalised entropy H the language
L(T0; p1, p2, . . . , pN ; q1, q2, . . . , qN ) is regular of complexity

∑N
i=1 qiH(pi).

If the game G is computable, then the language is effective regular of
complexity

∑N
i=1 qiH(pi). If the game G is polynomial-time computable,

then the language is polynomial-time regular of complexity
∑N

i=1 qiH(pi).

Proof. The proof is by combining Lemma 41 with Lemma 40.
Let L = L(T0; p1, p2, . . . , pN ; q1, q2, . . . , qN ). Fix a game G with the

outcome space Ω. Let C and D be the constants provided by Lemma 40.
For every positive integer n let k(n) be the number of the block Ξ where

n belongs, i.e.,
k(n) = maxPk−1

i=1 iT0+1≤n
k .

Respectively, let

l(n) =
k(n)−1∑

k=1

kT0 + 1 = T0
k(n)(k(n)− 1)

2
+ 1

u(n) =
k(n)∑
k=1

kT0 = T0
k(n)(k(n) + 1)

2

be the numbers of the first and the last elements of the block. It is easy to
see that k(n) →∞ and

l(n) ∼ n ∼ u(n) ∼ T0
(k(n))2

2
(24)

as n →∞.
In order to prove the first condition from Lemma 41 we will use the

first part of Lemma 40. Let the strategy A use the strategies provided by
Lemma 40 within the respective blocks. For every x ∈ L we have

LossG
A(x|n) ≤ u(n)

N∑
i=1

qiH(pi) + C

k(n)∑
k=1

(kT0)3/4 . (25)

For the second term on the right-hand side we have

C

k(n)∑
k=1

(kT0)3/4 ∼ 4
7
CT

3/4
0 (k(n))7/4 = o(n)
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as n →∞. The first condition of Lemma 41 follows.
If the game is (polynomial-time) computable, then for every ε > 0 we can

achieve (25) with an extra term εn on the right-hand side by a (polynomial-
time) computable strategy A.

In order to prove the second condition from Lemma 41 we will use the
second part of Lemma 40. For every strategy A there is a “hard” element
of ΞkT0 , k = 1, 2, . . .. By combining them we get x ∈ L such that

LossG
A(x|n) ≥ l(n)

N∑
i=1

qiH(pi)−D(k(n)− 1) .

Clearly, for the last term on the right-hand side we have

D(k(n)− 1) = o(n)

as n →∞. The second condition of Lemma 41 follows.

Proposition 43. Let L1, L2, . . . , Lk ⊆ Ω∞ be regular languages of com-
plexities c1, c2, . . . , cK w.r.t. a game G with the outcome space Ω. If G is
weakly mixable, then the union L = L1 ∪ L2 ∪ . . . LK is a regular language
of complexity c = max(c1, c2, . . . , cK). If G is computably very weakly mix-
able, the same holds for effective regular languages; if G is polynomial-time
computably very weakly mixable, the same holds for polynomial-time regular
languages.

Proof. The proof is by Lemma 41. For every ε > 0 and i = 1, 2, . . . ,K there
is a ((polynomial-time) computable) strategy Ai such that

max
x∈Li

LossG
Ai

(x|n) ≤ n(ci + ε) + o(n)

as n →∞. Weak mixability of G implies that there is a strategy A merging
A1,A2, . . . ,AK and achieving

max
x∈L

LossG
A(x|n) ≤ n(c + ε) + o(n) .

If G is (polynomial-time) computably very weakly mixable, the strategy A

can be chosen to be (polynomial-time) computable at the cost of an extra
εn on the right-hand side.

This gives us the first condition of Lemma 41.
Let the maximum of ci be achieved on some j, i.e., c = cj . For every

((polynomial-time) computable) strategy A w.r.t. G there is x ∈ Lj ⊆ L
such that

LossG
A(x|n) ≥ nc− o(n)
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as n →∞. This gives us the second condition of Lemma 41 and completes
the proof.

Corollary 44. Let G1,G2, . . . ,GK be weakly mixable games with the out-
come space Ω. Then for every point u =

(
u(1), u(2), . . . , u(K)

)
from the upper

≤-closure of the G1/G2/ . . . /GK-entropy hull there is a language L ⊆ Ω∞

such that L is regular of complexity u(k) w.r.t. Gk, k = 1, 2, . . . ,K. If the
games are computable and computably very weakly mixable, the language can
be taken to be effective regular; if the games are polynomial-time computable
and polynomial-time computably very weakly mixable, the language can be
taken to be polynomial-time regular.

We have constructed the languages filling in the upper ≤-closure of the
entropy hull.

5.4.3 Semiregular Languages

It remains to fill in the lower ≤-closure. We cannot use regular languages
for obvious reasons and we need to relax the definition.

For a game G = 〈Ω,Γ, λ〉 we call a language L ⊆ Ω∞ lower semiregular
if its lower complexities coincide, AC(L) = AC(L). Similarly, we call L
effective lower semiregular if its lower effective complexities coincide and
lower polynomial-time semiregular if its lower polynomial-time complexities
coincide.

Lemma 45. A nonempty language L ⊆ Ω∞ is lower semiregular w.r.t. a
game G = 〈Ω,Γ, λ〉 and

AC(L) = AC(L) = c

if and only if

1. for every ε > 0 there is a prediction strategy A w.r.t. G and a sequence
n1 < n2 < . . . such that

max
x∈L

LossG
A(x|nk

) ≤ (c + ε)nk + o(nk)

as n →∞;

2. for every prediction strategy A w.r.t. G there is x ∈ L such that

LossG
A(x|n) ≥ cn− o(n)

as n →∞.
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The same criteria hold for effective and polynomial-time regularity provided
we restrict ourselves to computable or polynomial-time computable strategies.

In order to fill in the ≤-closure, we will use the representation from
Corollary 18.

Let j = 1, 2, . . . , J , r = 1, 2, . . . , R, s = 1, 2, . . . , S. Suppose that we
have JRS distributions pj,r,s ∈ PM , and JR distributions

q(j,r) =
(
q
(j,r)
1 , q

(j,r)
2 , . . . , q

(j,r)
S

)
∈ PS .

We will construct a lower semiregular language of complexity

c = min
j

max
r

∑
s

q(j,r)
s H(pj,r,s) .

Let

T0 = max
j,r

N0

(
pj,r,1, pj,r,2, . . . , pj,r,S ; q(j,r)

1 , q
(j,r)
2 , . . . , q

(j,r)
S

)
;

put
Lj,r = L

(
T0; pj,r,1, pj,r,2, . . . , pj,r,S ; q(j,r)

1 , q
(j,r)
2 , . . . , q

(j,r)
S

)
.

By Proposition 42 for every G with asymptotic complexity H this is a regular
language of complexity

∑
s q

(j,r)
s H(pj,r,s). By Proposition 43, if the game G

is weakly mixable, then Lj =
⋃

r Lj,r is a regular language of complexity
cj = maxr

∑
s q

(j,r)
s H(pj,r,s).

We will now define a language L ⊆ Ω∞ by combining the languages
Lj . We will “paint” the sequence 1, 2, 3, . . . using colours 1, 2, . . . , J . The
set L consists of all sequences x with the following property. For every j =
1, 2, . . . , J , if we remove from x all elements standing in positions not painted
in j and close the gaps by shifting what remains toward the beginning, we
get a sequence from Lj .

The languages Lj consist of blocks of size kT0, k = 1, 2, . . .. The colouring
will be done in such a way that each block will remain contiguous. The
language L will not necessarily be a Cartesian product of blocks because
each Lj is not necessarily a Cartesian product. However each Lj is a union
of Cartesian products and L will also be a union of Cartesian products.

Now let us describe the colouring. Take a sequence kn, n = 1, 2, . . ., such
that kn−1 = o(kn), e.g., kn = n!. We paint as much of the beginning of the
sequence 1, 2, . . . using colour 1 so as to fit k1 initial blocks from L1. Then
we paint as much of what remains using colour 2 so as to fit k2 − k1 initial
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blocks from L2; then we paint as much of what remains using colour 3 so
as to fit k3 − k2 initial blocks from L3 etc. After painting in J enough to fit
kJ − kJ−1 initial blocks from LJ , we again use colour 1 and paint enough of
what remains to fit kJ+1− kJ blocks from L1 following those we already fit.
Then the construction process repeats itself.

Proposition 46. For all JRS distributions pj,r,s ∈ PM and JR distribu-
tions

q(j,r) =
(
q
(j,r)
1 , q

(j,r)
2 , . . . , q

(j,r)
S

)
∈ PS

if G is a weakly mixable game with the outcome space Ω of size M , then the
language L constructed above is lower semiregular of complexity

c = min
j

max
r

∑
s

q(j,r)
s H(pj,r,s) .

If G is computable and computably very weakly mixable, then L is effective
lower semiregular of complexity c; if G is polynomial-time computable and
polynomial-time computably very weakly mixable, then L is polynomial-time
lower semiregular of complexity c.

Proof. The proof is by Lemma 45.
Let cj = maxr

∑
s q

(j,r)
s H(pj,r,s). Fix j to a value such that cj = c =

mini=1,2,...,J ci. For the language Lj we have a strategy A such that

max
x∈Lj

LossG
A(x|n) ≤ (c + ε)n + o(n) (26)

as n → ∞. We can turn the strategy A into a strategy for predicting
sequences from L. Let S follow A on positions from blocks from Lj and
output some minimax prediction γ∗ such that λ(ω, γ∗) ≤ A < ∞ for all
ω ∈ Ω otherwise.

Let n be such that at the nth step in the construction of L we took
kn − kn−1 blocks from Lj . Let m be the number of the position in L
where the last of these blocks finishes. We will obtain an upper bound
on maxx∈L LossG

S(x|m).
Let x ∈ L. The first m positions in x include at least kn − kn−1 initial

blocks from Lj . Their total length does not exceed m, i.e.,

m ≥
kn−kn−1∑

k=1

kT0 = T0
(kn − kn−1)(kn − kn−1 + 1)

2
. (27)

We can use (26) to upper bound the loss of S on elements from these blocks.
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The number m has been chosen to ensure that elements of x painted
differently make little contribution to the loss. Of every other language Li,
i 6= j, the interval from 1 to m includes no more than kn−1 blocks. In
total their length does not exceed (J − 1)T0kn−1(kn−1 + 1)/2 and the loss
of S on each element of each of those blocks does not exceed A. Combining
kn−1 = o(kn) with (27), we get

1
m

(J − 1)T0
kn−1(kn−1 + 1)

2
≤ (J − 1)

kn−1(kn−1 + 1)
(kn − kn−1)(kn − kn−1 + 1)

= o(1)

and

max
x∈L

LossG
S(x|m) ≤ (c + ε)m + o(m) + A(J − 1)T0

kn−1(kn−1 + 1)
2

≤ (c + ε)m + o(m)

as n →∞.
This holds for infinitely many m from the sequence k1, k2, . . . because we

took blocks from Lj infinitely many times in the construction process.
If G has efficiency properties, the strategy A can be chosen to be efficient

and the resulting S is efficient. In order to compute S we need to be able
to figure out whether the current position n is in the area painted in colour
j. This can be done in time polynomial in j. Indeed, n! can calculated in
time polynomial in n by Part 2 of Corollary 51.

Let us turn to the second condition of Lemma 45. Take a positive integer
n. Position n belongs to a block from some language Lj . Let k(n) be the
number of this block in Lj and l(n) and u(n) be the numbers of the first
and the last elements in the block (in L). We get

u(n)
l(n)

=
l(n) + T0k(n)

l(n)
= 1 +

T0k(n)
l(n)

→ 1

as n → ∞ because l(n) ≥ T0k(n)(k(n) − 1)/2 + 1. Therefore we get an
equivalence similar to (24):

l(n) ∼ n ∼ u(n)

as n →∞.
Take a prediction strategy A. We need to find a “hard” sequence in L.

By construction for every Lj there is a regular language Lj,rj ⊆ Lj that
has the same complexity as Lj and that is an infinite Cartesian product of
Ξs. We can construct the hard sequence by induction concatenating hard
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strings existing by Lemma 40 in blocks of Lj,rj (note that we cannot choose
hard string independently: we do not know how A will behave on a block
until we have constructed all preceding elements).

Let D be the maximum of D’s defined by Lemma 40 (we get one for
each distribution qj,rj ). We get

LossG
A(x|n) ≥ cl(n)−Db(n) ,

where b(n) is the number of blocks from all languages in the interval from 1
to n.

If k0T0 is the length of a longest block and it belongs to a language Li,
then this block is preceded by blocks of length T0, 2T0, . . . , (k0 − 1)T0 from
Li and their total length is T0k0(k0 + 1)/2. It does not exceed l(n) and
therefore

T0k
2
0

2
≤ T0

k0(k0 + 1)
2

≤ l(n) .

From each language Li there are no more than k0 blocks in the interval, i.e.,

b(n) ≤ k0J ≤ J

√
2l(n)
T0

= o(n) (28)

as n →∞.
The lemma follows.

Corollary 18 implies the following.

Corollary 47. Let G1,G2, . . . ,GK be weakly mixable games with the same
outcome space Ω. Then for every point s =

(
s(1), s(2), . . . , s(K)

)
from the

≤-closure of the G1/G2/ . . . /GK-entropy hull there is a language L ⊆ Ω∞

such that L is lower semiregular of lower complexity s(k) w.r.t. Gk, k =
1, 2, . . . ,K. If the games are computable and computably very weakly mix-
able, the language can be taken to be effective lower semiregular; if the games
are polynomial-time computable and polynomial-time computably very weakly
mixable, the language can be taken to be polynomial-time lower semiregular.

6 Predictability and Dimension

In this section we discuss an application of the main theorem.
We reproduce the definitions of predictability and dimension from [FL05]

and show how they can be reinterpreted in terms of asymptotic complexities.
Then we apply the main theorem to describe the set of pairs of predictabil-
ities and dimensions for all non-empty languages L ⊆ Ω∞.

We will be using our notation rather than that from [FL05].
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6.1 Non-effective Case

Consider the outcome space Ω = {ω(0), ω(1), . . . , ω(M−1)} of size M and the
prediction space

PM =

{(
p(0), p(1), . . . , p(M−1)

)
∈ [0, 1]M |

M−1∑
i=0

p(i) = 1

}
of all distributions on Ω.

The success rate of a strategy A : Ω∗ → PM is defined as follows. Let
Ai(x) be the i-th component (i = 0, 1, . . . ,M − 1) of the prediction output
by A on a finite sequence x ∈ Ω∗ of previous outcomes. Then for every finite
sequence y = ω(i1), ω(i2), . . . , ω(in) the success rate is given by

A+(y) =
1
n

n∑
j=1

Aij

(
ω(i1), ω(i2), . . . , ω(ij−1)

)
.

In other terms, the success of a prediction
(
p(0), p(1), . . . , p(M−1)

)
given an

outcome ω(i) is p(i) and the success rate of a prediction strategy on a finite
sequence is the cumulative success per element.

If x ∈ Ω∞ is an infinite sequence, then the success rate is defined as
A+(x) = lim supn→∞ A+(x|n). The worst-case success rate on a language
L ⊆ Ω∞ is A+(L) = infx∈L A+(x). The predictability of a language is the
supremum of success rates over strategies, i.e.,

pred(L) = sup
A

A+(L) = sup
A

inf
x∈L

lim sup
n→∞

A+(x|n) . (29)

We will now reinterpret the notion of predictability in terms of games and
losses. Let the multidimensional absolute-loss game be Gabs = 〈Ω, PM , λabs〉,
where

λabs

(
ω(i),

(
p(0), p(1), . . . , p(M−1)

))
= 1− p(i) ,

i = 0, 1, . . . ,M−1. For every finite sequence x ∈ Ω∗ the success rate and the
loss of a strategy are related through the equality A+(x) = 1− 1

n LossA(x)
and therefore for every language L ⊆ Ω∞ we get pred(L) = 1 − AC

abs
(L),

where AC
abs

(L) is lower non-uniform complexity w.r.t. the game.
Let us move on to the concept of dimension. An s-gale is a function

d : Ω∗ → [0,+∞) such that for every finite sequence y ∈ Ω∗ the equal-
ity d(y) = M−s

∑
ω∈Ω d(yω) holds. An s-gale succeeds on x ∈ Ω∞ if

lim supn→∞ d(x|n) = +∞. The dimension of a non-empty language L ⊆ Ω∞

is given by dim(L) = inf G(L), where

G(L) = {s | there is an s-gale that succeeds on all x ∈ L} .
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The definition of G can be restated as follows. A 0-gale is a function
d0 : Ω∗ → [0,+∞] such that for every y ∈ Ω∗ we have d0(y) =

∑
ω∈Ω d0(yω).

Some d is an s-gale if and only if d(y) = M s|y|d0(y) for all y ∈ Ω∗, where
d0 is a 0-gale. We will say that a 0-gale d0 s-succeeds on x ∈ Ω∞ if
lim supn→∞ d0(x|n)M sn = +∞. Clearly, d(x|n) = M snd0(x|n) succeeds
on x ∈ Ω∞ if and only if d0 s-succeeds on x. Thus

G(L) = {s | there is an 0-gale that s-succeeds on all x ∈ L} .

Note that a 0-gale d0(x) = 1/M |x| (1 + ε)-succeeds on every x ∈ Ω∞

for every ε > 0. On the other hand, for every 0-gale d0 and x ∈ Ω∞ the
sequence d0(x|n), n = 1, 2, . . . is nondecreasing and thus can be bounded
from above by a constant. Therefore d0 cannot s-succeed on x for s ≤ 0.
Hence for all L ⊆ Ω∞ we get 0 < dim(L) ≤ 1.

Let us give a game interpretation8. The multidimensional logarithmic
game is Glog = 〈Ω, PM , λlog〉, where λlog

(
ω(i),

(
p(0), p(1), . . . , p(M−1)

))
=

− logM p(i). We will now relate 0-gales to losses of strategies and dimen-
sion to asymptotic complexity. For every strategy A the function d0(y) =
M−LossA(y) is a 0-gale. Indeed, let

A(y) =
(
p(0), p(1), . . . , p(M−1)

)
.

for some finite string y ∈ Ω∗. Then∑
ω∈Ω

d0(yω) = M−LossA(y)
M−1∑
i=0

p(i) = M−LossA(y) = d0(y) .

Let lim infn→∞ LossA(x|n)/n = s for some infinite string x ∈ Ω∞. Then for
every ε > 0 there are infinitely many n ∈ N such that LossA(x|n)/n ≤ s+ ε,
i.e., M−LossA(x|n) ≥ M−(s+ε)n and M−LossA(x|n)M (s+2ε)n ≥ M εn → +∞ as
n → ∞. Thus d0 (s + 2ε)-succeeds on x and for every language L ⊆ Ω∞

we have dim(L) ≤ AC
log

(L), where AC
log

is lower non-uniform complexity
w.r.t. the multidimensional logarithmic game.

Now let d0 be a 0-gale. The function d̃0 : Ω∗ → [0,+∞) defined by

d̃0(y) = d0(y) +
1

M |y| (30)

is a 0-gale. For every s ≤ 1 and infinite sequence x ∈ Ω∞ it s-succeeds on
x if and only if d0 succeeds on x. (Recall that for every language L ⊆ Ω∞

we have dim(L) ≤ 1.)
8As pointed out by a reviewer, this argument essentially reproduces Theorem 3.1

from [Hit03].
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For every finite string y ∈ Ω∗ the inequality d̃0(x) > 0 holds and
we can define numbers p(i) = d̃0

(
yω(i)

)
/d̃0(y), i = 0, 1, . . . ,M − 1, such

that p(i) ∈ [0, 1] and
∑M−1

i=0 p(i) = 1. Let A be the strategy outputting
p =

(
p(0), p(1), . . . , p(M−1)

)
on y ∈ Ω∞. We get d̃0(y) = M−LossA(|y|) and

LossA(y) = − logM d̃0(y).
If d̃0 s-succeeds on an infinite string x ∈ Ω∞, then there is a sequence of

positive integers n1 < n2 < . . . such that d̃0(x|nk
)M snk → +∞ as k → ∞.

Taking the logarithm to the base M yields LossA(x|nk
) − snk → −∞ and

from some k = k0 on LossA(x|nk
) − snk ≤ 0, i.e., LossA(x|nk

)/nk ≤ s.
Thus lim infn→∞ LossA(x|n) ≤ s and for every language L ⊆ Ω∞ we have
dim(L) ≥ AC

log
(L). Hence dim(L) = AC

log
(L).

6.2 Effective Versions

In this subsection we consider the effective and polynomial-time counterparts
of predictability and dimension.

The effective and polynomial-time predictability predE and predP are
defined by (29), where the supremums are restricted to computable and
polynomial-time computable strategies, respectively. It is easy to see that
predE = 1 − ACE

abs
and predP = 1− ACP

abs
, where ACE

abs
and ACP

abs
are effective and polynomial-time non-uniform lower complexities w.r.t. the
multidimensional absolute-loss game.

The effective and polynomial-time dimensions dimE and dimP are de-
fined in the same way as dim, except that computable and polynomial-time
computable gales are considered.

Let us establish the equality of these functions and corresponding com-
plexities. The 0-gale d0(y) = M−LossA(y) equals the product of relevant
components of predictions output by the strategy A on substrings of y.
Clearly, if A is computable, then d0 is computable. By Part 2 of Corollary 51
if A is polynomial-time computable, then d0 is polynomial-time computable.

If a 0-gale d0 is (polynomial-time) computable, then the 0-gale d̃0 de-
fined by (30) is also (polynomial-time) computable. Indeed, the function
y → 1/M |y| is polynomial-time computable by Part 2 of Corollary 51 and
the sum is trivially computable and polynomial-time computable by Part 1
of Corollary 51. The ratio y → d̃0(yω)/d̃0(y) is computable for every ω ∈ Ω
because d̃0(y) > 0 and polynomial-time computable by Part 4 of Corol-
lary 51 because d̃0(y) ≥ 1/M |y|. Thus if d0 is (polynomial-time) com-
putable then the strategy A predicting p =

(
p(0), p(1), . . . , p(M−1)

)
, where

p(i) = d̃0

(
yω(i)

)
/d̃0(y), i = 0, 1, . . . ,M −1, on input y is (polynomial-time)
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computable.
Repeating the argument from the previous subsection, we conclude that

dimE = ACE
log

and dimP = ACP
log

, where ACE
log

and ACP
log

are effective
and polynomial-time non-uniform lower complexities w.r.t. the multidimen-
sional logarithmic game.
Remark 48. If follows from Proposition 63 and Lemmas 55 and 60 that
the non-effective, effective, and polynomial-time versions of complexities
ACabs and AClog do not coincide. Therefore non-effective, effective, and
polynomial-time versions of predictability and dimension differ. The values
dim(L), dimE(L), and dimP(L) do not necessarily coincide and the values
pred(L), predE(L), and predP(L) do not necessarily coincide.

6.3 Computability and Mixability of the Games

In order to apply Theorem 6 we need to check that its requirements hold.
The multidimensional absolute-loss game is polynomial-time computable.
Indeed, polynomial-time computable numbers are dense in PM and the
function e−λabs(p,ω(i)) = e−(1−p(i)), where p =

(
p(0), p(1), . . . , p(M−1)

)
, is

polynomial-time computable.
In order to establish the polynomial-time computability of the multidi-

mensional logarithmic game, we need to show that the function

e−λlog(p,ω(i)) = elogM p(i)
=
(
p(i)
)1/ ln M

is polynomial-time computable.

Lemma 49. For every polynomial-time computable α > 0 the function x →
xα is polynomial-time computable for x ∈ [0, 1].

The proof of the lemma is given in Appendix A.2.
It follows from the lemma that the multidimensional logarithmic game

is polynomial-time computable.
Note that the simplex PM is convex and both λabs and λlog are convex

in the second argument. Therefore the multidimensional absolute-loss and
logarithmic games are mixable. Proposition 3 implies that both the games
are computably very weakly mixable and polynomial-time computably very
weakly mixable.

6.4 Applying the Main Theorem

Theorem 6 can be used to establish relations between dim and pred and
between their effective counterparts.
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We need to calculate the generalised entropies for the games. Let p =(
p(0), p(1), . . . , p(M−1)

)
∈ PM . For the multidimensional absolute-loss game

we have

Habs(p) = min
γ=(γ(0),γ(1),...,γ(M−1))∈PM

M−1∑
i=0

p(i)
(
1− γ(i)

)
= 1− max

γ=(γ(0),γ(1),...,γ(M−1))∈PM

M−1∑
i=0

p(i)γ(i) .

The maximum of a linear function must be achieved at one of the vertices
of the simplex, i.e., points of the form (0, . . . , 0, 1, 0, . . . , 0) with exactly one
1. Hence

Habs(p) = 1− max
i=0,1,...,M−1

p(i) .

For the multidimensional logarithmic game we have

Hlog(p) = min
γ=(γ(0),γ(1),...,γ(M−1))∈PM

(
−

M−1∑
i=0

p(i) logM γ(i)

)
.

The expression that should be minimised is convex in γ. At the point γ = p
its gradient is orthogonal to the hyperplane of the simplex and therefore
γ = p is the minimum. We get

Hlog(p) = −
M−1∑
i=0

p(i) logM p(i) .

By considering the Hessian of Hlog(p) one can check that Hlog(p) is concave
on PM .

Let us construct the Gabs/Glog-entropy set and hull. The entropy Habs(p)
ranges from 0 to 1 − 1/M since the minimal value of maxi=0,1,...,M−1 p(i) is
1/M . For a ∈ [0, 1− 1/M ] take

l(a) = min
p∈PM :Habs(p)=a

Hlog(p)

u(a) = max
p∈PM :Habs(p)=a

Hlog(p) .

The Gabs/Glog-entropy set is bounded by the graphs of l(a) and u(a).
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Let us take a ∈ [0, 1− 1/M ] and calculate u(a) and l(a). We can write

Ba = {p ∈ PM |Habs(p) = a}

=
{(

p(0), p(1), . . . , p(M−1)
)
∈ PM | max

i=0,1,...,M−1
p(i) = 1− a

}
=

M−1⋃
i=0

Bi,a ,

where

Bi,a =
{(

p(0), p(1), . . . , p(M−1)
)
∈ PM |

p(i) = 1− a and p(j) ≤ 1− a, j = 1, 2, . . . ,M − 1
}

.

By symmetry the maximum of Hlog(p) on Ba equals the maximum on one
of these sets. The set

BM−1,a =
{(

p(0), p(1), . . . , p(M−2), 1− a
)
|

p(i) ∈ [0, 1− a], i = 0, 1, . . . ,M − 2,

M−2∑
i=0

p(i) = a

}
.

can be thought as a part of the “scaled down” simplex in RM−1. The func-
tion Hlog is concave on BM−1,a and by the gradient argument its maximum
is achieved at (a/(M − 1), . . . , a/(M − 1), 1− a). Thus

u(a) = −(1− a) logM (1− a)− a logM

a

M − 1
. (31)

In order to evaluate l(a) consider the set Pa ⊇ Ba defined as

Pa =
{(

p(0), p(1), . . . , p(M−1)
)
∈ PM |p(i) ≤ 1− a, i = 0, 1, . . . ,M − 1

}
=
{(

p(0), p(1), . . . , p(M−1)
)
|

p(i) ∈ [0, 1− a], i = 0, 1, . . . ,M − 1,

M−1∑
i=0

p(i) = 1
}

.

This is a convex polygon; it is the intersection of the hyperplane
∑M−1

i=0 p(i) =
1 with subspaces p(i) ≥ 0 and p(i) ≤ 1− a, i = 0, 1, . . . ,M − 1. Since Hlog is
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concave, it achieves the minimum at a vertex of the polygon. Let us work out
the coordinates of a vertex. It is the intersection of M hyperplanes specified
by equations from the list p(i) = 0, p(i) = 1 − a (i = 0, 1, . . . ,M − 1), and∑M−1

i=0 p(i) = 1. One hyperplane must be
∑M−1

i=0 p(i) = 1 as Pa is its subset.
The other M − 1 hyperplanes are of the type p(i) = 0 or p(i) = 1 − a and
each of them ensures that one of the coordinates of the vertex is 0 or 1− a.
The coordinates or a vertex thus consist of M − 1 zeroes or values (1 − a)
and a “remainder” r ∈ [0, 1−a]. This is only possible if there are b1/(1−a)c
values (1−a) and r = 1− (1−a)b1/(1−a)c. All these vertices belong to the
original Ba. Subject to rearranging the coordinates there is only one vertex
and the value of Hlog there provides the minimum:

l(a) = −b1/(1− a)c(1− a) logM (1− a)− r logM r ,

where r = 1− (1− a)b1/(1− a)c. We get r = 0 if and only if 1/(1− a) is an
integer, i.e., a = 1− 1/k, k = 1, 2, . . . ,M . At those points we get

l(1− 1/k) = logM k .

Let us construct the Gabs/Glog-entropy hull. The function u(a) is con-
cave on [0, 1 − 1/M ] and therefore it represents the upper bound of the
hull. The function l(a) is concave on each [1 − 1/k, 1 − 1/(k + 1)], k =
1, 2, . . . ,M − 1. Therefore the lower bound of the hull is represented by the
function h(a) that coincides with l(a) at the points a = 1− 1/k and equals
a convex combination between two adjacent points:

h(a) =


logM k, if a = 1− 1/k ,

k(k + 1)
[(

a−
(
1− 1

k

))
logM (k + 1)+((

1− 1
k+1

)
− a
)

logM k

]
, if a ∈

(
1− 1

k , 1− 1
k+1

) ,

(32)
where k = 1, 2, . . . ,M .

We obtain the following corollary from the main theorem.

Corollary 50. For every Ω = {1, 2, . . . ,M − 1} the sets

{(dim(L),pred(L)) | L ⊆ Ω∞}
{(dimE(L),predE(L)) | L ⊆ Ω∞}
{(dimP(L),predP(L)) | L ⊆ Ω∞}
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Figure 11: The graph of the
Gabs/Glog-entropy hull H; the
Gabs/Glog-entropy set inside it is
in darker grey.
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Figure 12: The set of pairs
(dim(L),pred(L)).

coincide with the set{
(x, y) | x ∈

[
1
M

, 1
]

, h(1− x) ≤ y ≤ u(1− x)
}

,

where u is given by (31) and h is given by (32).

It follows from Remark 48 that the three statements of the corollary
about non-effective, effective, and polynomial-time predictability and di-
mension do not trivially follow from each other.

Figures 11 and 12 provide an illustration for M = 5.

Appendix A. Some Properties of Computable Func-
tions

In this appendix we discuss some important properties of computable
and polynomial-time computable functions.
A.1 Computability and Operations on Computable Functions

Let us state several properties of computable and polynomial-time com-
putable functions. It is easy to see that addition and multiplication are com-
putable functions on R×R, taking the exponent ex is a computable function
on R, the inversion 1/x is computable on R \ {0} and the logarithm lnx is
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computable on (0,+∞). The situation with polynomial-time computability
is a bit more difficult. Corollaries 7.3.2 and 7.3.10 and Theorems 7.3.12 and
7.3.18 from [Wei00] (together with Theorem 9.4.3 establishing the equiv-
alence of the approaches from [Wei00] and [Ko91]) state that the above
functions are polynomial-time computable on compact subsets of their do-
mains. Therefore we can apply the above operations to polynomial-time
computable functions f : Ω∗ → R provided their values belong to respective
compact subsets of R and get polynomial-time computable functions.

Unfortunately for the purposes of this paper we cannot restrict ourselves
to functions from Ω∗ to compact subsets of Rk, but we can prove the follow-
ing corollary.
Corollary 51. 1. If functions f1, f2, . . . , fk : Ω∗ → R are polynomial-

time computable, then their sum f1 + f2 + . . . + fk and product f1 · f2 ·
. . . · fk are polynomial-time computable.

2. If a function f : Ω∗ → R is polynomial-time computable, then the
cumulative product

h(ω1ω2 . . . ωn) = f(ω1)f(ω1ω2) · · · f(ω1ω2 . . . ωn)

is polynomial-time computable.

3. If a function f : Ω∗ → R is polynomial-time computable and there are
positive integers C and r such that for all x ∈ Ω∗ we have |f(x)| ≤
C(|x|r + 1), then ef is polynomial-time computable.

4. If a function f : Ω∗ → R is polynomial-time computable and there are
positive integers C and r such that for all x ∈ Ω∗ we have f(x) ≥
2−C(|x|k+1), then the functions 1/f and ln f are polynomial-time com-
putable.

We need a simple lemma.

Lemma 52. If f : Ω∗ → R is polynomial-time computable and g : Ω∗ → Z
is an integer-valued polynomial-time computable function not exceeding in
the absolute value a polynomial in the length of its argument, then f(x)2g(x)

is also polynomial-time computable.

Proof of the lemma. Given a representation of a dyadic number d = sm/2n

one can easily multiply or divide d by 2. This can be done in time linear in
the length of the representation.

If d is an approximation of y2k, where y ∈ R and k is an integer, accurate
to within 2−n, i.e., |y2k − d| < 2−n, then |y − d2−k| < 2−n−k and d2−k is
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an approximation to y (though with a different precision). Calculating d2−k

given a representation for d requires k multiplications or divisions by 2 and
can be done in time polynomial in k and the length of the representation of
d.

We will refer to the multiplications or divisions by 2 necessary to calcu-
late g from f as an adjustment of the precision.

Proof of the corollary. Part 1. If f : Ω∗ → R is polynomial-time computable
then in time polynomial in the length |x| we can produce an approximation
to f(x) with precision 1. The length of this approximation must be polyno-
mial in |x| and therefore the absolute value |f(x)| cannot exceed 2C(|x|r+1)

for some positive integers C and r.
Let C1, C2, . . . , Ck and r1, r2, . . . , rk be such constants for f1, f2, . . . , fk.

Take C = maxi=1,2,...,k Ci and r = maxi=1,2,...,k ri. For the functions gi(x) =
fi(x)/2C(|x|r+1) we have −1 ≤ gi(x) ≤ 1 and their sums and products can
be calculated in time polynomial in precision and length of x. We then
adjust the precision.

Part 2. As before, there are positive integers C and r such that |f(x)| ≤
2C(|x|r+1). Take f̃(x) = f(x)/2C(|x|r+1) and let h̃ be the cumulative product
of f̃s. The functions h̃(x) and h(x) differ by the factor 2q(x), where q(x) is
polynomial-time computable and does not exceed C(|x|r + 1)|x|. Thus in
order to calculate h it is sufficient to calculate h̃ and adjust the precision.

Let us calculate the precision required to calculate the product. Suppose
that x1, x2, . . . , xn ∈ [−1, 1] but instead of xi we know an approximation
xi + δi so that |δi| ≤ δ, i = 1, 2, . . . , n. We get

|(x1 + δ1)(x2 + δ2) · · · (xn + δn)− x1x2 . . . xn| ≤

δn + δ2

(
n

2

)
+ . . . + δn

(
n

n

)
= (1 + δ)n − 1 ≤ eδn − 1 ≤ 2δn (33)

provided δn ≤ 1 (we used the inequalities 1 + x ≤ ex and ex ≤ 1 + 2x for
x ∈ [0, 1]).

Suppose that we are required to calculate h̃(x) with a precision m. It
is sufficient to know the values of f̃ accurate to within 2−m/(2|x|). One
can find the minimal integer k such that 2k ≥ |x| (in time polynomial
in |x|) and calculate dyadic approximations to |x| values of f̃ accurate to
within 2−m−1−k (in time polynomial in |x| and m). Then the values can be
multiplied (ignoring the insignificant digits) in time polynomial in |x| and
m.
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Part 3. Given |x| and integers C, r > 0, one can calculate a positive
integer p such that C(|x|r + 1) ≤ 2p < 2C(|x|r + 1).

Let g(x) = f(x)/2p and consider the formula

ef(x) =

(
eg(x)

4

)2p

22·2p
.

Since −1 ≤ g(x) ≤ 1, the exponent of g can be calculated in polynomial
time and it does not exceed e < 4. We can then calculate the product of
2p < 2(C|x|r +1) values not exceeding 1. Adjusting the precision completes
this part of the proof.

Part 4. Take p = C(|x|r + 1). Consider the function g(x) = 2pf(x) ≥
1. It can be computed in polynomial time and therefore does not exceed
2C2(|x|r2+1) for some C2 and r2 (chosen independently of x). Calculating
g(x) to the precision 1 one can find an integer p2 ≥ 0 such that 2p2 ≤ g(x) ≤
2p2+2. Therefore for h(x) = g(x)/2p2+1 we have 0.5 ≤ h(x) ≤ 2. The set
[0.5, 2] is compact and separated from 0, so one can calculate 1/(h(x)) in
polynomial time and then apply the adjustment of the precision using

1
f(x)

= 2p−p2−1 1
h(x)

.

One can also calculate lnh in polynomial time and use the formula

ln f(x) = lnh(x) + (p2 − p + 1) ln 2 .

The value of ln 2 can be calculated in polynomial time. Then it can be
multiplied by ps and added to lnh(x) by the parts of the corollary proved
earlier.

Remark 53. Note that the definition of polynomial-time computability is
somewhat asymmetric.

The function f : N → R given by f(n) = 22n
cannot be computed in

time polynomial in n. Indeed, if d approximates f(n) accurate to within
1, then a binary expansion of d cannot be shorter than 2n and therefore it
cannot be printed in time polynomial in n.

On the other hand, the function g(n) = 1/f(n) = 2−2n
is polynomial-

time computable. Suppose that we are required to calculate g(n) accurate
to within 2−m. We start by checking whether the condition 2n ≥ m holds,
which can be done in time polynomial in m and n. If this condition holds
then g(n) = 2−2n ≤ 2−m and we can output 0 as an approximation to g(n).
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If the condition does not hold and 2n ≤ m, then a binary representation of
g(n) can be printed in time polynomial in m.

Thus the inverse of a polynomial-time computable non-vanishing func-
tion from Ω∗ to R is not necessarily polynomial-time computable.

Similarly, the function g(n) = 2−22n

is computable in time polynomial
in n while its logarithm f(n) = lnn = −22n

ln 2 is not polynomial-time
computable

A.2 Computability of the Power Function

In this appendix we prove Lemma 49 by showing that for every polyno-
mial-time computable α > 0 the function xα is polynomial-time computable
for x ∈ [0, 1].

The identity xα = eα ln x can be used to show that xα is polynomial-
time computable on any separated from 0 interval [δ,A], where 0 < δ <
A < +∞. For [0, 1] the identity cannot be applied directly, because lnx
loses polynomial-time computability and its value tends to infinity as x
approaches 0. The algorithm we will describe deals with this anomaly.

Let N ≥ 1 be the smallest integer such than N ≥ 1/α.
Suppose that we are required to calculate xα accurate to within 2−m.

We will start by requesting a dyadic approximation to x accurate to within
2−mN/4. Let d be such an approximation.

If d ≤ 2−mN3/4, we can conclude that x ≤ 2−mN and therefore xα ≤
2−mNα ≤ 2−m. We thus output an appropriate dyadic approximation to 0.

Otherwise x > 2−mN/2 and we can find an integer k such that x ∈
[k2−mN/2, (k + 2)2−mN/2], where 1 ≤ k ≤ 2mN+1 − 2. Further, we can
find an integer l ≥ 0 such that k ≥ 2l but k + 2 ≤ 4 · 2l = 2l+2 and
2l+22−mN/2 = 2l−mN−1 ≤ 1. We get

x ∈
[
1
2
2l−mN , 2 · 2l−mN

]
⊆ (0, 1] .

Take x̃ = x/(2 · 2l−mN ). We get x̃ ∈ [1/4, 1] and

xα = x̃α

(
1
2α

)mN−l−1

.

The value of xα is thus the product of x̃α and mN − l − 1 ≥ 0 instances
of 1/2α. It follows from (33) that it is sufficient to calculate these values
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accurate to within 2−m/(2(mN − l)). This can be done in time polynomial
in m and the multiplications can be carried out in time polynomial in m.
A.3 Enumerations of Strategies

In this section we discuss the existence of (effective) enumerations of
strategies w.r.t. a game G. The discussion provides the background for
Appendix C.

There always exists an enumeration (not necessarily effective) of all com-
putable strategies simply because there are countable many of them. Let
us show that a similar property is not uncommon for polynomial-time com-
putable strategies. We start by enumerating all vector-valued functions.
Lemma 54. For every finite Ω and positive integer K there is an effective
enumeration of Turing machines such that

1. every machine in the enumeration calculates a function from Ω∗ to
RK and the running time of the machine does not exceed a polynomial
in the length of the inputs;

2. every polynomial-time computable function from Ω∗ to RK is calculated
by some machine in the enumeration.

Proof. We will show how to construct an enumeration of machines calculat-
ing polynomial-time computable functions from Ω∗ to R. An enumeration
of machines computing functions from Ω∗ to RK can be easily constructed
from it.

There is an effective enumeration of all Turing machines taking a pair of
a string from Ω∗ and a unary number as inputs. Take a machine of this kind
and a polynomial p(n, m) with integer coefficients. Let us alter the machine
in the following way. Given an input x = ω1ω2 . . . ωn and precision m we
run the original machine on each of the pairs (x, i), i = 1, 2, . . . ,m, limiting
the calculation time to p(n, i). Then we take the maximum i ≤ m with the
following properties:

• the output on (x, j), j = 1, 2, . . . , i, is a representation rj of a dyadic
number dj = d(rj) and the precision of rj is j;

• for all j, l = 1, 2, . . . , i the difference between dj and dl is consistent
with them being approximations of the same number, i.e.,

|dj − dl| ≤ 2−j + 2−l .
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If no such i can be found, we output the dyadic representation of 0 with
precision m. Otherwise we output the representation of di adjusted to have
precision m.

It is easy to see that on a fixed x the outputs dm for different ms form a
Cauchy sequence converging to y ∈ R and |dm − y′| ≤ 2−m. This procedure
can be implemented in time polynomial in |x| and m and if the original
machine computed a function from Ω∗ to R the new procedure will compute
the same function.

By enumerating all machines and all polynomials we prove the lemma.

The question of enumerating functions from Ω∗ to Γ ⊆ RK is difficult
and the general answer probably depends on computability properties of Γ.
We will investigate one simple special case.

Lemma 55. For every finite Ω and positive integer K there is an effective
enumeration (in the sense of Lemma 54) of all polynomial-time computable
functions from Ω∗ to the simplex

PK =

{
(p1, p2, . . . , pK)|

K∑
i=1

pi = 1 and pi ∈ [0, 1], i = 1, 2, . . . ,K

}
⊆ RK .

Proof. Let us describe a modification of a polynomial-time Turing machine
computing a function f = (f1, f2, . . . , fK) from Ω∗ to RK such that the
resulting machine still runs in polynomial time and computes a function
with the range PK and the function coincides with the one computed by the
original machine provided its range was PK .

First let us make sure that the function maps Ω∗ to [0,+∞)K . The
machine can be modified as follows. After the machine outputs a dyadic
representation of d = (d1, d2, . . . , dK), we replace each dk with max(dk, 0),
k = 1, 2, . . . ,K. Clearly, the new machine can be made to run in polynomial
time and it calculates a function from Ω∗ to [0,+∞)K ; whenever f(x) had
its value in [0,+∞)K , it remains unchanged. Let us assume fk(x) ≥ 0,
k = 1, 2, . . . ,K, from now on.

Secondly let us force the value f(x) into PK . Let l be the minimum
integer such that 2l ≥ K. Whenever we are asked to calculate the value of
f(x) accurate to within 2−m, we start by calculating each fk(x) accurate to
within 2−(l+2). Let the result be d = (d1, d2, . . . , dK).

If f(x) ∈ PK , then the inequalities 0.75 ≤
∑K

k=1 dk ≤ 1.25 must hold.
Let us check if they indeed hold. If either of the two does not hold, the
calculation of f(x) cannot possibly result in a value from PK . Let us
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abandon it altogether and output an appropriate dyadic approximation to
(1/K, 1/K, . . . , 1/K). Now suppose that both the inequalities hold. They
guarantee that 0.5 ≤

∑K
k=1 fk(x) ≤ 1.5 and therefore for all k = 1, 2, . . . ,K

the values fk(x)/
∑K

k=1 fk(x) can be computed in polynomial time. We then
calculate those values accurate to within 2−m and output them.

The calculation always results in values from PK and if the original
function f always had its values in PK , it remains unchanged.

Appendix B. Weak Mixability and Computability

In this appendix we consider variations of the weak mixability property.
In particular, we prove Proposition 3.
B.1 Effective Mixability of Bounded Games

If an extra requirement that the loss function is bounded is imposed,
then the conclusion of Proposition 3 can be strengthened.
Lemma 56. If a (polynomial-time) computable game G = 〈Ω,Γ, λ〉 has a
convex prediction space Γ and a convex in the second argument and bounded
loss function λ, then for every two (polynomial-time) computable strate-
gies A1 and A2 w.r.t. G there is a (polynomial-time) computable strategy A

w.r.t. G and a function α : N → R such that α(n) = O(
√

n) as n → +∞
and

LossG
A(x) ≤ min (LossA1(x),LossA2(x)) + α(|x|) (34)

for all finite sequences x ∈ Ω∗.

Proof. The proof uses Remark 10 from [KV08]. Let

γ
(j)
t = γ

(j)
t (ω1ω2 . . . ωt−1)

be the prediction output by Aj on step t, where ω1, ω2, . . . , ωt−1 are the
outcomes observed on previous steps. Take

w
(j)
t = e

−
Pt−1

i=1 λ
“
ωi,γ

(j)
i

”
/
√

t

and

p
(j)
t =

w
(j)
t

w
(1)
t + w

(2)
t

,

j = 1, 2, and let A output

γt = p
(1)
t γ

(1)
t + p

(2)
t γ

(2)
t .
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The convexity of Γ implies that this is a valid prediction. It is proven in
[KV08] that the resulting strategy satisfies (34).

Let us show that A is (polynomial-time) computable given the conditions
of the lemma. Computability can be obtained straightforwardly. In what
follows we assume that G, A1, and A2 are polynomial-time computable and
show that A is polynomial-time computable.

The expressions e
−λ

“
ωt,γ

(j)
t

”
, j = 1, 2 are polynomial-time computable as

function on Ω∗ by the definitions of polynomial-time computable games and
strategies. Their cumulative (t− 1)-products

Q
(j)
t = e

−
Pt−1

i=1 λ
“
ωi,γ

(j)
i

”
=

t−1∏
i=1

e
−λ

“
ωi,γ

(j)
i

”

are polynomial-time computable by Part 2 of Corollary 51. Since λ(ω, γ) ≤
L for all outcomes ω ∈ Ω and predictions γ ∈ Γ, we get that e−L(t−1) ≤
Q

(j)
t ≤ 1 and lnQ

(j)
t is polynomial-time computable by Part 4 of Corol-

lary 51. The function 1/
√

t = (1/t)1/2, is polynomial-time computable by
Part 4 of Corollary 51 and Lemma 49. Thus

w
(j)
t = e

1√
t
ln Q

(j)
t

is also polynomial-time computable. The lower bound e−L(t−1)/
√

t ≤ w
(j)
t

ensures that p
(j)
t is polynomial-time computable. Finally, γt is polynomial-

time computable.

B.2 Effective Mixability of Unbounded Games

We prove Proposition 3 in the unbounded case using the following trick.
The same algorithm as in Lemma 34 will be used, but it will be preceded
by a “truncation” procedure.
Lemma 57. For every game G = 〈Ω,Γ, λ〉 and ε > 0 there is a finite set of
predictions Γ(ε) ⊆ Γ such that for all γ̃ ∈ Γ and ω ∈ Ω the value λ(ω, γ̃) is
finite and for all γ ∈ Γ there is γ̃ ∈ Γ(ε) such that for all ω ∈ Ω the inequality

λ(ω, γ̃) ≤ λ(ω, γ) + ε

holds.
If G is (polynomial-time) computable, then Γ(ε) can be chosen to consist

of (polynomial-time) computable points γ̃1, γ̃2, . . . , γ̃k such that there is a
computable mapping π : Γ → {1, 2, . . . , k} satisfying

λ(ω, γ̃π(γ)) ≤ λ(ω, γ) + ε
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for all γ̃ ∈ Γ and ω ∈ Ω. If e−λ(ω,γ) can be computed for all γ ∈ Γ in
time depending only on the required precision (e.g., if G is polynomial-time
computable) then Γ(ε) and π can be chosen so that π(γ) is computable (by
an oracle Turing machine) in finite time bounded from above by T = T (ε)
independent of γ.

Proof. Lemma 33 implies that there is a finite set Γ̂(ε/3) such that for any
γ ∈ Γ there is γ∗ ∈ Γ̂(ε/3) such that λ(ω, γ∗) ≤ λ(ω, γ)+ε/3 for every ω ∈ Ω.

It follows from continuity of λ (implied by the definition of a game) that
we can approximate each γ∗ ∈ Γ by γ̄ ∈ Γ such that all values λ(ω, γ̄)
are finite and if λ(ω, γ∗) was finite then |λ(ω, γ̄) − λ(ω, γ∗)| ≤ ε/3. For a
non-computable game G let Γ(ε) consist of γ̄s approximating γ∗s from Γ̂(ε/3).

The definition of a (polynomial-time) computable game implies that
(polynomial-time) computable points are dense in Γ and therefore every
γ̄ can be approximated by a (polynomial-time) computable γ̃ at a cost of
no more than further ε/3 in the values of λ. For a (polynomial-time) com-
putable game G let Γ̃(ε) consist of γ̃s approximating γ̄s approximating γ∗s
from Γ̂(ε/3).

Let us assume that G is computable and construct the mapping π. Take
Γ̃(ε/2) = {γ̃1, γ̃2, . . . , γ̃k} that exists by what we have already proven. For
every γ ∈ Γ there is γ̃i such that

λ(ω, γ̃i) ≤ λ(ω, γ) + ε/2

i.e.,

e−λ(ω,γ)

e−λ(ω,γ̃i)
≤ eε/2 (35)

for all ω ∈ Ω.
Since all λ(ω, γ̃i) are finite and there are finitely many of them, there is

an upper bound on them and therefore some θ > 0 such that e−λ(ω,γ̃i) ≥ θ
for all i = 1, 2, . . . , k and ω ∈ Ω. Suppose that instead of some numbers
x ∈ [0, 1] and y ∈ [θ, 1] we know their approximations x + δ1 and y + δ2,
where |δ1|, |δ2| ≤ δ and θ > δ. The accuracy of their ratio can be bounded
from above as follows:∣∣∣∣xy − x + δ1

y + δ2

∣∣∣∣ ≤ x|δ2|+ y|δ1|
|y(y + δ2)|

≤ 2δ

(θ − δ)2
.

Thus if we know e−λ(ω,γ̃) and e−λ(ω,γ̃i) accurate to within min(σθ2/8, θ/2),
we can calculate their ratio accurate to within σ.
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Take γ ∈ Γ. Let us calculate all ratios e−λ(ω,γ)/e−λ(ω,γ̃i), i = 1, 2, . . . , k,
ω ∈ Ω, accurate to within eε− eε/2. Since (35) holds for some i, we will find
i for which

e−λ(ω,γ)

e−λ(ω,γ̃i)
≤ eε

and therefore

λ(ω, γ̃i) ≤ λ(ω, γ) + ε

for all ω ∈ Ω. Let π(γ) be the minimal i we have found. The set Γ(ε) = Γ̃(ε/2)

and the mapping π satisfy the requirements of the theorem for ε.

Now we can describe how the strategy A can be constructed given two
(polynomial-time) computable strategies A1 and A2 w.r.t. a (polynomial-
time) computable game G = 〈Ω,Γ, λ〉. For ε > 0 there is a set Γ(ε) =
{γ̃1, γ̃2, . . . , γ̃k} and a mapping π defined in the lemma. The strategies A

(ε)
1

and A
(ε)
2 that output γπ(γ) whenever the respective strategies output γ are

(polynomial-time) computable and

LossG

A
(ε)
i

(x) ≤ LossG
Ai

(x) + ε|x|

for i = 1, 2 and all x ∈ Ω∗. We can use the construction from Lemma 34 to
obtain strategy A such that

LossG
A(x) ≤ min

(
Loss

A
(ε)
1

(x),Loss
A

(ε)
2

(x)
)

+ o(|x|)

as |x| → ∞.

Remark 58. This construction is a simplified version of that from Section 6.3
and Appendix E from [KV08]. The full construction of [KV08] can also be
implemented and would lead to a better bound but at the cost of complicated
restrictions on the game, such as that the ε-nets and some relevant constants
should be obtainable effectively given ε > 0. For this paper we choose a
weaker but more general approach.

B.3 Weak Mixability of Countable Families

The discussion of this section provides the background for Appendix C.
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The results from [KV08] can be extended to cover countable families of
strategies.
Lemma 59. Let a game G be weakly mixable. Then there are functions
α1, α2, . . . : N → R such that for all i = 1, 2, . . . we have αi(n) = o(n) as
n → ∞ and for every sequence of strategies A1,A2, . . . w.r.t. G there is a
strategy A such that

LossG
A(x) ≤ LossG

Ai
(x) + αi(|x|)

for all x ∈ Ω∗ and i = 1, 2, . . ..

Proof. The lemma follows from [KV08]. For bounded losses the result is
formulated in Remark 12. For unbounded losses a construction similar to
that from Section 6.3 and Appendix E can be used. Indeed, consider (7)
in [KV08]. The term cL2√n can be approached in the same fashion as
in Appendix E and the term 1

c
1
qi

√
n will lead to a small extra term by

Lemma 21.

The situation with effective families is more complicated. We will say
that a computable game G = 〈Ω,Γ, λ〉 is computably countably very weakly
mixable if for every ε > 0 there are functions αi,ε : N → R such that
αi,ε(n) = o(n) as n → +∞ for i = 1, 2, . . . and for every computable family
of computable prediction strategies A1,A2, . . . there is a computable strategy
A such that

LossG
A(x) ≤ LossAi(x) + ε|x|+ αi,ε(|x|) (36)

for all finite sequences x ∈ Ω∗ and i = 1, 2, . . ..

Lemma 60. If a computable game G = 〈Ω,Γ, λ〉 has a convex prediction
space Γ and a convex in the second argument loss function λ, then it is
computably countably very weakly mixable.

Proof. Let A1,A2, . . . : Ω∗ → Γ be a computable family of computable
strategies.

First let us truncate predictions using Lemma 57. (For bounded games
this step is unnecessary and we can drop ε|x| from (36) as before.) Let

γ
(j)
t = γ

(j)
t (ω1ω2 . . . ωt−1)

be the truncated prediction output by Aj on step t, where ω1, ω2, . . . , ωt−1

are the outcomes observed on previous steps.
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Fix a computable sequence of positive numbers summing to 1, e.g., qj =
2−j . Take

w
(j)
t = qje

−
Pt−1

i=1 λ
“
ωi,γ

(j)
i

”
/
√

t

and

p
(j)
t =

w
(j)
t∑∞

i=1 w
(i)
t

,

j = 1, 2, . . ., t = 1, 2, . . .. The strategy A outputting the predictions

γt =
∞∑
i=1

p
(i)
t γi

t

on step t satisfies (36).
In order to show that γt is computable, we need to upper bound the tail

of the series. Let L < +∞ be the maximum of λ(ω, γ) for all outcomes
ω ∈ Ω and “truncated” predictions γ. We get qje

−L
√

t ≤ w
(j)
t ≤ qj and

p
(j)
t ≤ qje

L
√

t. By the definition of a game the set Γ is compact and therefore
bounded. Let G > 0 be such that each component of each γ ∈ Γ does not
exceed G. Then by taking m terms from the infinite sum for γt we get
an approximation accurate to within G2−meL

√
t. If we know computable

upper bounds to L and G, we can work out how many terms to take to
approximate γt with a given precision.

In order to calculate p
(j)
t we need to approximate the sum

∑∞
i=1 w

(i)
t . The

above inequalities provide lower and upper bounds to its initial segments.

Appendix C. Why Complexities Differ

In this appendix we show that complexities introduced in Sections 3.1
and 3.2 differ. We first show that different types of complexities differ and
then proceed to show that computability matters.
C.1 Lower vs Upper and Uniform vs Non-Uniform

Consider a game G = 〈Ω,Γ, λ〉 with |Ω| = M . Let S be the set of
superpredictions for G. Take A = min{x ∈ R | (x, x, . . . , x) ∈ S} (the point
(A,A, . . . , A) is where the diagonal of the positive orthant meets S) and
take mi = minγ∈Γ λ(ω(i), γ) for i = 0, 1, . . . ,M − 1. Clearly, mi ≤ A for
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all i = 1, 2, . . . ,M − 1. If m0 = m1 = . . . = mM−1 = A, we will call the
game symmetric degenerate. Clearly, for a symmetric degenerate game the
set of superpredictions equals [A,+∞]M and every asymptotic complexity
of every language equals A; if the game is computable, the same applies
to effective complexities and if it is polynomial-time computable, the same
applies to polynomial-time complexities.
Proposition 61. If a game G is not symmetric degenerate, neither two
of the complexities AC, AC, AC, or AC coincide on all infinite sets of
finite sequences or all non-empty sets of infinite sequences. If the game
is computable and not symmetric degenerate, the same is true of effective
complexities ACE, ACE, ACE, and ACE. If the game is polynomial-time
computable and not symmetric degenerate, the same is true of polynomial-
time complexities complexities ACP, ACP, ACP, and ACP.

Proof. It is sufficient to show that the complexities differ on languages con-
sisting of infinite sequences.

If a game G = 〈Ω,Γ, λ〉 is not symmetric degenerate there is i such that
mi < A. Let mi be achieved by λ(ω(i), ·) on γ0. The prediction γ0 may
lead to infinite losses on other outcomes but for every ε > 0 there is γε such
that λ(ω(i), γε) ≤ mi + ε but λ(ω(j), γε) is bounded by a finite C for all
j = 0, 1, . . . ,M −1. If the game is (polynomial-time) computable, γε can be
chosen to be (polynomial-time) computable.

The strategy predicting γε suffers loss not exceeding (mi + ε)n on a
string

(
ω(i)
)n

and loss not exceeding C|x| on every finite string x ∈ Ω∗.
If the game is (polynomial-time) computable, the strategy is (polynomial-
time) computable.

On the other hand, for every strategy A and every positive integer n
there is a string x of length n such that LossA(x) ≥ A|x|. Indeed, x can be
constructed by induction. On step T let A output a prediction γt. There
must be an outcome ω(j) such that λ(ω(j), γt) ≥ A (or A could have been
decreased) and we can choose ω(j) to be the T -th element of x.

In order to distinguish between upper and lower complexities consider
the language L =

∏∞
i=0 Ξ

22i ⊆ Ω∞, where Ξn =
{(

ω(i)
)n} × Ωn. Its lower

complexity equals mi while upper complexity equals A.
In order to distinguish between upper and lower complexities consider

the language L = ∪∞n=0

(
Ωn ×

{(
ω(i)
)∞})

. We have AC(L) = AC(L) = mi

while AC(L) = AC(L) = A.

Remark 62. Note an interesting property of degenerate games. Suppose
that the set of superpredictions for a game is [A0,+∞] × [A1,+∞] × . . . ×
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[AM−1,+∞], where not all Ais are equal. It is natural to call such a game
asymmetric degenerate. For such a game it only make sense to ever predict
γ such that λ(ω(i), γ) = Ai, i = 0, 1, . . . ,M − 1. All other predictions (if
any) always lead to loss greater than or equal to the loss caused by this γ.
However the complexities still differ.

C.2 Effective vs Non-Effective

In this subsection we formulate sufficient conditions for effective and
polynomial-time complexities to differ.

The argument in this section depends on the existence of enumera-
tions of computable and polynomial-time computable strategies discussed
in Appendix A.3 and weak mixability of countable families discussed in Ap-
pendix B.3.
Proposition 63. Let S be the set of superpredictions for G = 〈Ω,Γ, λ〉
with Ω =

{
ω(0), ω(1), . . . , ω(M−1)

}
(|Ω| = M). Let A = min{x ∈ R |

(x, x, . . . , x) ∈ S} and mi = minγ∈Γ λ(ω(i), γ) for i = 0, 1, . . . ,M − 1. If
mi < A for all i = 0, 1, . . . ,M − 1 and G is weakly mixable, then asymp-
totic complexities AC, AC, AC, and AC w.r.t. G differ from their effective

analogues ACE, ACE, ACE, and ACE.
If, moreover, G is computable and computably countably very weakly

mixable, and there is a computable enumeration of all polynomial-time com-
putable strategies w.r.t. G, then asymptotic complexities AC, AC, AC, and
AC and effective complexities ACE, ACE, ACE, and ACE differ from their

polynomial analogues ACP, ACP, ACP, and ACP.

Proof. Let m = maxi=0,1,...,M−1 mi < A and A1,A2, . . . be an enumeration
of all computable strategies w.r.t. G. Lemma 59 implies that there is a
strategy A “capturing the power” of the family, i.e., such that

LossG
A(x) ≤ LossG

Aj
(x) + αj(|x|)

for all x ∈ Ω∗, where αj(n) = o(n) as n →∞.
The language differentiating the complexities will consist of a single in-

finite string x = ω1ω2 . . .. It is constructed by induction. Suppose that
we have constructed ω1, ω2, . . . , ωt−1. Let γt = A(ω1, ω2, . . . , ωt−1) be the
prediction output by A on step t after seeing ω1, ω2, . . . , ωt−1. It follows
from the definition of A that there is ωt ∈ Ω such that λ(ωt, γt) ≥ A;
if there are several such ωs, take the first one in the enumeration Ω =
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{
ω(0), ω(1), . . . , ω(M−1)

}
. We get

An ≤ LossG
A(x|n) ≤ LossG

Aj
(x|n) + αj(n)

for all n, j = 1, 2, . . . and therefore for the language L = {x} we have
ACE(L),ACE(L),ACE(L),ACE(L) ≥ A.

On the other hand, let S be the strategy that on step t predicts γ
minimising λ(ωt, γ). We get

LossG
S(x|n) ≤ mn

and therefore AC(L),AC(L),AC(L),AC(L) ≤ m < A.
To differentiate polynomial-time complexities from effective we use the

same argument with slight modifications. Take ε = (A − m)/3 and a
computable strategy A capturing the power of all polynomial-time com-
putable strategies up to ε|x| as in the definition of computably countably
very weak mixability. The construction of x is again by induction. On
step t we calculate e−λ(ω,γt), where γt is the prediction output by A given
the beginning of x that has been already constructed, accurate to within
e−A+ε − e−A > 0. Since there is ω such that λ(ω, γt) ≥ A, we will be able
to find ω such that e−λ(ω,γ) ≤ e−A+ε. Let ωt be the first such ω. We get
ACP(L),ACP(L),ACP(L),ACP(L) ≥ A− ε.

It is easy to see that the sequence x is computable and therefore there
is a computable strategy S that on step t outputs a computable approx-
imation γ̃ to γ minimising λ(ωt, γ) so that λ(ωt, γ̃) ≤ m + ε. We get
ACE(L),ACE(L),ACE(L),ACE(L),AC(L),AC(L),AC(L),AC(L) ≤ m +
ε < A− ε.
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