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Abstract

We discuss the applicability of the Microsoft cloud computing platform, Azure, for bioinformatics. We
focus on the usability of the resource rather than its performance. We provide an example of how R can be
used on Azure to analyse a large amount of microarray expression data deposited at the public database
ArrayExpress. We provide a walk through to demonstrate explicitly how Azure can be used to perform
these analyses in the Supplementary Information and we offer a comparison with a local computation.
We note that the use of the Platform as a Service (PaaS) offering of Azure can represent a steep learning
curve for bioinformatics developers who will usually have a Linux and scripting language background.
On the other hand, the presence of an additional set of libraries makes it easier to deploy software in
a parallel (scalable) fashion and explicitly manage such a production run with only a few hundred lines
of code, most of which can be incorporated from a template. We propose that this environment is best
suited for running stable bioinformatics software by users not involved with its development.

Introduction

There has been a rapid increase in the number of cloud computing solutions across the computational
biology community. For example, cloud computing has already been utilised for bioinformatics work-
flows [1], comparative genomics [2], gene set analysis for biomarkers [3], identifying epistatic interactions
between single-nucleotide polymorphisms [4], microbial sequence analysis [5], multiple sequence alignment
algorithms [6], pandemic simulations [7], personal genome variant annotation [8], protein annotation [9],
proteomics analysis [10] and systems biology [11].

The community has explored different cloud solutions, such as hybrid clouds [12, 13], Hadoop-like
architectures [14], and the Google App Engine [15]. However, despite the wide variety of different cloud
computing platforms available, most of the existing work in computational biology has focussed on
Amazon Web Services (AWS) as provided by Amazon, in particular their Elastic Cloud Computing
(EC2) service [16].

In this paper we will consider an alternative type of cloud computing platform: namely Azure the
cloud computing platform provided by Microsoft. The rest of this paper will be organised as follows. We
shall briefly explain the qualitative difference between this platform and the more traditional platforms
such as Amazon EC2. We will explain the importance of coordinating large numbers of Virtual Machines
(VM’s) using Job Management software for researchers. We will explain the features of Azure and
contrast them with those of other cloud computing platforms, pointing out strengths and weaknesses.
We will present results based on a typical bioinformatics workflow using R to analyse microarray data
computed on Azure, initially to determine if it reproduces locally computed results and then to determine
if its performance is comparable to running the same task locally. Finally we draw conclusions about the
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applicability of Azure and draw some general lessons on how cloud computing would ideally evolve for
bioinformatics.

Cloud computing fundamentals

There exists an extensive literature providing definitions of cloud computing [17]. We refer the reader to
table 1 with cloud computing related definitions. In essence clouds are large server farms which make
extensive use of virtualisation to provide outside users with effectively arbitrarily large numbers of Virtual
Machines (VM’s) and in some respects they can be seen as an extension of the idea of utility computing
that was carried forward by Grid Computing in the 1990’s [18].

The most commonly used cloud computing infrastructures in bioinformatics, such as Amazon EC2, are
referred to as Infrastructure as a Service (IaaS), where each VM can be accessed directly via a command
line interface. Others, such as Azure, Google AppEngine and Heroku [19] are referred to as Platform as
a Service (PaaS) as they supply additional services and programmatic access to each VM. It should be
noted that the divisions between these different types of platforms are becoming increasingly blurred -
Azure also provides an IaaS and Amazon provides a PaaS built on EC2 called Elastic Beanstalk [20].

Nevertheless there is a substantial difference between using Azure and using IaaS infrastructures
which translates into a steep learning curve particularly for bioinformatics developers who typically have
a background in writing software for Linux systems.

The above are consistent with formal definitions that are provided by, for example, NIST [21]. It
should be noted that these definitions do not necessarily imply that a PaaS is built upon an IaaS. The
functional construction of these clouds is complex and beyond the scope of this article.

The basic issues for cloud computing and its application in bioinformatics have already been discussed
in detail elsewhere [16,22]. In brief, the key advantage of cloud computing for bioinformatics researchers
is the ability to scale an analysis up and complete the task in as short a period of time as possible. Many
bioinformatics researchers do not use high-throughput computing resources to carry out this phase on a
frequent basis and hence it is efficient to lease time on a cloud computing platform for a comparatively
small sum of money (e.g. hundreds of U.S. dollars) that can be readily absorbed into the day to day
costs of a project.

Batch mode submission

While it is often possible to consider problems which require a high level of parallelisation (using message
passing or threading) [23,24], the prohibitive amount of development time and resource required to do this
tends to direct researchers into pursuing the “low lying fruit” and doing analysis which can be trivially
decomposed into a set of jobs that run in parallel with each other [25]. Schematically (using the example
of an R script analysing a set of differently-sized data sets) such a batch mode of operation is shown in
Figure 1.

For many calculations the number of cores required is much larger than can be allocated onto a single
computer. Hence, apart from access to the cloud platform itself, job management software is essential.
Job managers will do a variety of tasks to aid the above, in particular submitting the tasks to the
allocated VMs, creating appropriately named log files and managing failures of individual VMs during
the running of the job. This is not trivial to carry out on Amazon EC2. Software such as StarCluster
http://star.mit.edu/cluster/ can do this on EC2 but the configuration of StarCluster is a not an
easy task and requires a level of familiarity with shell scripts. As a result the full power of these resources
can only be employed by computational biologists with extensive experience of shell-scripting as well as
expertise in the software they wish to use. This excludes the large number of individuals without those
skills whose research could benefit from access to such resources. Cloud computing platforms represent
very large software stacks but surprisingly do not by default include this type of job management software.
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Azure provides a set of C# libraries referred to as the Generic Worker (GW) to perform a similar set
of tasks as a Job Manager. This provides a framework to write C# software to perform the tasks that a
Job Manager can do for tailored set of software. Hence it is possible to develop a bespoke interface for
users to manage batch jobs for a particular set of software.

Azure features and comparison

In this section we will provide a more detailed explanation of the Azure infrastructure with comparisons
where possible with the Amazon EC2 service. The reader is referred to Table 2 for comparisons of
features at a glance. In particular, we will discuss the computational services they provide, disk space,
and their ease of use from the perspective of a typical bioinformatics developer with extensive experience
of developing software on a Linux architecture and of a biologist with little or no scripting experience.
We will also make comparisons from the perspective of costing.

Computational Services

As noted previously, Azure provides an IaaS and PaaS - which Microsoft refer to, respectively, as Virtual
Machines and Cloud services. The IaaS offering allows one to deploy VM’s which run either pre-built
Windows Server 2008 or Linux images, or to upload one’s own customized image. This service is similar
to the one offered by other IaaS providers but does not make use of the GW libraries discussed above for
job management and hence we will not focus further on it here.

The Azure PaaS provides programmatic access from .NET (including C#), Java, node.js, PHP, Ruby
and Python though at present the GW libraries are only available for C# and hence the other languages
are largely for data transfer. It is comprised of two “roles”: the Web Role designed for setting up a web-
based service and the Worker Role which is designed to run applications in a batch production mode.
Frequently these can be in parallel with each other, with a web role passing on tasks to a worker role.
Both roles use fixed-configuration VMs that are based on a Windows Server Operating System. The
major difference between the roles is that the web role has IIS (Microsoft’s web server software) installed
on it. VMs (and the roles) can vary from the equivalent of 1 CPU with 760 Mbyte memory and 20 Gbyte
disk space running nominally on 1 GHz CPU to 8 CPU with 56 Gbyte memory and 2 Tbyte storage
running nominally on a 1.6 GHz CPU.

We note that a MapReduce service is also available on Azure called HDInsight.

Worker Role

The worker role is designed for running large numbers of jobs. Efficient use of this type of role has been
improved significantly by the provision of an additional set of libraries from Microsoft called the Generic
Worker (GW) which can be accessed from http://resources.venus-c.eu. In particular these libraries
can be used within a C# program to submit and efficiently manage jobs submitted to a set of worker
roles, as illustrated in Figure 2. In this framework the software runs in two modes. In the first mode an
application (which can be a simple executable or a more complex workflow of executables) is uploaded to
Azure storage along with a description of the application (in particular the expected list of parameters
that will be used in the application). In the second mode the application is transferred from storage and
called with a specific set of parameters. The GW provides efficient job management and hence allows
a straightforward means to scaling a task. Activation or deactivating of instances of the worker roles
can be called within a Windows power shell script or via the code. Additional software can be installed
silently at the start of each run. It is possible to construct a workflow where the output from one worker
role running one type of executable passes the data onto another worker running another executable and
so on, though we have not explored this option. In addition to the demos provided by Microsoft we have
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developed code that uses the GW to run an R script which can access data that is on Azure storage. The
source code for this can be downloaded from http://gene.cs.rhul.ac.uk/RAzure/GWydiR.zip. Details
for setting up and using the GW for a sample R script are given in the Supplementary Information.

Web Role

As the name suggests the Web Role is designed for setting up web services on Azure. These services can
be set up using ASP.NET and C# to create web pages through which a user can interact with programs
and data. Web Roles are not designed to run large production runs but can act as a front end by passing
data onto worker roles. Obviously this is not optimal for a standard production run where individual
failures should be detected and rerun on an as-required rather than as-expected basis. Nonetheless, they
can be used to implement tasks such as large uploads of data to the Azure mass storage facilities.

Data storage and Transfer

Long term storage of data is provided via a mechanism that is similar to Amazon’s S3 system. Data is
stored in containers which are effectively a single layer of a directory. Individual files are referred to as
blobs. It is possible to recreate a pseudo-directory hierarchy by appropriate naming of the blobs with
slash characters as in a data path. Microsoft also provides the Azure Marketplace (http://datamarket.
azure.com/) where data sets and applications for Azure can be made available.

It is possible to set up a SQL database within Azure for both IaaS and PaaS. The Azure Storage
Explorer from Neudesic (http://azurestorageexplorer.codeplex.com) allows data to be browsed or
transferred to or from Azure storage. We have provided a set of simple Java executables and an R script
that enable data transfer to Azure storage within a VM in Azure or on a local machine based on examples
provided with Microsoft’s documentation. This can be found at https://github.com/hughshanahan/

RAzureEssentials.

Ease of use for Developers

As noted previously, for a developer who is experienced in using Linux systems and is not familiar
with a .NET software architecture, designing software using the GW libraries can represent a steep
learning curve. On the other hand for a batch mode submission there are templates that can make this
substantially easier. The source code for the package corresponds to roughly 400 lines of code, much of
which can be taken from the templates available from http://resources.venus-c.eu and the GWydiR
github site. As one can see from the walk through for installing the software in the Supplementary
Information, getting initially configured is still not trivial though there is no technical impediment to this
being made substantially easier.

Ease of use for users

From the perspective of the user the same issue of initial configuration is a stumbling block. On the other
hand the web resources for managing the VM’s and data storage being used are excellent and the user
is able to inspect results from the runs via a web interface. Because of the bespoke nature of this it is
possible to create an interface that is highly tailored to a specific task and could be substantially easier
to use than generic workflow software such as Galaxy and Taverna [26].

Cost

In Table 3 we provide a comparison of costings between Azure and Amazon EC2. We are not quite
comparing like with like in that the pricing for Amazon is using the Linux OS while Azure is using
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Windows Server 2008 but we are focussing on the cheapest possible option in all cases. We note that
pricing can be highly dynamic - for example earlier on in 2013 prices for CPU time on the Azure PaaS
were twice that of Amazon EC2. Despite this we can see that market forces influence prices to be roughly
comparable (i.e. within the same order of magnitude).

Materials and Methods

In this work we focus on a real world example to demonstrate the use of R in Azure, namely how G-
stacks (probes with runs of 4 or more guanine bases) bias the experiment data for the Affymetrix Human
GeneChip called HG U133A. This GeneChip was studied with a wide scale analysis both because much
data is publicly available and because it has the highest ratio of G-stack probes among the Affymetrix
Human GeneChips available. It is more beneficial to bioinformaticians to use real data and a useful study
than to use an artificial example to evaluate the use of R for bioinformatics in Azure.

The data for many microarray experiments that utilise the HG U133A GeneChip are available at
public repositories such as NCBI Gene Expression Omnibus (GEO) [27], and the EBI ArrayExpress [28].
Each experiment or data set consists of a set of measurements that are stored in CEL files, which can be
either binary or character text, depending on the choices of the researcher. We used the data from 576
HG U133A experiments that were deposited before May, 2012.

The HG U133A GeneChip contains 22,283 annotated probe sets and about one third of these contain
one or more probes with a G-stack in them. Our analysis compared normalised expression values of
all probe sets with normalised expression values of probe sets with G-stacks removed. We previously
predicted that because probes containing runs of guanine are systematically correlated with each other
[29], due to the coherent formation of G-stacks [30], then the difference in normalised expression data
between the two sets of results will show a bias. Our analysis also compared correlations of each probe
set of the two groups with every other probe set.

The analysis that was carried out on six data sets in GEO [29] on a locally-based computer was
repeated on the Azure cloud. The results computed on Azure were the same as those computed locally,
hence we are confident of reproducibility. The full analysis on the 576 experiments was performed on
Azure. In this paper we will focus on timings, scale and load. Date and time stamp output was written
to a log at the beginning and end of loading each set of CEL files, i.e. transferring the files from Azure
storage to R working storage. Similar date and time stamp output was also written to the log at the
beginning and end of performing the main normalisation and G-stack comparison analyses.

Results

It is important to understand how the run times on Azure compare with a locally-run calculation. In
addition to the time taken to run the script on Azure there is the additional issue of loading the data
from the mass storage to the VM. We consider each of these elements in turn.

Load time

The uploading of the publicly available experiment datasets to Azure mass storage was achieved in two
ways. The first method was to use a customised webpage that was initiated and processed by an Azure
Webrole (discussed previously). With this method a list of datasets could be passed to the uploading
routine. The second method used to upload a few individual experiments was the Azure Storage Explorer
from Neudesic (mentioned above). This provides a direct link between Azure mass storage accounts and
the user’s local machine. It can be used to examine files and data in Azure storage and to upload or
download individual files. It was less useful when long lists of datasets needed to be uploaded.
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The timings for loading data files from Azure mass storage to R working storage are shown for all 576
HG U133A experiments in Figure 3. The elapsed time for loading an experiment comprising 2 CEL files
(about 23 KBytes for text CEL files) was typically about 2 seconds, and for an experiment comprising
200 CEL files (about 2.25 MBytes for text CEL files) was around 45 seconds. CEL files can be stored in
either a text-based or binary format with the text-based format clearly requiring more space. The size of
particular CEL files also varies on other factors; for example, how many masks and/or biological outliers
the researcher has chosen to record after the intensity data for the array. The outlier experiments in
Figure 3 depend on whether the CEL files were stored in binary (shorter load times than the trend) or
text-based (longer run times than the trend). The largest outlier had a combination of these formats.

Run time

The timings of the 576 analysis runs (i.e. how long the R scripts ran on an individual VM once the data
was loaded) are shown in Figure 4. The outliers below the trend of the data are experiments with binary
format CEL files, which are a little quicker to process than the text-format ones.

Once the GW software had been set up and tested, it was a simple matter to scale up the number
of VMs to run these analysis jobs. Each experiment was submitted as a separate job. Earlier in our use
of Azure we had submitted lists of experiments for analysis runs. It was found that the list approach
was less easy to control and scale because sometimes an experiment within the list would fail through a
shortage of disk space. By starting each experiment as a new job with fresh disk space this problem was
minimised.

Comparison with using R in a local machine

A set of experiments was chosen to repeat the analyses, which had been done on the Azure cloud, on
local machines. The experiments had a range of numbers of CEL files to ensure they were representative
of different lengths of jobs. In particular, they had 4, 8, 16, 32, 64 and 128 CEL files.

As it is difficult to reproduce exactly the configuration of an Azure VM, a variety of different local
computers were used :-

• Local1 has a 2.13 GHz processor.

• Local2 has a 2.24 GHz processor that runs Windows as a virtual machine.

• As Local2 is run as a virtual machine it is also run with a 70% execution cap to crudely reproduce
the nominal VM processor frequency.

The results are shown in Figure 5. In all cases the Azure VM runs more slowly than the local machines,
taking roughly a factor of two times as long as the slowest local case.

Discussion

The wide-spread adoption of cloud computing platforms within bioinformatics has made a major impact
on the capability of researchers whose work intermittently requires large amounts of CPU time (or
simply large memory) for tasks which can be carried out in a trivially parallel way. The cloud computing
paradigm will be of increasing importance for users, particularly as data sets continue to expand in size
and hence the analysis will have to come to the data and not the other way around. Up to this point, the
majority of bioinformaticians who use cloud computing have made use of Amazon’s EC2. It provides a
stable software stack with an associated large community of users who can provide support and solutions
specific to a researcher’s domain. Nonetheless, it is clear that Amazon is no longer the only possible
provider of cloud-based solutions and that other approaches should be explored.
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In this paper we have specifically examined Microsoft’s Azure platform, but we note that many other
alternatives exist. The utility of all of these approaches should be considered, if only to ensure that each
of the commercial providers remain under pressure to provide as economical a solution as possible.

We have noted that the PaaS infrastructure provided by Azure allows one to develop bespoke inter-
faces for specific executables that run in a batch mode. Despite the learning curve for developers who
do not have a background in writing C# code, these can be put together with a little effort requiring
approximately 400 lines of code, much of which can be appropriated from templates. The initial configu-
ration is complex but this could be fixed at first by those developing the bioinformatics pipelines though
it is clear that the process could be streamlined further by Azure developers in later releases. In this
light, and given the fact that the Worker roles can only run the Windows Server OS it is apparent that
the present offering is not a viable solution for bioinformatics software with analyses which are still being
developed. On the other hand a substantial set of stable bioinformatics software such as that available
via EMBOSS or BioLinux could be deployed very successfully using Azure and its PaaS.

We have shown that the pricing of Azure is comparable with other clouds (at least to within an
order of magnitude) though this is highly dynamic. We have also shown that results generated locally
are reproduced by equivalent Azure runs and that performance is not substantially affected. Run times
suggest that Azure is slower by roughly a factor of 2-3 than local PCs though one has to be careful since
we were not able to make a like-for-like comparison using precisely the same CPU-type, memory and
exact version of the Windows Operating System.

We have not discussed the general upload of public data as this is a global issue for any public cloud.
In tests on a University network we estimated that uploading 1 Tbyte would take approximately 26 hours.
This is a rough estimate and is highly dependent on the network connection. However, it is clear that at
the very least the large amounts of publicly available data should not be uploaded on an individual basis.
The cloud providers that can support this will have a substantial advantage over their competitors. We
note that Amazon have made steps in this direction by providing a number of relevant datasets available
free of charge such as the data from the modENCODE project [31].

Looking forward the continued blurring between IaaS and PaaS will enable developers and users to
make use of the best features of both. Developers can port images created locally to a cloud with precisely
the configuration they require, while still being able to run them programmatically so that scaling can be
achieved easily with an intuitive interface. If we draw an analogy with web-development, it is possible to
imagine an equivalent of Ruby-on-Rails [32] and Django [33]. Both of these enable the easy development
of dynamic web sites to be started, that can run using different web server technologies and the underlying
scripting languages of Ruby and Python. In the same way one can envisage a similar framework allowing
specific executables to be deployed on a cloud (not fixed to any one vendor) and which are run in a batch
mode and have an easy interface.
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Figure Legends

Figure 1. Batch mode operation schematic
Figure 2. Using Azure with the Generic Worker Shows that a number of Virtual Machines (VMs)
created for the worker roles can be scaled up and down as needed.
Figure 3. Time taken to load microarray data from Azure mass storage to R working
storage Plot showing the time in seconds taken to load each of 576 datasets from Azure blob storage to
local VM disk space, in terms of the number of CEL files in each GSE experiment.
Figure 4. Time taken to analyse data with R script Shows the time in seconds taken to analyse
each of 576 datasets, in terms of the number of CEL files in each GSE experiment.
Figure 5. Comparison of Analysis Times between Cloud and 2 Local machines Shows the
time in seconds taken to analyse each of 6 particular experiments, in terms of the number of CEL files
in each experiment. The particular experiments were chosen because they had 4, 8, 16, 32, 64 and 128
CEL files, to give a range of experiment data amounts. The machine labelled Local1 had a CPU clock
speed of 2.13 GHz, and the machine labelled Local2 had a CPU clock speed of 2.24 GHz. The 70% CPU
cap was added to the Local2 machine to crudely estimate the slower 1.60 GHz stated clock speed of the
Azure VM.

Supporting Information Legends

Supporting Information Document: SupplementaryInformation.pdf Appendix: Scaling an R
script on Azure using the Generic Worker

Tables
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Term Explanation Example
VM Virtual Machine - a piece of software that em-

ulates the behaviour of a separate computer
running an Operating System.

IaaS Infrastructure as a Service - VM’s can be ac-
cessed directly via a command line interface.

EC2, RackSpace,
OpenStack

PaaS Platform as a Service - VM’s can only be ac-
cessed programmatically

Azure, AppEngine,
Elastic BeanStalk,
Heroku

Job manager Software which manages the submission of an
arbitrary number of executables (jobs) over
a large number of computers which typically
vary in their parameters. Job Management
software will typically include the creation of
log files for each run in a systematic fashion
and deal with failures in an orderly way.

StarCluster,
Generic Worker,
Condor, Oracle
Grid Engine

Software stack A set of software that communicate with each
other in a hierarchical fashion. In the context
of cloud computing, this allows the decoupling
of issues that are relevant to each local com-
puter with global issues such as their overall
management.

Image Bit-for-bit copy of the state of a particular VM
which can then be deployed elsewhere. As a
result, one can use a VM which runs locally or
on a cloud which is configured precisely with
the software and data the user requires.

MapReduce A protocol for distributed systems that notes
that in the analysis of large data sets dis-
tributed over many VM’s require one (Map)
step that has to be executed by all the VM’s
on the data it has, followed by another (Re-
duce) step where the results of the Map step
are then collated in some fashion to one VM.

Hadoop, HDIn-
sight, Greenplum

Table 1. Definitions of Cloud Computing Terms
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Feature Microsoft Azure Amazon EC2
Infrastructure provision PaaS (Cloud Service) and IaaS

(Virtual Machines)
IaaS, also PaaS via Elastic
Beanstalk

Job Manager ? Via Generic Worker libraries Yes.

Operating Systems available
Windows Server 2008 on PaaS
Windows and Linux on IaaS

Linux and Windows

Data Storage Mass store S3 Storage
MapReduce available ? Yes Yes

SQL available ? Yes Yes
Ease of use for Linux developer Learning curve to get familiar

with C# ; authentication meth-
ods not yet trivial

Provision of excellent tutorials
plus extensive community sup-
port.

Ease of use for user GW allows development of tai-
lored tools

Requires experience of scripting
or workflow software such as
Galaxy or Taverna.

Table 2. Comparison of Cloud Computing Features

Feature Microsoft Azure Amazon EC2

VM (Small Instance) $ 0.08hr−1 PaaS - Windows
$ 0.06hr−1 IaaS - Linux

$ 0.06hr−1 U.S. East - Linux

Ingress Nothing Nothing (from Internet)
Egress $ 119.40Tbyte−1 $ 122.88Tbyte−1

Storage $ 95Tbyte−1Month−1 (Mass
storage - Globally redundant)

$ 97.28Tbyte−1Month−1 (S3
Standard)

Table 3. Cost of some features of Azure and Amazon Cloud Computing


