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Abstract

In a generalized linear model, the mean of the response variable is a possibly non-

linear function of a linear combination of explanatory variables. When the nonlinear

function is unknown and is estimated nonparametrically from the data, these models

are known as single index models. Using the relation of generalized linear models

with the exponential family model, this paper shows how to use a modi�ed version

of the empirical cumulant generating function to estimate the linear function of the

explanatory variables with no need of smoothing techniques. The resulting estimator

is consistent and normally distributed. Extensive simulations, partially reported

here, show that the method works in practice. The method can also be seen as

complementary to existing fully nonparametric methods. In fact, it can provide an

initial value that can be used to �ne tune a nonparametric estimator of the link

function in the �rst step of the estimation.

Key words: Empirical cumulant generating function, Exponential dispersion

model, Generalized linear model, Single index model.

1 Introduction

Generalized linear models (McCullagh and Nelder, 1989) allow the expectation of the

response Y given the explanatory variables X to be non linear, through what is called
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the the link function, e.g. E [Y |X] = G (X ′β), for some univariate function G, whose

inverse is called link function, i.e. X ′β = G−1 (E [Y |X]), as it links a linear function of

the predictors to the the conditional expectation. In some situations, it is not obvious

what G should be. If G is not speci�ed it can then be estimated from the data. Then,

one calls this semiparametric model the single index model.

The generalized linear model make direct reference to the exponential family model

and the exponential dispersion family model (Jørgensen , 1986, 1987). On the other hand,

the single index model makes reference to neither the speci�c functional form of G nor to

the distribution of the errors, hence it is more general.

The literature on estimation of single index models abound. One approach is the

average derivatives method, where one exploits the fact that

dE [Y |X = x] /dx = dG
(
x′β
)
/dx ∝ β,

and the prime ′ stands for transposition. This requires a high dimensional kernel smoother

and consequently is subject to the so called curse of dimensionality (Powell et al., 1989,

Härdle and Stoker, 1989 , see Hristache et al., 2001, for an improved method and ref-

erences therein). Another approach is to estimate G nonparametrically based on some

initial estimate of β and then estimate β using the estimator for G, cycling through the

procedure until convergence (e.g. Härdle et al., 1993, Horowitz and Härdle, 1996, Xia,

2006, Cui et al. 2011, Fan et al., 2013, and references therein). One of such nonpara-

metric models is the Estimating Function Method (EFM) approach of Cui et al. (2011).

This method achieves the same if not smaller variance than the estimator in Carroll et

al. (1997). For the EFM and other approaches, the �rst guess of β can be crucial for

convergence to a global maximum. The problem is made even harder by the fact that

the initial amount of smoothing used to estimate G strongly depends on the starting

value of β. This initial problem could be avoided if one had a reasonably good estimate

of the index parameter that does not require previous estimation of G based on some

fully nonparametric approach. Recently, Fan et al. (2013) have considered estimation

of the quantile regression for the single index model in the presence of large number

of regressors via penalization, essentially incorporating variable selection into the kernel

smoothing estimation.
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The goal of this paper is to impose the semiparametric restriction that the density of

Y conditional on X belongs to the exponential dispersion family model with canonical

link, and use this to estimate β. The estimation takes advantage of the fact that - under

the aforementioned restrictions- the only in�nite dimensional parameter is related to the

conditional cumulant generating function of the response variables. Direct estimation of

this would require nonparametric methods. However, this paper shows that it is pos-

sible to �nd a particular relation between the conditional mean and the unconditional

expectation of some known function of the data. To the author knowledge this relation

is new. Estimating unconditional expectations of known functions does not require any

smoothing. Hence, in this context, the estimation of β can be turned into a nonlinear

least square problem and estimated by Generalized Method of Moments (GMM). The

resulting estimator is shown to be normally distributed. The method is applicable to

continuous and binary dependent variables.

The next section presents the relation between the conditional mean and variance

of the response and the unconditional expectation of some function of the data. This

relation is the motivation for the estimator. Having de�ned the estimator, the asymptotic

properties are derived under regularity conditions. Section 3 contains a discussion of the

results and the conditions. The proofs are deferred to Section 4.

2 Statement of the Problem

For some λ > 0, let Pλ be a probability measure with cumulant generating function

λψ (t) = ln
(∫
eytdPλ (y)

)
supposed to be �nite for t ∈ T and T is some set containing

the origin (called the e�ective domain of ψ, e.g. Jørgensen, 1987). Then,

dPλ (y|η)

dPλ (y)
= exp {λ (ηy − ψ (η))} (1)

is a density in the exponential dispersion family with respect to (w.r.t.) the dominating

measure Pλ. The family is very large as it is essentially de�ned through any probability

measure Pλ having a �nite moment generating function around the origin. Hence, the

parameter space can be restricted to be the set of values η ∈ R and λ > 0 for which ψ (η)

is �nite, and λψ (•) is the cumulant generating function of some Pλ. Throughout it is
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assumed that λ and η are inside the parameter space, assumed to be nonempty, so that

λψ (t) is always �nite.

Here, interest is restricted to the canonical parameter η := x′β, for some explanatory

variable x ∈ X ⊆ RK and a conformable vector β. This shall be a maintained condition

throughout the paper. In its full generality, the exponential dispersion model assumes the

canonical parameter to be a possibly non linear function of x′β. As discussed in Nelder

and Wedderburn (1972), McCullagh and Nelder (1989), for η = x′β, (1) is a subset of

the generalized linear model such that, given a sample {Yi, Xi : i = 1, 2, ..., n}, a su�cient

statistic for β is given by
∑n

i=1XiYi. Here, interest is restricted to this case only, where

however λ(> 0) is unrestricted. The e�ective domain of ψ implicitly de�ne restrictions

on x and β via η.

Example 1 Consider ψ (η) = η2/2 and set λ = σ−2 for some σ2 ∈ (0,∞), so that the

exponential dispersion model is the linear Gaussian model

exp

{
1

σ2

(
yx′β − (x′β)2

2

)}
Pλ (y)

where Pλ (y) = 1√
2πσ2

exp
{
− y2

2σ2

}
. Then, {η ∈ R : ψ (η) <∞} = R so that the only

restriction on x and β is that x′β ∈ R.

In the above example, the parameters are essentially unrestricted. This is often not

the case.

Example 2 Let ψ (η) = − ln (−η) and λ > 0 so that the exponential dispersion model is

the gamma model

exp
{
λ
(
yx′b+ ln

(
−x′b

))}
Pλ (y)

where Pλ (y) = exp {(λ− 1) ln (λy) + lnλ− ln Γ (λ)}, and Γ (λ) is the gamma function.

Hence, the model is de�ned for η < 0 only in order to make sure that ψ (η) <∞. In this

case, it is convenient to reparametrise in terms of b̃ = −b so that η < 0 is for example

satis�ed restricting x and b̃ to have only positive entries.

Another implication is that the restriction on η does restrict the distribution of the

regressors when they are stochastic, or their range of values when deterministic. In the
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Gaussian example, X can take values in RK , but its distribution needs to be tight to

avoid in�nities.

Note that even under the current restriction on η, E [Y |X = x] = G (x′b), for pos-

sibly non-linear but monotonic G (McCullagh and Nelder, 1989, p. 20). In particular,

dψ (η) /dη is the inverse canonical link function, i.e. for η = x′β, dψ (η) /dη = E [Y |X = x]

(McCullagh and Nelder, 1989, p. 24).

Restricting attention to canonical links does have non-trivial implications. For ex-

ample, for binary response data, the canonical link is a logit, e.g. probit is ruled out.

However, the model does allow for consistent estimation for binary response and het-

eroskedasticity of unknown form. It is well known that in this case the estimator for a

standard logit is inconsistent (e.g. Davidson and MacKinnon, 1984). In the case of a con-

tinuous real valued response, if the conditional distribution of Y is Gaussian, a canonical

link implies a linear regression. Di�erent speci�cations for the dominating measure P do

lead to nonlinear regression for response variables with values in R. However, no closed

form solutions for ψ are known in these cases.

To better understand the derivation of the estimator, it is convenient to start with a

population version, which is then used to derive the feasible estimator.

2.1 Unfeasible Estimator

The following observation is the basis for the estimator proposed here.

Lemma 1 Let the density of Y conditional on X = x be in the dispersion exponential

model as in (1) with η = x′β. Suppose that,

E exp
{
−λψ

(
X ′β

)}
+ E exp

{
Y
(
t−X ′β

)}
<∞

De�ne

µ (t, b) :=
d lnE exp {Y (t−X ′b)}

dt
,

and

σ2 (t, b) :=
d2 lnE exp {Y (t−X ′b)}

dt2
.
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Then,

E [Y |X = x] = ψ(1)
(
x′β
)

= µ
(
λx′β, λβ

)
and

V ar (Y |X = x) = ψ(2)
(
x′β
)
/λ

= σ2
(
λx′β, λβ

)
,

where ψ(j) (t) := djψ (t) /dtj, with ψ as in (1).

Proof. Let PX be the law of X. Then,

E exp
{
Y
(
t− λX ′β

)}
= EE

[
exp

{
Y
(
t− λX ′β

)}
|X
]

=

∫ ∫
exp

{
y
(
t− λx′β

)}
exp

{
λ
(
x′βy − ψ

(
x′β
))}

dPλ (y) dPX (x)

[Using (1) to take expectation]

=

∫ ∫
exp

{
λ

(
ty

λ
− ψ

(
x′β
))}

dPλ (y) dPX (x)

= exp

{
λψ

(
t

λ

)}∫
exp

{
−λψ

(
x′β
)}
dPX (x)

[by the properties of (1), e.g. eq. (2.6) in Jorgensen (1987)]

=: exp

{
λψ

(
t

λ

)}
Cψ,

by obvious de�nition of Cψ. Taking logs, di�erentiating w.r.t. t, and evaluating at

t = λx′β,

d lnE exp {Y (t− λX ′β)}
dt

]
t=λx′β

= λ
dψ (t/λ)

dt

]
t=λx′β

= ψ(1)
(
x′β
)
,

and the left most side term above is just µ (t, b), as de�ned in the statement of the lemma,

with t = x′b and b = λβ. From the properties of the exponential dispersion model (e.g.

Jørgensen , 1987) or by direct calculation, it follows that the right most hand side of the
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above display is E [Y |X = x]. Di�erentiating once again, gives the conditional variance

d2 lnE exp {Y (t− λX ′β)}
dt2

]
t=λxβ

= λ
d2ψ (t/λ)

dt2

]
t=λx′β

=
ψ(2) (x′β)

λ
,

where again the left hand side element is just σ2 (t, b) where t = x′b and b = λβ.

In Lemma 1, E exp {Y (t− λX ′β)} is neither the unconditional or the conditional mo-

ment generating function of the response, as the expectation is w.r.t. both Y and X. The

conditional mean is found as the �rst derivative w.r.t. t of the log of this expression and

then evaluating at t = λx′β. Given that the expression uses only unconditional expec-

tation, it is amenable of estimation with no need of smoothing techniques by replacing

expectations with empirical ones.

If in Lemma 1 we knew µ (t, b), we could derive an unfeasible estimator for λβ. Note

that β is not identi�able from the function µ alone. However, the structure of (1) with

η = x′β does make λβ uniquely identi�able. Furthermore, the inclusion of an intercept

in the estimation becomes redundant. This does not mean that the model cannot have

mean di�erent from zero.

Example 3 Suppose that X = 1, i.e. the intercept only case. Then, β = b/λ becomes

the intercept in the model. Consequently,

µ (b, b) : =
d lnE exp {Y (t− b)}

dt

]
t=b

=
EY exp {Y (t− b)}
E exp {Y (t− b)}

]
t=b

= EY.

The b parameter drops and is not recoverable. The more general case of regressors plus

intercept preserves the entries in b that do not correspond to the intercept, but makes the

intercept unidenti�able.
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Maximization of the log-likelihood from (1) gives the following moment vector valued

equation

mn (b) :=
1

n

n∑
i=1

[
Yi − µ

(
X ′ib, b

)]
Xi = 0K , (2)

satis�ed by b = λβ, where 0K is the K-dimensional vector of zeros. The above display

is well known in the theory of quasi-maximum likelihood estimation, as it requires sam-

ple orthogonality between the error term and the regressors. The form of this moment

condition relies on the canonical parameter being linear.

Then, from the theory of optimal estimating functions and GMM, an estimator of λβ

is given by minimizing the following - unfeasible- objective function

mn (b)′W−1mn (b) (3)

where

W = lim
n

1

n

n∑
i=1

ψ(2) (X ′iβ)

λ
XiX

′
i, (4)

pretending that the limit exists; note that

lim
n

E
[
mn (λβ)mn (λβ)′ |X

]
= W, (5)

e.g. Jørgensen (1987). The unfeasible estimator is the starting point for the construction

of a feasible estimator, as described in the next section.

2.2 Feasible Estimator

The unfeasible estimator is based on µ (t, b) and σ2 (t, b), evaluated at t = λx′β and

b = λβ, as de�ned in Lemma 1. The following shows that these quantities are actually

the mean and the variance of Y w.r.t. a suitable change of measure.

Lemma 2 Suppose that there are compact sets T ⊂ R and B ⊂ RK such that for some

ε > 0,

sup
t∈T ,b∈B

E exp
{

(1 + ε)Y
(
t−X ′b

)}
<∞.

Then, for t ∈ T , b ∈ B,

µ (t, b) = EP (t,b) [Y ] ,
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σ2 (t, b) = V arP (t,b) (Y ) ,

where EP (t,b) and V arP (t,b) are mean and variance with respect to the law de�ned by

dPY X (y, x; t, b) = L (y, x; t, b) dPY X (y, x) ,

where PY X (y, x) is the joint law of Y and X and

L (y, x; t, b) :=
exp {y (t− x′b)}

E exp {Y (t−X ′b)}
.

Proof. By the condition in the lemma, it is possible to interchange between inte-

gral and derivatives, as the integrand and its partial derivative w.r.t. t are continuous.

Then, by the de�nition of µ as in Lemma 1, interchanging the order of expectation and

di�erentiation,

µ (t, b) =
EY exp {Y (t−X ′b)}
E exp {Y (t−X ′b)}

.

Similarly, for σ2 as in Lemma 1,

σ2
(
λx′β, λβ

)
=

EY 2 exp {Y (t−X ′b)}
E exp {Y (t−X ′b)}

−
[
EY exp {Y (t−X ′b)}
E exp {Y (t−X ′b)}

]2
.

Let

L (t, b) := L (Y,X; t, b) :=
exp {Y (t−X ′b)}
E exp {Y (t−X ′b)}

.

These equations say that µ (t, b) and σ2 (λx′β, λβ) are the unconditional mean and vari-

ance of L (t, b)Y , respectively, where L (t, b) has values in [0,∞) and has mean one.

Hence, by the Radon-Nikodym Theorem,

dPY X (y, x; t, b) = L (y, x; t, b) dPY X (y, x) ,

where the quantities on the r.h.s. are as de�ned in the statement of the lemma.

By replacing expectation with sample averages, Lemma 2 allow us estimate the pop-

ulation quantities in terms of the following empirical counterparts:

pin (Xj , b) :=
exp

{
Yi (Xj −Xi)

′ b
}∑n

i=1 exp
{
Yi (Xj −Xi)

′ b
} , (6)
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µn
(
X ′jb, b

)
:=

n∑
i=1

Yipin (Xj , b) ,

σ2n
(
X ′jb, b

)
:=

n∑
i=1

Y 2
i pin (Xj , b)−

[
µn
(
X ′jb, b

)]2
,

gn (b) =
1

n

n∑
j=1

[
Yj − µn

(
X ′jb, b

)]
Xj ,

Wn0 :=
1

n

n∑
j=1

XjX
′
j .

Wn (b) :=
1

n

n∑
j=1

σ2n
(
X ′jb, b

)
XjX

′
j .

It will be shown that by replacing µ with µn the estimating equation does not have

asymptotic variance equal to W , hence, the sample estimators σ2n and Wn are not used

to derive a feasible estimator. However, σ2n still provides information about any possible

heteroskedasticity in the data, as it represents the conditional asymptotic variance of the

error term not corrupted by the fact that µ is being replaced by µn. Hence, it can be

used for data analysis. Consistency of the above statistics rests on regularity conditions.

The following are su�cient for the present purposes.

Condition 1 The sequence (Yi, Xi)i∈N is i.i.d. with Yi having density conditional on

Xi = x equal to (1) with η = η (x′β) = x′β.

Condition 2 Let B be a compact Euclidean set such that the moment condition (2) is

uniquely satis�ed by b = λβ, for λβ in the interior of B.

Condition 3 X1 ∈ X , where X is a Euclidean subset such that

max
b∈B

sup
x∈X

∣∣x′b∣∣ ≤ T <∞

and EX1X
′
1 has full rank.
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Condition 4 There is an ε1 > 0 such that

E exp {(4 + ε1)T |Y1|} <∞.

Remarks on the conditions are deferred to Section 3. The fact that one is using µn

instead of µ leads to extra terms in addition to V in the variance of gn (b). Let Ei be

expectation w.r.t. to the variables with index i only. For X and µ, de�ne

p̄i (X; b) = Ej
Xj exp

{
Yi (Xj −Xi)

′ b
}

Ei exp
{
Yi (Xj −Xi)

′ b
} , p̄i (µX; b) = Ej

µ
(
X ′jb, b

)
Xj exp

{
Yi (Xj −Xi)

′ b
}

Ei exp
{
Yi (Xj −Xi)

′ b
} .

(7)

The following gives the variance matrix of the feasible estimating equation.

R (b) := V ar
((
Y1 − µ

(
X ′1b, b

))
X1 + Y1p̄1 (X; b) + p̄1 (µX; b)

)
, (8)

so that the �rst term in R (λβ) is W as in (4) (here, for any random column vector Z,

V ar (Z) = E [(1− E)Z] [(1− E)Z]′). Though R (b) is unknown, it can be replaced by

the sample estimator

Rn (b) : =
1

n

n∑
i=1


(

1− 1

n

n∑
i=1

)(Yi − µn (X ′ib, b))Xi + Yi
1

n

n∑
j=1

Xj

(
1 + µn

(
X ′jb, b

))
pin
(
X ′jb, b

)
×


(

1− 1

n

n∑
i=1

)(Yi − µn (X ′ib, b))Xi + Yi
1

n

n∑
j=1

Xj

(
1 + µn

(
X ′jb, b

))
pin
(
X ′jb, b

)
′

.

In Section 4 (Lemma 7) it is shown that Rn (b) is consistent for R (b) (Lemma 6 also

shows that Wn (λβ) is consistent for W ). Recall that the present procedure only allows

to identify λβ. The feasible estimator is obtained as follows:

b̂0 := arg min
b∈B

gn (b)′W−1n0 gn (b) , (9)

and then using b̂0 to obtain the estimator

b̂ = arg min
b∈B

gn (b)′
[
Rn

(
b̂0

)]−1
gn (b) , (10)

11



where B is as in Condition 2. Amongst estimators derived from gn (b)′A−1gn (b) with

some full rank matrix A, the one derived from (10) has smallest asymptotic variance (e.g.

Hansen, 1982, Godambe and Heyde, 1987).

Under regularity conditions, the consistency and asymptotic normality of the unfea-

sible estimator follow from standard results on M -estimators (e.g. Hansen, 1982, for the

original proof in the GMM context). Hence, the goal is to show that the same holds for

the feasible estimator under regularity conditions.

Theorem 1 Under Conditions 1, 2, 3, and 4,

√
n
(
b̂− λβ

)
→ N

(
0K ,

∆′R−1∆

λ

)

where R = R (λβ) is as in (8), and ∆ = limn dmn (λβ) /d (λβ). Moreover,

dgn (b)

db

]
b=b̂

= ∆ + op (1)

and

Rn

(
b̂
)

= R+ op (1) .

3 Discussion

It is important to understand the implications of the regularity conditions. Lemma 1

critically relies on Condition 1. Condition 1 rules out any form of endogeneity. It is

possible to extend the moment condition using an instrument in place of X. However,

in this case Lemma 1 does not hold and the procedure is not fully justi�ed. Condition 2

is high level. For some problems, identi�cation is not necessarily straightforward. This

is particularly so for binary response (e.g. Manski, 1988). Condition 3 requires X to

be bounded. This condition has non trivial implications on Condition 2 for the case of

binary response. If the predictors have bounded support, Chamberlain (2010) shows that,

for binary response, identi�cation in Condition 2 is only satis�ed in the logistic case. As

mentioned in the introduction, Condition 1 implies that, for binary data, the link function

is the logistic with the possibility of heteroskedasticity of unknown form. Condition 4

requires Y to have tails as thin as an exponential density with mean parameter less than
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[(4 + ε1)T ]−1. Since T would be rarely known in practice, essentially this requires Y to

have super exponential tails. Unfortunately, the fact that µn is based on exponential

functions with in�nite support makes the control of the estimation error more di�cult

than for methods that are based on kernel smoothers, where the kernel is assumed to be

bounded (e.g. Assumption 1 in Hansen, 2008). A bounded support for the explanatory

variables seems to be required. The latter is needed to show that using µn rather then

µ is asymptotically equivalent for estimation of λβ. At present, the author has been

unable to show that this condition could be dispensed by truncation of X and successfully

controlling the resulting error. Besides this strong condition, all other conditions appear

to be relatively standard within the exponential model set-up. It might be possible that

using some clever argument based on the fact that µn and σ2n are expectations w.r.t. to

the empirical measure (6), one could weaken the conditions used.

The conclusions of Theorem 1 are (1.) that the resulting estimator is consistent as

the unfeasible estimator based on knowledge of µ (up to the unknown parameter λβ to be

estimated), and (2.) that con�dence intervals can be constructed using weakly consistent

estimators of the covariance matrix. The theoretical result does not guarantee that the

estimator might perform well in �nite samples. Section 3.3 provides some numerical

evidence to complement the theoretical one.

The fact that σn andWn are consistent estimators of σ andW respectively (Lemma 6)

can be used for model diagnostic. A cross-plot of
{
t, σ2n

(
t, b̂0

)}
can show any possible de-

pendence of the variance of the model on the regressors, as supt

∣∣∣σ2n (t, b̂0)− σ2 (t, λβ)
∣∣∣ =

op (1). The Frobenius norm
∣∣∣Rn (b̂0)−Wn

(
b̂0

)∣∣∣
2
(for any K ×K dimensional matrix A,

Trace (AA′/K)) can be used to evaluate the loss incurred in estimating µ via µn using

loss :=
∣∣∣Rn (b̂0)−Wn

(
b̂0

)∣∣∣2
2
/
∣∣∣Wn

(
b̂0

)∣∣∣2
2
, as both Rn

(
b̂0

)
and Wn

(
b̂0

)
are consistent

for R and W , respectively . Clearly, loss ' 0 means that the sample is very informative

and the semiparametric model holds.

3.1 Relation with More General Methods

The method discussed here falls in between fully parametric Generalized Linear Model

estimation and non-parametric estimation of the single index model. Despite the di�er-

ences, to put the current approach into prospective, it is instructive to highlight common
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assumptions and results for nonparametric estimation of the single index model. For

de�niteness, consider the main assumptions of the EFM in Cui et al. (2010). There,

identi�cation is assumed. The mean and variance function need to have two continuous

derivatives in order to control the approximation error. Discrete regressors are allowed

and only a second moment condition is needed for the regressors. The link function, the

dependent variable, and the regressors are also constrained implicitly via the expectation

of the supremum of the square of the �rst order conditions in the estimation (Condition

(e) in that paper). That condition requires either the regressors to have bounded support,

or the link function to be bounded. Cui et al. (2010) show that their estimator for the

single index is root-n consistent and e�cient.

For binary response variables, other nonparametric procedures have also been studied

under even weaker conditions, though at the cost of not achieving root-n consistency. Only

imposing a conditional median assumption, allowing for general forms of heteroskedas-

ticity, the method of Maximum-Score (Manski, 1975) attains the cube-root convergence

(Kim and Pollard, 1991) and, under additional smoothing restrictions, the smoothed ver-

sion improves the rate to n−2/5, where n is the sample size (Horowitz, 1992). Recently,

Khan (2013) has proposed a sieve type estimator for such problems which attains the

optimal rate for such sieve estimators. See Ger�n (1996) for a comparison of some of

these methods.

3.2 Remarks on Optimization

The solution to (9) and (10) requires non-linear optimization of a function that may not

be strictly convex. In consequence, gradient based methods can lead to a local minimum

rather than a global one. The usual suggestion is to try di�erent initial solution. In

practice, one should attempt to derive an initial solution for (9) based on global optimizers

such as genetic algorithms (e.g. Langdon and Poli, 2002, for a textbook reference).

Such optimizers are easy to code and routinely available in some computer packages

(e.g. Matlab). This initial solution can then be used in gradient based methods such as

the Levenberg�Marquardt algorithm or similar trust region algorithms (e.g. Byrd et al.,

1987). These remarks are valid not just for the current estimator but for most nonlinear

least squares estimators.
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3.3 Numerical Experiment

Following Friedman (2001), amongst others, simulations are carried out from a random

model. This is done to reduce the dependence of the results on the Monte Carlo set up.

The simulation setup is as follows:

Yi = G
(
X ′iβ

)
+ σZi

G
(
X ′iβ

)
= a0 + a1X

′
iβ + a2 cos

(
2π
(
a3X

′
iβ + a4

))
where a0, a1, a2, a3, a4 ∈ [0, 1], β = (β1, β2, ..., βK)′, with βk ∈ [−1, 1] /

√
K,K ∈ {2, 3, ..., 50},

Xik, Zi ∼ N (0, 1), σ ∈
[
0, .5

√
V ar (G (X ′iβ))

]
. The parameters a′s, β′s, K and σ are

sampled from a uniform distribution in their respective range and the sample size is

n = 400. The number of simulations is 250. Note that the above model does not belong

to (1), as a conditional Gaussian distribution with canonical link always imply a linear

G, moreover, even if another conditional distribution were used, G is always monotonic

for the model in (1).

For simplicity, the semiparametric estimator (SP) is estimated using (9) only. The

estimator of Cui et al. (2010) (EMF) is also computed and used as benchmark. The

initial value of b for the estimation of β is set equal to (1, 1, ..., 1) /
√
K and estimation is

carried out using a trust region algorithm for SP and the algorithm in Cui et al. (2010)

for EFM.

Figure 1 reports the box plot for the l1 error

K∑
k=1

∣∣∣∣∣ b̂k√
b̂′b̂
− βk√

β′β

∣∣∣∣∣
where b̂ is the estimator from SP, EMF, EMF when the starting value for b is the output

of SP (hence SP_EMF), and from the naive linear regression estimation of β (OLS). The

EMF estimator requires to tune the smoothing parameter, say h, in the kernel estimation.

Here,

h = c

√
σXσY

0.6745

(
4

3n

) 1
5

where σX is the (in sample) median absolute deviation of X and similarly for σY . The

above is just a regression version of Silverman's rule of thumb to �nd the order of magni-
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tude of smoothing. The constant c ∈ {.05, .25, .5, .75, 1, 1.25, 1.75, 2.25, 2.75, 3.5} is then

chosen in each simulation to minimize the ex post l1 error of the EFM estimator.

Figure 1. Simulation Results

The goal of the simulation is not to show that the current estimator outperforms the

EMF, as this is also quite dependent on the above simulation setup and the optimization

algorithm used. Nevertheless, the simulation framework is relatively general and shows

that the performance is acceptable. The goal is to show that SP is a viable estimator that

does not require �ne tuning of smoothing. As the simulation shows, once SP is available,

one can then use this as a starting value for more general non-parametric techniques as

the EFM, in the present case. It is worth mentioning that the SP estimator was compared

to EFM using the Monte Carlo set up in Cui et al. (2010), see also Xia (2006). In that

speci�c case, with the initial guess given by Cui et al. (2010), the performance of EFM

was considerably better.

In the present simulations, the author believes that the EFM might get stuck to a

local minimum with higher probability than the SP due to the fact that one needs to
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control smoothing. As shown as shown in Figure 1, once an initial good choice of b and

of bandwidth is available, a non-parametric method should outperform the SP estimator,

unless the sample size is quite small and the bias of SP is also small.

4 Proofs

Throughout, b0 = λβ, and

µ(k)n (t, b) =
1

n

n∑
i=1

Y k
i exp

{
Yi
(
t−X ′ib

)}
µ(k) (t, b) = EY k

i exp
{
Yi
(
t−X ′ib

)}
so that µn = µ

(1)
n /µ

(0)
n and similarly for µ. For any K dimensional vector x, |x|1 =∑K

k=1 |xk| is the l1norm where xk denotes the kth entry in x. The method of proof

exploits properties of U -statistics together with uniform convergence. The following is

useful in deriving uniform convergence rates.

Lemma 3 For any �nite constants kl, l = 0, 1, ...,K, de�ne

f (x, y; b, t) := yk0
K∏
l=1

xkll exp
{
y
(
t− x′b

)}
,

where for a vector x, xl denotes the l
th entry. The class of functions

F := {f (•, •; b, t) : b ∈ B, |t| ≤ T}

has �nite envelope function under the L2 norm and δ-bracketing number w.r.t. the L2

norm equal to N (δ) = O (δ−p) for some �nite p depending on kl, l = 0, 1, ...,K.

Proof. By the Mean Value Theorem, infer that

yk0
K∏
l=1

xkll exp
{
y
(
t− x′b

)}
− yk0

K∏
l=1

xkll exp
{
y
(
s− x′a

)}
≤

(
yk0

K∏
l=1

xkll sup
b∈B,|t|≤T

exp
{
y
(
t− x′b

)})(
|y| |s− t|+

K∑
l=1

|xl| |al − bl|

)
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≤ C (exp {(2T + ε) y})

(
|s− t|+

K∑
l=1

|al − bl|

)
(11)

for some �nite absolute constant C that depends on kl and any ε > 0. By Condition 4

E exp {(4T + 2ε)Y1} < ∞ taking ε1 = 2ε. Hence, Theorem 2.7.11 in van der Vaart and

Wellner (2000) says that F has �nite δ-bracketing number under the L2 norm which is as

stated in the lemma because T <∞ and B is a compact Euclidean set. The fact that the

envelope function is �nite under the L2 norm also follows from (11).

Lemma 4 Under Conditions 1, 3 and 4, for �nite constants kl, l = 0, 1, ...,K,

sup
b∈B

sup
|t|≤T

∣∣∣∣∣ 1√
n

n∑
i=1

(
1− Ei

)
Y k0
i

K∏
l=1

Xkl
il exp

{
Yi
(
t−X ′ib

)}∣∣∣∣∣ = Op (1) ,

where Xil is the l
th entry in the vector Xi. In consequence, for any �nite k,

sup
b∈B

sup
|t|≤T

∣∣∣µ(k)n (t, b)− µ(k) (t, b)
∣∣∣ = Op

(
n−1/2

)
and

sup
b∈B

sup
|t|≤T

∣∣∣∣∣ 1

µ
(0)
n (t, b)

− 1

µ(0) (t, b)

∣∣∣∣∣ = Op

(
n−1/2

)
.

Proof. By Lemma 3, the class of functions F has bracketing number under the L2

norm satisfying
∫∞
0

√
lnN (δ)dδ <∞ and a �nite envelope function under the L2 norm.

Hence, Theorem 2.5.6 in van der Vaart and Wellner (2000) implies that F is Donsker, i.e.

{
1√
n

n∑
i=1

(
1− Ei

)
Y k0
i

K∏
l=1

Xkl
il exp

{
Yi
(
t−X ′ib

)}
: |t| ≤ T, b ∈ B

}

converges weakly to a Gaussian process with a.s. continuous sample paths. Hence, the

�rst display in the lemma holds by compactness of the parameter space. The second

display in the statement is a special case of the �rst by setting k0 = k and kl = 0,

l = 1, 2, ...,K, and then dividing by
√
n. For the the last part note that

= sup
t,b

∣∣∣∣∣ 1

µ
(0)
n (t, b)

− 1

µ(0) (t, b)

∣∣∣∣∣
≤ 1

inft,b µ
(0)
n (t, b)µ(0) (t, b)

sup
t,b

∣∣∣µ(0)n (t, b)− µ(0) (t, b)
∣∣∣

18



≤ 1

inft,b µ(0) (t, b)
(
µ(0) (t, b) + µ

(0)
n (t, b)− µ(0) (t, b)

)Op (n−1/2)
= Op

(
n−1/2

)
using the fact that

inf
b∈B,|t|≤T

µ(0) (t, b) ≥ E exp {−2T |Y1|} (12)

> ε

/for some ε > 0, because Y1 is tight by Condition (4), and using the fact that µ
(0)
n − µ(0)

converges uniformly to zero.

The following provides the basic ingredients for asymptotic normality of the estimator.

Lemma 5 Under Conditions 1, 2, 3 and 4,

√
ngn (b0)→ N (0, R)

in distribution where R = R (b0) with R (b) as in (8). Moreover,

sup
b∈B
|gn (b)−mn (b)| = op (1)

and

sup
b∈B

∣∣∣∣dgn (b)

db
− dmn (b)

db

∣∣∣∣
1

= op (1)

Proof. Adding and subtracting µ,

√
ngn (b) =

√
nmn (b) +

1√
n

n∑
j=1

(
µn
(
X ′jb, b

)
− µ

(
X ′jb, b

))
Xj .

It is convenient to deal with the two terms separately. First note that
√
nmn (b0) is a

root-n standardized partial sum of mean zero random with �nite variance, hence, it is

mean zero with asymptotic variance given by (5). To control the second term in the

previous display, note that, omitting arguments for convenience,

µn
(
X ′jb, b

)
− µ

(
X ′jb, b

)
=

µ
(1)
n − µ(1)

µ
(0)
n

+

(
µ(1)

µ(0)

)
µ(0) − µ(0)n

µ
(0)
n
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=
µ
(1)
n − µ(1)

µ(0)
+

(
µ(1)

µ(0)

)
µ(0) − µ(0)n

µ(0)

+

[
µ
(1)
n − µ(1)

µ(0)
+

(
µ(1)

µ(0)

)
µ(0) − µ(0)n

µ(0)

]

×

(
µ(0) − µ(0)n

µ
(0)
n

)
=: In

(
X ′jb, b

)
+ IIn

(
X ′jb, b

)
+ IIIn

(
X ′jb, b

)
with obvious notation in the last de�nition. Then, for every b ∈ B,

√
nUn (b) :=

1√
n

n∑
j=1

Xj

[
In
(
X ′jb, b

)
+ IIn

(
X ′jb, b

)]
=

1

n3/2

n∑
i,j=1

Xj

[(
1− Ei

)
Yi exp {Yi (Xj −Xi) b}

Ei exp {Yi (Xj −Xi) b}

+
EiYi exp {Yi (Xj −Xi) b}
Ei exp {Yi (Xj −Xi) b}

(
1− Ei

)
exp {Yi (Xj −Xi) b}

Ei exp {Yi (Xj −Xi) b}

]

=
1

n3/2

∑
i 6=j

Xj

[(
1− Ei

)
Yi exp {Yi (Xj −Xi) b}

Ei exp {Yi (Xj −Xi) b}

+
EiYi exp {Yi (Xj −Xi) b}
Ei exp {Yi (Xj −Xi) b}

(
1− Ei

)
exp {Yi (Xj −Xi) b}

Ei exp {Yi (Xj −Xi) b}

]
+ op (1)

is a root-n standardized (mean zero) U -statistic of order 2; the r.h.s. of the �rst equality is

a V -statistic, which is asymptotically equivalent to the U -statistic in the second equality.

This U -statistic has non-degenerate kernel, hence by Hoe�ding decomposition,

√
nUn (b) =

1

n1/2

n∑
i=1

[(
1− Ei

)
YiE0X0 exp {Yi (X0 −Xi) b}

µ(0) (S0 (b) , b)

+
(
1− Ei

)
E0µ

(
X ′0b, b

) X0 exp {Yi (X0 −Xi) b}
µ(0) (X ′0b, b)

]
+ op (1) .

The �rst term on the r.h.s. is asymptotically normal (e.g. van der Vaart, 1998, theorem

12.3) with asymptotic variance equal to

V ar

(
Y1E0X0 exp {Y1 (X0 −X1) b}

µ(0) (X ′0b, b)
+ E0µ

(
X ′0b, b

) X0 exp {Y1 (X0 −X1) b}
µ(0) (X ′0b, b)

)
= V ar (Y1p̄1 (X; b) + p̄1 (µX; b)) ,
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with p̄1 as de�ned in (7).

De�ne

IVn
(
X ′jb, b

)
:=

µ(0)
(
X ′jb, b

)
− µ(0)n

(
X ′jb, b

)
µ
(0)
n

(
X ′jb, b

)


Then,

√
nDn (b) :=

1√
n

n∑
j=1

XjIIIn
(
X ′jb, b

)
=

1√
n

n∑
j=1

Xj

[
In
(
X ′jb, b

)
+ IIn

(
X ′jb, b

)]
IVn

(
X ′jb, b

)
.

Consider each term in the brackets separately. Hence,

1√
n

n∑
j=1

XjIn
(
X ′jb, b

)
IVn

(
X ′jb, b

)
=

1

n5/2

n∑
i,j,l=1

Xj

(
1− Ei

)
Yi exp

{
Yi (Xj −Xi)

′ b
}

E0 exp
{
Y0 (Xj −X0)

′ b
} (

1− El
)

exp
{
Yl (Xj −Xl)

′ b
}

1
n

∑n
l=1 exp

{
Yl (Xj −Xl)

′ b
}

=
1
n

∑n
j=1 |Xj |

inf |t|≤T E0 exp {Y0 (t−X ′0b)} 1
n

∑n
l=1 exp

{
Yl
(
t−X ′lb

)}
× 1

n1/2
sup
|t|≤T

∣∣∣∣∣ 1

n1/2

n∑
i=1

(
1− Ei

)
Yi exp

{
Yi
(
t−X ′ib

)}∣∣∣∣∣ sup
|t|≤T

∣∣∣∣∣ 1

n1/2

n∑
i=1

(
1− Ei

)
exp

{
Yi
(
t−X ′ib

)}∣∣∣∣∣
= Op

(
n−1/2

)
using Lemma 4 and (12). The second term in

√
nDn (b) is dealt with similarly. Hence,

infer that
√
nDn (b) = Op

(
n−1/2

)
so that it does not contribute the the asymptotic

distribution of gn.

Since
√
nmn (b0) plus

√
nUn (b0) forms a sum of i.i.d. random variables, the Central

Limit Theorem applies with variance

R := V ar
((
Y1 − µ

(
X ′1b0, b0

))
X1 + Y1p̄1 (X; b0) + p̄1 (µX; b0)

)
.

21



For the last part of the lemma, note that

sup
b∈B
|gn (b)−mn (b)| = sup

b∈B

∣∣∣∣∣∣ 1n
n∑
j=1

(
µn
(
X ′jb, b

)
− µ

(
X ′jb, b

))
Xj

∣∣∣∣∣∣
≤ sup

b∈B
|Un (b)|+ sup

b∈B
|Dn (b)| ,

for Un and Dn as de�ned above in this proof. The uniform convergence of the above

terms follow along the lines of the previous parts of the proof using Lemma 4. Similarly,

sup
b∈B

∣∣∣∣dgn (b)

db
− dmn (b)

db

∣∣∣∣
1

≤ sup
b∈B

∣∣∣∣dUn (b)

db

∣∣∣∣
1

+ sup
b∈B

∣∣∣∣dDn (b)

db

∣∣∣∣
1

.

From the above proof, it is clear that convergence of the r.h.s. in the above display

requires uniform convergence of terms such as

1

n

n∑
i=1

(
1− Ei

)
YiXil exp

{
Yi
(
t−X ′ib

)}
,

which again follows by Lemma 4.

Lemma 6 Under Conditions 1, 2, 3 and 4,

sup
b∈B
|Wn (b)−W (b)| → 0K×K ,

where

W (b) := lim
n

1

n

n∑
j=1

σ2
(
X ′jb, b

)
XjX

′
j

exists and is elementwise �nite, 0K×K is the K-dimensional square matrix of zeros, and

|•| is understood as elementwise absolute norm. Note that W = W (λβ) is as in (4).

Proof. At �rst one needs to show that

sup
b∈B,|t|≤T

∣∣σ2n (t, b)− σ2 (t, b)
∣∣ = op (1) . (13)

To this end note that

σ2n (t, b) :=
µ
(2)
n (t, b)

µ
(0)
n (t, b)

−

[
µ
(1)
n (t, b)

µ
(0)
n (t, b)

]2
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Then (13) follows from the convergence of the above sample quantities to the population

ones using Lemma 4. Convergence ofWn (b) uniform in b follows by ergodicity of (Xj)j∈N

and (13).

Lemma 7 Under Conditions 1, 2, 3 and 4,

where |•| is understood as elementwise absolute norm.

Proof. Consider the following heuristic steps for two typical terms in the de�nition

of Rn (b),

1

n

n∑
i=1

[
YiXiµn

(
X ′ib, b

)]2
=

1

n

n∑
i=1

[
YiXiµ

(
X ′ib, b

)]2
+ op (1)

= E
[
Y1X1µ

(
X ′1b, b

)]2
+ op (1)

and using the de�nition of pin,

1

n

n∑
i=1

Yi 1
n

n∑
j=1

Xjµn
(
X ′jb, b

)
npin

(
X ′jb, b

)2

=
1

n

n∑
i=1

Yi 1
n

n∑
j=1

Xjµ
(
X ′jb, b

) exp
{
Yi (Xj −Xi)

′ b
}

µ(0)
(
X ′jb, b

) + op (1)

2

=
1

n3

∑
i,j,l

Y 2
i Xjµ

(
X ′jb, b

) exp
{
Yi (Xj −Xi)

′ b
}

µ(0)
(
X ′jb, b

) Xlµ
(
X ′lb, b

) exp
{
Yi (Xl −Xi)

′ b
}

µ(0)
(
X ′lb, b

) + op (1)

=
1

n2

∑
j,l

E0Y 2
0 Xjµ

(
X ′jb, b

) exp
{
Y0 (Xj −X0)

′ b
}

µ(0)
(
X ′jb, b

) Xlµ
(
X ′lb, b

) exp
{
Y0 (Xl −X0)

′ b
}

µ(0)
(
X ′lb, b

) + op (1)

= E0Y 2
0

[
E1X1µ

(
X ′1b, b

) exp
{
Y0 (X1 −X0)

′ b
}

µ(0) (X ′1b, b)

]2
+ op (1) ,

where the last display required extra care, as
∑n

j=1Xjµ
(
X ′jb, b

)
exp{Yi(Xj−Xi)

′b}
µ(0)(X′jb,b)

could

not be bounded uniformly in Yi, but only inX
′b (i.e. it was necessary to expand the square

and take limit with respect to the sum with index i �rst). Using Lemma 4, one can make

the above arguments precise and uniform in b as well. In the interest of conciseness, the

details are left to the reader.
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Proof. [Theorem 1] At �rst one establishes consistency of b̂. Since

|gn (b)− Emn (b)| ≤ |gn (b)−mn (b)|+ |(1− E)mn (b)| ,

the second part of Lemma 5 gives uniform convergence to zero of the �rst term on the r.h.s.

The convergence of the second term on the r.h.s. can also be easily established. Then,

by Conditions 1 and 2, the consistency follows by standard arguments (e.g. Corollary

3.2.3 in van der Vaart and Wellner, 2000) because Rn

(
b̂0

)
has a non-stochastic limit

by Lemma 7. For this to hold, one needs b̂0 to be consistent, which is the case by the

aforementioned arguments and the fact that this estimator is derived fromWn0 which does

not depend on b and has a non-stochastic limit by the law of large numbers and Condition

3. Once consistency is established, Theorem 1 can be explicitly shown using Theorem

3.1 in Hansen (1981). Lemma 5 and 7 give su�cient conditions for the assumptions in

Theorem 3.1 of Hansen (1981) to hold, proving the theorem.
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