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Abstract

Can education policy reduce the incidence of teenage motherhood? This paper
uses data from the largest UK household-level survey to investigate the impact of
a change in legislation, which increased the duration of compulsory schooling, on
the timing of fertility using a regression discontinuity design. The findings indicate
strong evidence that the schooling reform induced a downwards impact on fertility
not only at the new school-leaving age, but also exerted a non-monotonic effect
throughout the teenage years. Overall the analysis suggests that the increase in
mandatory education caused a postponement of fertility with the influence of the
reform dissipating after age 20.
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1 Introduction

Teenage motherhood is widely regarded as an important socio-economic issue for two
key reasons. Individuals who do not achieve their full human capital investment in ado-
lescence may not reach their lifetime’s economic potential. There is also an important
inter-generational dimension associated with early childbearing, these children tend to
have poorer outcomes, and daughters born to teenage mothers have a higher probability
of becoming mothers at an early age (Paniagua and Walker (2012)). Thus early fertility
may not only reflect prior familial pecuniary conditions, but may also prove a contribu-
tory factor towards future disadvantage. This paper investigates the effect of education
policy on adolescent fertility in England and Wales. The research exploits exogenous
variation in the length of compulsory schooling induced by an institutional change, the
Raising of School Leaving Age (RoSLA), implemented by the UK Government in 1972.
The research addresses a pertinent policy question, especially in the United Kingdom
which reportedly has the highest rate of teenage pregnancy in Western Europe, the topic
therefore receives frequent attention from the government and in the media.

This paper is not the first to study the impact of changes in the compulsory school leaving
age on the propensity for teenage motherhood. However in contrast to legislative changes
used in previous research, the RoSLA reform analyzed exerted an important influence on
a substantial proportion of the population. The paper therefore contributes to the body
of international evidence that analyzes the influence of education policy on the timing
of fertility, using an intervention that induced a considerable impact on the duration of
education, addressing methodological concerns that have been highlighted in the recent
econometrics literature.

A considerable literature has documented the consequences of early childbearing. Analy-
sis based on observed differences between women who gave birth as a teenager and women
who became mothers at an older age find substantial adverse effects of teenage mother-
hood on a number of lifetime outcomes. Analyses of the National Longitudinal Survey
of Youth (Klepinger, Lundberg, and Plotnick (1995); Moore and Waite (1978)) find that
early childbearers have lower educational attainment, but work a greater number of hours
(Hofferth and Moore (1979)). Using the incidence of a twin birth in US census data to
investigate the consequence of unplanned teenage motherhood, Bronars and Grogger
(1994) find that teen mothers have significantly higher rates of poverty, welfare receipt
and lower household income. For the UK, Ermisch and Pevalin (2003) using data from
the British Household Panel Survey find that teenage mothers observed in adulthood
are less likely to own their home, and their equivalent household income is approxi-
mately 20% lower. This consequence arises not only due to the decreased earning po-
tential of the individual, but is compounded by constrained marital opportunities as the
spouses of early childbearers also have a higher probability of low academic achievement
(Ermisch and Pevalin (2005)). Francesconi (2008) compares siblings born to a mother
at different ages, finding that teenage motherhood is associated with a lower chance of
higher education attainment and a greater chance of being in the bottom decile of the
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earnings distribution.

However women who delay childbearing may differ fundamentally from individuals who
become pregnant in their teenage years, and thus may not be the appropriate com-
parison group to investigate the impact of a teen-birth. Controlling for unobserved
family characteristics by comparing a teenage mother with her sister who delayed child-
bearing, Geronimus and Korenman (1992) find smaller adverse effects of teen childbear-
ing, Rosenzweig and Wolpin (1995) even find a mild positive biological effect of bearing
a child at younger ages. The potential endogeneity of the fertility decision has been
addressed in an instrumental variables approach using variation in the age at menar-
che (Chevalier and Viitanen (2003)), the incidence of miscarriage (Fletcher and Wolfe
(2009); Goodman, Kaplan, and Walker (2004)) and the decision to terminate a preg-
nancy (Hotz, McElroy, and Sanders (2005); Ashcraft, Fernández-Val, and Lang (2013);
Ashcraft and Lang (2006)) as instruments. Analysis with arguably a closer comparison
group tends to indicate more benign effects of teenage motherhood, insofar that teen
mothers would have poorer economic outcomes even if they had delayed motherhood.
Kearney and Levine (2012) suggests that for some individuals the decision to become
a young mother is a rational choice in response to low expectations of future economic
opportunities, rather than an unintentional consequence.

Although these studies reveal somewhat disparate results, the weight of evidence over-
whelmingly points to the existence of negative effects of early child-bearing both in the
short-run (the effect on education) and the long-run (the effect on labor market mea-
sures). Therefore interventions that mitigate adolescent fertility rates may be regarded
as plausible mechanisms through which to improve the life trajectories of young women
whom project a high proclivity toward teenage motherhood.

Targeted teen pregnancy prevention programs is one type of intervention. Kearney
(2010) provides a review of US case studies. Evaluations of ‘Abstinence only’ programs
indicate they do not success in reducing rates of sexual activity amongst teenagers.
Programs which provide school-based targeted contraception access and education can
be successful in reducing the rate of unprotected intercourse among program participants.
However due to the expense of implementation, large-scale rollouts of such programs may
not prove viable. In contrast, Grönqvist (2009) finds that long-term subsidized access to
the birth control pill had a substantial impact on teenage childbearing in Sweden.

An alternative channel of influence is education policy, as the fertility and education
decisions are interrelated. In the context of mitigating early motherhood interest lies
in the ability of the institutional environment to affect the timing off fertility1. Using

1A tranche of literature also considers the impact of education on overall fertility, with diverse find-
ings. Using variation in education induced by compulsory schooling laws in 8 European countries,
Fort, Schneeweis, and Winter-Ebmer (2011) find an increase in education is associated with a large de-
crease in childlessness and increase in child parity, whereas León (2004), using US census data, finds
a decrease in the average number of children per woman. In the UK Clark, Geruso, and Royer (2014)
using administrative data find little effect in completed fertility, whereas Braakmann (2011) using survey
data finds a marginal increase.
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school-entry policies McCrary and Royer (2011) investigate the impact of education on
a number of socio-economic outcomes including adolescent fertility, on which the find-
ings indicate no effect of education. This is an unsurprising result as one would expect
that the timing of school commencement would exert little effect on adolescent behav-
ior. Berthelon and Kruger (2010) evaluate a policy intervention in Chile which increased
the length of the school day. The policy had been widely criticized as previous evalua-
tions indicated a negligible effect on educational attainment, however the authors show
the intervention induced a significant impact on non-academic outcomes, specifically an
amelioration of risk behaviors such as teen fertility and crime participation. The authors
posit that this effect is due to adolescents having more adult supervision per day and
therefore less time to engage in risky activities. Grönqvist and Hall (2013) evaluate a
Swedish policy which prolonged vocational schooling. Although the increased educa-
tional requirement was not mandatory, the availability of a more academic program of a
longer duration induced a significant decrease in early childbearing for individuals who
chose this option.

This paper follows the analysis of Black, Devereux, and Salvanes (2008), who first used
exogenous variation in length of schooling induced by changes in mandatory school-
leaving age legislation to investigate the effect of education on teenage fertility. They
propose two mechanisms through which the legislation changes exert an effect on fertility.
Firstly the incarceration effect, which in the spirit of the findings of Jacob and Lefgren
(2003) regarding the impact of schooling on youth crime, can be understood that as
individuals are required to remain at school for one year longer, this reduces the oppor-
tunity to engage in risky activities, which leads to downward pressure on their fertility.
Second, the human capital effect, whereby individuals reduce their fertility in response
to receiving more education as a result of the legislation change. The authors analyze
the research question for two countries, the US and Norway. The findings are remark-
ably similar across these countries, given that each has a very different institutional
environment. The results indicate only weak evidence for an incarceration effect, and
the authors conclude that the observed significant negative effect of education on teen
fertility is driven primarily by the human capital effect. Using the same identification
strategy Monstad, Propper, and Salvanes (2008) explore the effect on total fertility in
Norway and finds that the increase in education led to a postponement of fertility, but
that quantum fertility is not affected. In the UK Silles (2011), using General House-
hold Survey data, finds effects of a similar magnitude to Black et al (2008); Clark et al.
(2014) using cohort level administrative data find that the impact of schooling on early
childbearing is driven by a decrease in teenage pregnancies rather than an increase in
the abortion rate.

The present analysis utilizes data from the Labour Force Survey, the largest represen-
tative UK household survey, exploiting an institutional change which increased the du-
ration of compulsory education by one year. As the legislative change was implemented
nationwide at a single point in time, it can be thought of as a natural experiment, which
induced exogenous variation in the length of education received by an individual. The
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variation was determined solely by a discontinuous function of an observed covariate,
the individual’s month and year of birth, and therefore the estimation proceeds through
a regression discontinuity design (RDD), an approach which allows the identification
of causal treatment effects in quasi-experimental settings. The analysis employs both
parametric and non-parametric methodologies to estimate the direct impact of the re-
form, and a two-stage ‘fuzzy’ RDD approach is used to address the pertinent policy
question, namely quantifying the consequence of increasing mandatory education by one
year on teenage motherhood. The results suggest that the impact of RoSLA varies non-
monotonically throughout the teen years and, in contrast to Black et al. (2008), reveals
strong evidence of the incarceration effect, as well as the beyond incarceration effect
which may be attributable to increased human capital acquisition. The findings are
robust to the empirical methodology employed and the sensitivity of the estimates to
the choice of bandwidth is explored. In addition, the analysis is extended to examine
the extent of the bite of the reform by investigating the extent of the impact of the
treatment beyond just the teenage years, the results suggesting that RoSLA essentially
caused a postponement of fertility to the late teenage years only.

The remainder of the paper is structured as follows: Section 2 summarizes the insti-
tutional context. Section 3 describes the data used in the analysis. The econometric
methodology is outlined in Section 4. Section 5 presents the results and offers interpre-
tations, Section 6 concludes.

2 Institutional Setting

Compulsory schooling was introduced to the UK towards the end of the 19th Century,
with separate rules governing school-starting and school-leaving ages. A child is re-
quired to commence education no later than the beginning of the academic year2 after
which she reaches the compulsory school-starting age of 5 years, which has remained
unchanged since its inception through the Forster Education Act (1870). The first min-
imum school-leaving age of 10 years was introduced by the Elementary Education Act
(1880), with incremental increases to the school-leaving age introduced by subsequent
legislation3.

This paper concentrates on the exogenous variation in the minimum education require-
ment induced by the Education (Butler) Act (1944), which initially established a min-
imum compulsory school-leaving age of 15. The act made provision for a further raise

2In England and Wales the academic year runs from September 1st until August 31st in the next
calendar year.

3The Elementary (School Attendance) Act (1893) increased the age requirement to initially to 11,
and up to 12 with an amendment to the act in 1899; another increase up to age 14 followed the Fisher
Act (1918); the Butler Act (1944), enacted in 1947, enabled further rises first to age 15 and subsequently
16; the Education Act (2008) introduced an initial increase to age 17, and from September 2015 re-
quires formal participation in education or training of individuals in England and Wales until their 18th
birthday.
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of the school leaving age up to age 16, but did not mandate a specific implementation
date.4 In the immediate post-war period implementation was not possible due to acute
shortages in capital, material and labor, the latter so extreme that during the 1950’s
there were calls to reduce the length of compulsory education in order to increase the size
of the labor force pool. However, following the Crowther Report (1959) there was a dis-
tinct shift in attitude in favor of increasing the duration of mandatory schooling, leading
to the announcement in 1964 of the government’s intention to implement an increased
school-leaving age in September 1970. Preparations for the age-rise were extensive and
included a revised curriculum, large-scale teacher-training to increase the supply of teach-
ers, and a building initiative enlarging schools to accommodate the increased number
of students. These preparations were halted due to fiscal constraints imposed follow-
ing the 1967 devaluation of sterling, with the government delaying implementation by
two years. The new school-leaving age was finally introduced by Statutory Instrument
444 (1972), commonly known as the Raising of School Leaving Age (RoSLA5), imple-
mented in September 1972 thus affecting academic cohorts born from 1st September
1957 onwards.

Figure 1: Participation in Education

(a) Left education before age 16 (b) Left education before age 17

(c) Post-compulsory (d) Highest qualification level

4Section 35 of the Act states that the subsequent raise should occur ‘as soon as the Minister is satisfied
that it has become practicable to raise to sixteen the upper limit of the compulsory school age’

5A comprehensive history of the RoSLA can be found in Woodin, McCulloch, and Cowan (2013).

6



The reform impacted the leaving decisions of individuals in the lower tail of the educa-
tion distribution only. Figure 1(a) depicts the fraction of individuals leaving education
before the age of 16 by their academic cohort of birth. This proportion was steadily
declining prior to the implementation of RoSLA, but there is an immediate drop of ap-
proximately 20 percentage points exactly coinciding with the introduction of the new
minimum school-leaving age, indicating that the RoSLA reform constituted a bind-
ing constraint for this proportion of the school age population. Compliance with the
increased mandatory age was almost ubiquitous. Since the Education Act (1962) an
individual did not become eligible to leave school on the exact day he attained the com-
pulsory school-leaving age, instead two school exit dates were imposed - the end of the
Spring term (at Easter) for individuals within an academic cohort whose birthday lay be-
tween September and January, and the last day of the Summer term for those attaining
school-leaving age between February and August. The implication of this ‘Easter Leav-
ing Rule’ was that summer-born children born at the end of the academic year would
become eligible to leave school just before the birthday where they reached compulsory
school-leaving age. Specifically as the end of the Summer term usually falls around the
end of June, one sixth of the first cohort directly affected by RoSLA (those born in July
and August 1958), could leave school at age 15 and still be compliant with the minimum
school-leaving age requirements, and therefore in Figure 1(a), the proportion of individ-
uals leaving education by age 15 does not fall to exactly zero after the implementation
of the increased schooling requirement.

Consistent with previous studies (see e.g., Chevalier, Harmon, Walker, and Zhu (2004);
Dickson and Smith (2011)), the data indicate that there were no ripple-upwards effects
of the RoSLA throughout the duration of education distribution. Figure 1(b) shows
that there is no discontinuity in the downward trend of the proportion of individuals
leaving education by age 17, indicating that the RoSLA did not induce an increase in the
proportion of students participating in post-compulsory education. Indeed as verified in
Figure 1(c), prior to implementation over 60% of students already participated in post-
compulsory education, but approximately half of these individuals remained in school to
age 16 only6. As a consequence it can be observed that the post-compulsory education
rate actually fell approximately 30 percentage points coincidental to the introduction
of the reform, afterwhich it reaches a relatively stable level consistent with the RoSLA
reform inducing an increase in schooling for those individuals in the lower tail of the years
of education distribution up to the new minimum school leaving age but not beyond.
This is further supported by examining qualifications obtained: Figure 1(d) illustrates
the trends in the highest academic qualification obtained by individuals. In the RoSLA
year there is a drop in the proportion of individuals without academic qualifications of
almost 15 percentage points, approximately equal to the increase in the proportion of
individuals obtaining either a Certificate of Secondary Education (CSE) or Ordinary
Level (O’Level) qualification, examinations which are sat in the academic year in which

6The first tier of academic qualifications in England and Wales are taken at age 16, which prior to
RoSLA may have been the inducement for these individuals to remain in education
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an individual turns 16. In contrast, there is no impact of the RoSLA on the proportion
of individuals with an Advanced Level (A’Level), an examination taken at age 18.

3 Data

The analysis combines data from the 1975-2006 Labour Force Surveys (LFS). The survey,
which is the largest representative household-level survey in the UK, contains detailed
information on each individual within a household including month and year of birth,
ethnicity, age at leaving full-time education, area of residence, and country of birth.

The outcome of interest in the analysis, the age at which an individual entered moth-
erhood, is determined from the ages of the mother and the eldest child within a house-
hold at the time of the survey using the “own-children methodology” developed by
Grabill and Cho (1965). This reverse-survival technique has been shown to generate age-
specific fertility rates from LFS survey data which are consistent with those calculated
from administrative data (Murphy and Berrington (1993)). Implicit in this procedure is
that a mother-child relationship can be observed only if both individuals are present in
the same household at the time of the survey. Thus in the case of parental separation
the child is assumed to be resident with the mother, so that the observed mother-child
relationship is biological. The determination also assumes away child mortality, and
therefore the eldest child observed is primogeniture. Although these two factors may
induce measurement error, it is likely that any effect would be small.7 As the LFS con-
tains measures of both month and year of birth it is possible to determine maternal age
to within one month, a more accurate calculation than is possible with census data.8 A
further advantage of the detailed reporting of date of birth in the LFS is that it enables
precise assignment of individuals to their academic cohort of birth, which would not be
possible if only calendar year of birth was reported.

To avoid truncation of the distribution of teenage mothers, the sample is restricted to
women aged between 20 and 30; the lower bound reflects that to determine whether
an individual is a teen mother or not the observation must be taken after adolescence,
the upper bound reflects the fact that during this period individuals started to leave
the parental home from age 16 onwards, so above the age of 30 it may not be possible
using information on individuals residing in a household to accurately identify whether

7The proportion of multi-family households has declined from 3% in 1961 to approx 1% in 2001 (Social
Trends 32, Office of National Statistics (2002)), with over 90% of stepfamilies in 1990 being comprized
of children from a previous relationship of the mother (Social Trends 38, Office of National Statistics
(2008)). There has been an upward trend in single-parent families, but a fairly constant proportion
of these (circa 85%) are lone-mother families (Social Trends 38, Office of National Statistics (2008)).
Childhood mortality rates have been declining over time - the under-15 mortality rate stood at 31 per
100,000 in 1980, falling to 15 per 100,000 by 2000 (Child Mortality Statistics, Office of National Statistics
(2010a)).

8For instance, the US census records year of birth only for the 1940 and 1950 censuses, thereafter also
quarter of birth allowing a calculation of maternal age to within 3 months at best (Black et al. (2008)).
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a woman became a mother in her teenage years.

Although the LFS does report country of birth, for all but the latest surveys this measure
is aggregated to the national level for UK-born individuals, as constituent countries of
the UK are measured from only the 2nd quarter of 2001 onwards. Additionally, the
LFS reports contemporaneous region of residence only at the time of the survey, and
therefore does not have information on where an individual spent her childhood. This
is problematic as the education system in Northern Ireland and Scotland differs from
that in England and Wales, and in particular education in Scotland is governed by
separate rules and legislation. For this reason the sample is restricted to those women
who were born in the UK, but were resident in England and Wales at the time of the
survey, with the implicit assumption that these individuals would have been subject to
the English education system. It is therefore possible that the sample is affected by
random mobility, however internal migration between constituent countries of the UK is
assumed small.9

Table 1: Descriptive Statistics

Variable Mean Std Dev Variable Mean Std Dev

Academic Cohort 57.75 4.876 Age at survey 25.38 3.063
Age left F/T Education 16.61 1.824 Subject to RoSLA 0.605 0.489
White 0.974 0.160 No of children 1.787 0.811
Mother at 15 0.003 0.053 Mother by 15 0.003 0.051
Mother at 16 0.012 0.107 Mother by 16 0.005 0.073
Mother at 17 0.028 0.166 Mother by 17 0.017 0.129
Mother at 18 0.042 0.200 Mother by 18 0.045 0.208
Mother at 19 0.050 0.218 Mother by 19 0.087 0.282
Mother at 20 0.051 0.221 Teen Mother 0.137 0.344

Number of Observations 137,502

Table 1 displays the descriptive statistics for the main sample used in the analysis. The
individuals were all subject to the Butler Act (1944), thus facing a minimum school-
leaving age of either 15 or 16. Academic cohorts range from 1947/48 to 1964/65, with
61% of individuals within the sample subject to the post-RoSLA schooling regime (min-
imum school-leaving age of 16). The sample is predominantly white10; 13.7% of the
sample are teenage mothers, 8.7% are mothers before the age of 19, 4.5% before age 18,
1.7% before age 17, 0.5% before age 16 and 0.3% before age 15, proportions reflective of
those recorded in administrative data. Amongst mothers in the sample, the number of
children per mother is 1.78. This is lower than official estimates of total fertility rates,

9Internal migration statistics are not available prior to 1991, however Stillwell, Boden, and Rees
(1990) using doctor registration data from 1975-1986 estimate that the bulk of internal migration over
this period was within rather than between countries of the UK. However, there was net out-migration
from Scotland and Northern Ireland to England and Wales of approximately 2%.

10The under-reporting of ethnic minority groups is well-known in the LFS. In an attempt to address this
issue, ‘boost’ samples, which over-sample in areas with a high population density of under-represented
groups, have been taken since 1984.
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but reflects that the sample measures fertility only up to a maximum age of 30 rather
than completed fertility per woman.11

4 Empirical Methodology

As the RoSLA reform was implemented nationwide at a single point in time, it can
be thought of as a natural experiment inducing exogenous variation in the length of
education received by an individual. As this variation was determined solely by a dis-
continuous function of an observed covariate, the individual’s birth date, the estimation
proceeds through a regression discontinuity design (RDD), an approach which allows
the identification of causal treatment effects in quasi-experimental settings. The method
dates back to Thistlethwaite and Campbell (1960), who introduced the approach ana-
lyzing the impact of winning a scholarship on subsequent academic outcomes. More
recently RDDs have gained popularity in applied economics and have been used to
investigate, inter alia, the impact of impact of class sizes on scholastic achievement
(Angrist and Lavy (1999)), voting shares (Lee (2001)) and labor market discrimination
(Hahn, Todd, and Van der Klaauw (1999)).

The RDD approach is based on the idea that in situations where individuals are deter-
ministically assigned to a treatment based on whether the value of an observed covariate,
the running variable, Zi, falls on either side of a threshold value Zi = z∗, a discontinuity
in the assignment function is induced. The intuition is that individuals in the neighbor-
hood of the threshold value are identical in all other characteristics, apart from whether
or not they are assigned to the treatment. Therefore by comparing individuals ‘close’ to
the discontinuity from either side of the threshold, a causal effect of the treatment can
be identified. As there is local randomization additional covariates are not necessary,
but may improve precision of the estimates (Lee and Lemieux (2010)).

The assumptions to achieve identification in this context are hence twofold: a) that
individuals are randomly selected into the RoSLA ‘treatment’; b) that the timing of
the introduction of RoSLA is not related to unobserved characteristics that determine
teenage motherhood. Whether an individual was subject to the increased school-leaving
age can be considered to be as good as randomly assigned for two reasons. Firstly,
individuals are assigned to academic cohorts according to their date of birth, which
cannot be perfectly controlled. Second, there is no possibility of announcement effects,
whereby forward-looking parents could time the birth of their children according to
RoSLA eligibility, as detailed in Section 2 plans to raise the school leaving age were not
made public before 1964, by which time the first individuals who would be impacted by
RoSLA had already been born.

11The average number of children per woman in the sample is 1.18, which is comparable to co-
hort fertility rates in administrative data. ONS estimates of children per woman range from 0.99-
1.62 for women aged 30 between birth years 1947-1983 (ONS, Cohort Fertility, England & Wales,
Office of National Statistics (2010b)).
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Formally the RDD estimate αRDD is calculated by taking the difference in the expected
values of the outcome variable either side of the threshold of the observed running
variable:

E[αRDD|z] = E[Y1 − Y0|Z = z∗]

= lim
z∗←z+

E(y1
i |z∗)− lim

z−→z∗
E(y0

i |z∗)

= lim
e→0

E(y1
i |z∗ + e)− lim

e→0
E(y0

i |z∗ − e) (1)

where Y1 and Y0 are respectively the ‘treated’ and ‘untreated’ population means; y1
i and

y0
i are observations of individuals respectively to the right or the left of the discontinuity;

the threshold level of the running variable is denoted Z = z∗. When the support of the
running variable is continuous, e can be infinitely small close to the discontinuity so
that the limits in (1) exist, and it is appropriate to use non-parametric methods in the
estimation (Hahn, Todd, and Van der Klaauw (2001)). As eligibility for the reform is
deterministic, this representation is a ‘sharp’ RDD.

4.1 Non-parametric Estimation

The analysis uses kernel-weighted local polynomial smoothing to estimate the expecta-
tions either side of the threshold value of Zi, with the treatment effect calculated as
the difference between the predicted values calculated at the discontinuity. Although
triangular kernels, by assigning larger weights to observations at the threshold in princi-
ple have better boundary properties (Fan and Gijbels (1996)), in practice kernel choice
does not exert a significant impact on the magnitude of the estimates and rectangular
kernels have become the de facto standard (Imbens and Lemieux (2008)). The order of
polynomial smoothing is guided by the Bayesian Information Criterion,12 bootstrapped
coefficients and standard errors are calculated.

The running variable in the analysis is the difference in time between an individual’s
birth and the implementation of the RoSLA reform. Time is clearly continuous, how-
ever a practical issue arises because the data contains only discrete measures, so that the
lowest granularity that this distance can be calculated is in months. Lee and Lemieux
(2010) argue that as long as the running variable, Zi, is finely distributed the econo-
metric complication is limited, as in practice data will always contain discrete measures
(Imbens and Lemieux (2008)). In essence the concern with a discretely measured run-
ning variable is that it is not possible to allow e to become infinitely small in the neigh-
borhood of the discontinuity. Thus there is an irreducible gap between observations on

12The Bayesian Information Criterion (BIC) indicated that a linear polynomial was appropriate over all
outcome variables. The BIC applies a larger penalty for higher order terms than the Akaike Information
Criterion, which proved to be less definitive, but indicated either a linear or quadratic polynomial
according the outcome variable in question. As the role of the polynomial is to reflect the underlying
data generating process that governs fertility, rather than fertility at a specific age as measured by the
relevant outcome variable, the same order of polynomial was applied across all specifications.
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either side of the threshold, and hence the casual effect of the program is only iden-
tified with a parametric assumption regarding the assignment function (Lee and Card
(2008)).

4.2 Parametric Estimation

Recall in (1), the estimate of interest is E[Y1 − Y0|Z = z∗]. The issue at hand with
discretely measured data is that it is possible to observe E[Y1|Z = z∗], the outcome
of the set of individuals at precisely the threshold who are subject to the treatment,
and E[Y0|Z = z∗ + (−)e], the outcomes of the set of individuals just above (below) the
threshold who are not treated. With discrete Zi, e takes on a finite number of values
over the range Z = zj , j = (1, .., J), which implies that the limits in (1) do not exist.
Specifically, the closest realization below the threshold, where z∗ = zk, is E[Y0|Z = zk−1]
and therefore to predict E[Y0|Z = zk−0] a parametric approach is required. As the
outcome variable is binary, probit regressions are estimated using a treatment dummy,
T , indicating whether the individual was subject to RoSLA, and include polynomials
in zj . Including interaction terms between the treatment dummy and the polynomials
allow the coefficients on the polynomials to differ either side of the discontinuity13.

The estimation equation thus becomes:

Yij = α0 + β0Tij + γ0P
l
j + δ0(Ti × P lj) + aj + εij (2)

where Yij is the outcome for individual i born at a distance of j, in months, from
the relevant threshold; Tij is a dummy variable indicating whether an individual born in
month j was subject to the RoSLA reform, thus β0 captures the impact of the treatment,
and is hence the parametric estimate of αRDD; P lj is a vector of polynomial functions of
zj , with (l ∈ N) denoting the order of the polynomial; aj is a specification error term that
describes the difference between the true value at each zj and the estimated polynomial
function; εij is an idiosyncratic error term.

The magnitude of the estimates can be sensitive to the choice of polynomial. A certain
degree of smoothing may be desirable to minimize the influence of outliers and season-
ality, although at a cost of deterioration in the model’s fit. Higher degree polynomials
follow the data more accurately, but may overstate outliers. With small bandwidths the
number of higher degree polynomials is limited as J constrains the total parameters that
can be estimated. The optimal order of polynomial is again guided chosen according

13Although the polynomial is allowed to have different coefficients either side of the discontinuity, the
same order of polynomial is applied, reflecting that the polynomial is capturing the underlying data-
generating process. Lee and Lemieux (2010) note that constraining the coefficients of the polynomial
to be the same on both sides of the discontinuity is inconsistent with the intuition behind the RDD
approach as data from above the threshold would be used to estimate E[Y0|Z = z∗] and data from below
the cutoff would be used in the calculation of E[Y1|Z = z∗]. However this approach is often seen in the
literature, see for example Silles (2011), as imposing this constraint will lead to more efficient estimates.
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to the Bayesian Information Criterion. With this approach it is necessary to include
more conservative standard errors to reflect modeling uncertainty. Lee and Card (2008)
advocate inflating standard errors in relation to their goodness of fit statistic G,14 and
therefore (2) includes the specification error term aj , which is assumed identical either
side of the discontinuity and to be random and orthogonal to Z. The estimation com-
putes robust standard errors with random, identical specification errors by clustering on
zj .

In practice both the parametric and non-parametric approaches should yield similar
estimates of the RDD parameter as long as the discretization of Z is not too coarse.
Therefore Section 5 presents results utilizing both methodologies in order to illustrate
that the analysis does not rely on one particular method or specification.

4.3 Bandwidth Choice

A key issue in both the parametric and non-parametric approaches is the determination
of the appropriate size of the window around the discontinuity to use in the estimation.
From a theoretical perspective, by taking the limits either side of the threshold the
smallest window width around the discontinuity yields unbiased estimates of the true
treatment effect. However such an estimation would use only a paucity of data points
and therefore have little statistical power. Wide bandwidths use a greater number of
observations and will produce more efficient estimates, however a degree of bias may be
introduced by including observations far from the discontinuity, the concern being that
there may be unobserved changes over the bandwidth period for instance to legislation
or benefit entitlement15, which could independently impact the proclivity toward teen
motherhood, potentially confounding the analysis. It might also be expected that the
magnitude of the treatment effect is different for those cohorts closer to the timing of the
implementation. In addition, too great a window size may indicate a sizable treatment
effect even when the data is smoothly distributed around the discontinuity. There is
therefore an inherent trade-off between bias and efficiency in choosing the appropriate
window of observations to include in the estimation.

14The Lee and Card (2008) G-statistic is calculated as:

G ≡ (RSSR −RSSUR)/(J −K)

RSSUR/(N − J)

where RSSR is the residual sum of squares for the model using polynomial functions and RSSUR for
the unrestricted model using dummies respectively. Under the assumption of normality, G follows an
F(J−K,N−J) distribution, with K the number of parameters estimated in the restricted model, N the
number of observations and J the total number of values in the support of Z. The null hypothesis is
that there is no systematic difference in the residual sum of squares in the restricted and unrestricted
estimations.

15The Child Benefit Act (1975), enacted 1977, replaced family and child tax allowances paid to the
household with child benefit paid directly to the primary child caretaker (usually the mother). There-
fore estimates using a window width larger than 5 years may reflect the introduction of this benefit
entitlement.
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Ludwig and Miller (2007) propose an optimal bandwidth selection procedure specific
to a RDD context. For each candidate bandwidth, h, the cross-validation function is
computed via a leave-one-out procedure, whereby for each observation, i, a regression is
estimated omitting observation i and the difference is calculated between the predicted
value for observation i from this regression, ŷ(zi), and the actual value yi. To reflect that
RDD estimates are estimated at the boundary, if the value of the running variable for
observation i is to the left of the threshold, then the regression uses only observations
where zi−h ≤ z < zi. If observation i has a value of Z to the right of the threshold then
the regression uses only observations where zi < z ≤ zi+h. Repeating this procedure for
each observation i with every possible bandwidth h yields the cross-validation function
CVY (h) = 1

N

∑
i=1N(yi − ŷ(zi))

2. The optimal bandwidth is then the value of h that
minimizes CVY (h), the mean square difference of the predicted value to the true value
of Y (Imbens and Lemieux (2008)).

4.4 Fuzzy RD

The methodology presented thus far allows the estimation of the impact of an increase
in mandatory education from age 15 to age 16 on adolescent motherhood. However a
more general determination of the impact of schooling duration on fertility behavior may
be pertinent to policy formation. However, as the education and fertility decisions are
interrelated16, a simple estimation of the impact of schooling on fertility using Ordinary
Least Squares (OLS) may produce biased estimates.

Using an instrumental variable (IV) approach is a standard method to address such
endogeneity. In the context of regression discontinuity design, the IV approach is a
‘fuzzy’ (FRD) regression discontinuity (Trochim (1984)). The FRD differs from the
sharp design, described by (1), insofar that treatment assignment is not required to be a
deterministic function of Zi. Instead the probability of receiving treatment as a function
of the running variable, Pr(Ti = 1|zi), is discontinuous at the threshold, Zi = z∗, as
there are factors unobserved by the econometrician that can influence assignment to
treatment, such that treatment participation is not perfectly predicted by the cohort rule.
Hahn et al. (2001) argue that the FRD allows the determination of a Wald estimator
even when the standard IV assumption is violated. As the estimates are applicable only
to the sub-population of individuals, for whom the RoSLA reform actually induced an
increase in the schooling (the ‘compliers’), the estimated coefficients therefore describe
a Local Average Treatment Effect (Angrist and Imbens (1994))17.

16Specifically there may be non-observed characteristics that affect both the fertility and education
decision. The specification may also suffer from reverse causality: an individual with low academic
attainment may choose to become a mother early. This was described by Harris, Duncan, and Boisjoly
(2002) as the ‘Nothing-to-lose’ hypothesis, as such an individual would be likely to have poor economic
opportunities regardless of the timing of her fertility. However it is also plausible that an individual who
experiences early fertility may elect to curtail her education prematurely in response to motherhood.

17Individuals (the ‘always takers’) who would always stay in school until age 16 would not have been
affected by the increase in school leaving age. As the reform mandated compulsory attendance, the
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As in (2) the estimation allows for random, identical specification errors in the estimation
and receive robust standard errors by clustering on zj . The two step approach can be
written as:

AGELEFTij = α1 + β1Tij + γ1P
l
j + δ1(Ti × P lj) + a1j + ν1ij (3)

Yij = α2 + ξ ˆAGELEFT ij + γ2P
l
j + δ2(Ti × P lj) + a2j + ν2ij (4)

In the first stage (3), the impact of the RoSLA treatment on school-leaving age for
individual i born at a distance of j months from RoSLA implementation is estimated,
and then included in the second stage equation (4). Thus the Wald estimate, ξFRD,
describes the causal effect of one year of schooling on the fertility outcome of interest Yij ,
and is thus equivalent to the ratio of the sharp RDD estimate from equation (2) and the

first stage estimate, β1, so that ξFRD = αRDD

β1
. This has an intuitive interpretation: as

not everybody responds to the treatment, the reduced form estimate has to be multiplied
by the inverse of the proportion of the affected population.

5 Results

In Section 5.1 the main results explore the impact of the RoSLA reform first over each of
the individual teenage years, and also the cumulative effect over the years of adolescence.
To examine the extent to which RoSLA bites, the analysis is extended by investigating
the extent of any impact of the treatment beyond just the teenage years. The robustness
and sensitivity of the analysis is explored in Section 5.2. In Section 5.3 the analysis is
extended to examine at the policy relevant question, the impact of years of education
on the timing of entry to motherhood.

5.1 Main Results

To illustrate the transparency of the sharp RDD approach, the results are first presented
graphically. Figure 2(a) depicts the impact of the reform on the probability of becoming
a mother at age 16, whereas the cumulative of becoming a mother before the age of 17 is
shown in figure 2(b). These graphs are estimated using the local polynomial smoothing
approach, as described in Section 4.1, with a bandwidth of 48 months and a smoothing
polynomial of degree 1. In each case the timing of the implementation of the RoSLA
reform has been normalized to 0. Appendix A displays the full set of results over each
of the outcome variables.

population of ‘never-takers’ should not exist. Key to identification is the monotonicity assumption that
RoSLA had a non-negative effect on an individual’s duration of schooling, so that individuals who in
absence of the reform would have remained at school after age 16 reduce their duration of education in
response to the RoSLA legislation (the ‘defiers’) are ruled out.
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Figure 2: Graphical Results - Sharp RDD

(a) Mother at age 16 (b) Mother by age 17

Notes: The graphs display local-linear polynomial smooths, as described in Section 4.1, using a bandwidth of 48
months, a smoothing polynomial of degree 1, and a rectangular kernel, of the probability of becoming a mother
a) at age 16 and b) before age 17. The horizontal axis measures the distance, in months, of individuals’ births to
the RoSLA cutoff. The scatterplot indicates the proportions of mothers in each month-bin. The dashed lines are
95% confidence intervals of the local polynomial.

Considering fertility at each of the individual teen years, the graphs in Appendix A are
indicitive of a clear difference in fertility before and after the reform, for all but mother
at age 17. As RoSLA raised the age of compulsory schooling from age 15 to age 16, the
observed effect at age 16 reflects the immediate ‘bite’ of RoSLA and can be interpreted
as the direct incarceration effect associated with the requirement to complete one year
of additional schooling. At ages beyond 16, the RoSLA constraint is not binding, and
therefore any observed effect cannot be attributed to incarceration alone. The graphs
illustrate a non-monotonic impact of the reform over the teenage years, with negative
effects for motherhood at age 16 and at age 18, a negligible effect at age 17, and positive
effects at age 15 and age 19.

Analytical results are presented in Tables 2 and 3. Panel A displays results estimated
using the parametric procedure as detailed in section 4.2, for the probability of becoming
a mother at a specific year of age, or before a certain age respectively (thus teenage
motherhood is defined as entering motherhood before the age of 20). The first estimation
uses the preferred bandwidth of 48 months, then estimates using half and double the
preferred bandwidth are displayed to illustrate the robustness of the results to the choice
of bandwidth (Imbens and Lemieux (2008)). Panel B shows the bootstrapped estimates
and coefficients from the non-parametric method described in Section 4.1.

Examining first the estimations with fertility at a specific age as the outcome variable,
the regression coefficients reveal evidence of both an ‘incarceration’ and a ‘beyond incar-
ceration’ effect. The negative significant effect of 0.40 percentage points at age 16 reflects
the direct impact of the increase in the schooling requirement, and can therefore be in-
terpreted as the incarceration effect of RoSLA. This implies that the effect of requiring
young women to stay an additional year at school is to reduce the incidence of pregnancy
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Table 2: Sharp RDD - Mother at individual teen years

At 15 At 16 At 17 At 18 At 19

Panel A:
BW = 48 0.0015 -0.0040∗ -0.0019 -0.0081∗∗ 0.0058∗

N = 64,359 (0.0011) (0.0022) (0.0026) (0.0034) (0.0031)

% change 49.67% -36.73% -6.85% -19.63% 11.41%

BW = 24 0.0000 -0.0059∗ -0.0021 -0.0038 0.0049
N = 31,566 (0.0015) (0.0030) (0.0035) (0.0051) (0.0036)

BW = 96 0.0008 -0.0047∗∗∗ -0.0032 -0.0072∗∗∗ 0.0025
N = 124,458 (0.0008) (0.0014) (0.0020) (0.0026) (0.0025)

Panel B:
BW = 48 0.0014∗ -0.0043∗∗ -0.0020 -0.0076∗∗ 0.0055
N=64,359 (0.0007) (0.0018) (0.0028) (0.0031) (0.0035)

Notes: Panel A displays estimates from the parametric estimations, as described in Section 4.2, of each dependent
variable over columns, with different bandwidths over rows. Robust standard errors, which allow for random
and identical specification errors, are reported in parentheses. Panel B shows bootstrapped coefficients and
associated standard errors from the local-linear polynomial smoothing procedure described in Section 4.1, using
1,000 replications. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

at the age of 16 by 36.73% relative to the sample mean. Although a positive effect at age
15 of 0.15 percentage points is observed, translating to a large increase in the incidence
of pregnancy at this age, the estimate is imprecise due to the very small fraction of
individuals who experience such early motherhood. A back-of-an-envelope calculation
indicates approximately one quarter of the decrease in incidence of motherhood at age
16 may be attributed to individuals bringing fertility forward to age 15.

The pertinent question is whether the remainder of the decrease in incidence of mother-
hood at age 16 is due to individuals delaying fertility by one year only (a pure incarcera-
tion effect) or by more than one year. If pure incarceration only is present, then fertility
should shift by one year, which would induce a positive impact of 10% at age 17. How-
ever, the coefficient in Table 2 suggests that there is no significant impact of the reform
at age 17, in turn implying that some individuals who were not directly constrained by
the RoSLA reform also delayed their fertility. This consequently should induce a posi-
tive impact at age 18, but the coefficient reveals that there is also a significant decrease
in fertilty at age 18 of 0.81 percentage points, almost double the level impact seen at
age 16, but implying a lesser decrease of the incidence of motherhood of 19.63% due to
the larger number of individuals entering motherhood at this age. Therefore the results
provide strong evidence of both incarceration and an additional downward impact of the
reform on fertility that cannot be explained purely by incarceration. Furthermore, at
age 19 there is a significant positive impact on fertility of 11.41%, which suggests that
overall RoSLA induced a postponement of fertility to late teen years.

The estimates in Table 3 reflect the cumulative effect of the individual year impacts
displayed in Table 2. The coefficient for mother by age 16 captures the impact of
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Table 3: Sharp RDD - Cumulative effect over teen years

By 16 By 17 By 18 By 19 By 20

Panel A:
BW = 48 -0.0007 -0.0048* -0.0067* -0.0145*** -0.0088*
N = 64,359 (0.0013) (0.0024) (0.0037) (0.0046) (0.0053)

% change -14.52% -29.69% -15.18% -17.06% -6.57%

BW = 24 -0.0018 -0.0076** -0.0096* -0.0133* -0.0082
N = 31,566 (0.0019) (0.0036) (0.0051) (0.0074) (0.0078)

BW = 96 -0.0002 -0.0049*** -0.0082*** -0.0154*** -0.0132***
N = 124,458 (0.0009) (0.0016) (0.0027) (0.0036) (0.0041)

Panel B:
BW = 48 -0.0007 -0.0050** -0.0070** -0.0146*** -0.0090
N = 64,359 (0.0012) (0.0021) (0.0035) (0.0046) (0.0056)

Notes: See notes to Table 2. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

the RoSLA treatment on the probably of entering motherhood for all ages up to but
not including the individuals 16th birthday. Thus the coefficient for mother by age 17
cumulates the ‘by 16’ effect with the ‘at 16’ effect from Table 2. Here the clear evidence of
the incarceration effect is indicated by the coefficient on mothers by age 17, whereas the
beyond incarceration effect is evident from the increasing magnitude of the coefficients
for older teenage mothers.

To investigate the extent and duration to which the overall effect of RoSLA on fertility
bites,18 the analysis is extended to investigate fertility outcomes beyond the teenage
years. In order to determine the effect on cumulative motherhood ‘by’ a particular age
the sample must be restricted to individuals strictly above that age, that is to observe
whether an individual became a mother at any age before her 25th birthday, we must
observe her at age 25 or above. Table 4 presents the estimates of cumulative fertility by
year up to by age 25. Results for each year of motherhood before age 25 use the sample
of individuals aged 25-30; before age 24 use the sample of individuals aged 24-30 and so
on.

The estimates in Table 4 confirm that the treatment exerted a significant impact over
the teenage years only. The coefficients for each outcome in each of the sub-samples are
consistent in sign and magnitude, displaying the same pattern of an increasing magni-
tudes for ages before 19, and a decrease in the size of the effect before age 20 (consistent

18Note that the analysis of the impact of RoSLA on fertility is restricted to the incidence and timing
of fertility. To investigate quantum fertility requires knowledge of completed fertility, which is generally
measured as the number of children per woman at age 45. However, as previously discussed, in order to
accurate determine teenage motherhood it is necessary to restrict the sample to individuals aged between
20 and 30, and therefore it is not possible to investigate the impact of RoSLA on the number of children
per woman. Administrative data indicates that there is no difference in completed fertility between
pre-RoSLA and post-RoSLA cohorts beyond the long-run (downward) trend (ONS, Cohort Fertility,
England & Wales, 2010).
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Table 4: Sharp RDD - Extended results - cumulative years

By 16 By 17 By 18 By 19 By 20 By 21 By 22 By 23 By 24 By 25

25 - 30 sample -0.0009 -0.0019 -0.0062 -0.0164∗∗∗ -0.0132∗ -0.0040 0.0011 -0.0017 -0.0052 -0.0110
N = 39,912 (0.0015) (0.0029) (0.0043) (0.0058) (0.0067) (0.0070) (0.0078) (0.0088) (0.0084) (0.0094)

24 - 30 sample -0.0015 -0.0036 -0.0066 -0.0151*** -0.0095 -0.0016 0.0037 -0.0012 -0.0059
N = 45,621 (0.0014) (0.0028) (0.0041) (0.0053) (0.0061) (0.0067) (0.0080) (0.0085) (0.0080)

23 - 30 sample -0.0011 -0.0040 -0.0066* -0.0150*** -0.0090 -0.0028 0.0034 -0.0014
N = 51,164 (0.0014) (0.0027) (0.0039) (0.0049) (0.0057) (0.0065) (0.0082) (0.0084)

22 - 30 sample -0.0007 -0.0046* -0.0071* -0.0163*** -0.0108* -0.0030 0.0029
N = 56,204 (0.0014) (0.0027) (0.0039) (0.0049) (0.0056) (0.0064) (0.0079)

21 - 30 sample -0.0008 -0.0048** -0.0060* -0.0154*** -0.0106* -0.0029
N = 61,023 (0.0013) (0.0025) (0.0036) (0.0047) (0.0055) (0.0060)

20 - 30 sample -0.0007 -0.0048** -0.0067* -0.0145*** -0.0088*
N = 64,359 (0.0013) (0.0024) (0.0037) (0.0046) (0.0053)

Notes: The table shows estimates from local parametric estimations, as described in Section 4.2, of each dependent
variable over columns, using different sub-samples over rows as indicated. Robust standard errors, which allow
for random and identical specification errors, are reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

with the positive impact at age 19 as shown in Table 2). After age 20 the impact of
RoSLA on fertility is quantitatively small relative to the sample mean, and statistically
indistinguishable from zero.

5.2 Sensitivity Analysis

Panel A from Tables 2 and 3 included estimates using three different bandwidths, the
preferred, as well as double and half this bandwidth, to illustrate the robustness of the
estimates to the choice of bandwidth. The preferred bandwidth was chosen according
to the cross-validation procedure as described in Section 4.3, calculated and examined
for each of the outcome variables in turn. This analysis did not yield a unique optimal
bandwidth appropriate for all outcome variables, however a bandwidth between 36 and
60 months was consistently indicated.

As an illustration, Figure 3(a) displays the cross-validation function for mother at age 16
over bandwidths ranging from 15 to 72 months. The function decreases in value as the
size of bandwidth increases, but the graph suggests that increases in bandwidth above
40 exert little difference in the magnitude of the function. The cross-validation function
for mother at age 18 is displayed in Figure 3(b). In this case the function does suggest
a clear minimand, at approximately 40 months. The cross-validation functions for each
of the outcome variables are displayed in Appendix B.

A corollary to the cross-validation procedure is to directly examine the sensitivity of the
estimates to bandwidth choice. Figure 4 displays the magnitude of the coefficients esti-
mated using bandwidths ranging between 18 and 72 for fertility at (a) age 16 and (b) up
to, but not including age 17. The estimated impact displays some sensitivity to smaller
bandwidths, but the magnitude of the estimates is essentially stable for bandwidths
greater than 40. This is a reflection of what was seen in Figure 3(a), that increases in
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Figure 3: Cross-Validation

(a) Mother at age 16 (b) Mother at age 18

Notes: The graphs display the cross-validation function calculated as described in Section 4.3. The optimal
bandwidth is given by the minimand of the function CVY (h) = 1

N

∑
i=1N(yi − ŷ(zi))

2.

bandwidth exert little effect on the cross-validation function for bandwidths greater than
40. Appendix C includes the full set of results displaying the sensitivity of the estimates
to bandwidth choice over each of the outcome variables. The graphs generally indicate
stability in the estimated coefficients for all outcome variables at bandwidths from ap-
proximately 40 onwards, apart from the estimates for mother at age 18 (also affecting
cumulative fertilty by ages 19 and 20), which achieve stability after approximately 60
months.

Figure 4: Sensitivity of Estimates to bandwidth choice

(a) Mother at age 16 (b) Mother by age 17

Notes: The graphs display the magnitude of the estimates, along with the 95% confidence interval, over different
bandwidths based on the parametric regression discontinuity design as described in Section 4.2.

At the boundary the comparison is between individuals born at the end (August) of
one academic cohort with individuals who are born at the beginning (September) of the
next academic cohort. The key identifying assumption is that individuals in the neigh-
borhood of the discontinuity are identical in characteristics apart from their assignment
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to the treatment. However there may be fundamental differences in individuals accord-
ing to their relative and social age within an academic cohort and therefore the RDD
estimation, which is essentially a between-cohort comparison at the boundary, may just
reflect compositional differences of those born at the beginning versus the end of a co-
hort. For instance, Crawford, Dearden, and Meghir (2010) find that relative age within
a cohort exerts an important influence on academic outcomes, younger individuals in
a cohort perform on average significantly worse than their older peers in assessments,
which the authors attribute to the absolute age of the individual when taking the test.
In the context of fertility behavior, a priori it may be expected that older individuals
within a cohort would have higher fertility due to their higher emotional and physical
maturity. Forging a relationship requires a set of social skills that are likely to be more
developed in individuals born earlier within a cohort. As fecundability increases over the
period of adolescence (Wood and Weinstein (1988)), older individuals are more able to
conceive. However, analyzing the fertility outcomes within academic cohorts in Sweden,
Skirbekk, Kohler, and Prskawetz (2004) find that individuals born at the beginning of
a cohort actually enter motherhood up to 4.9 months later than those born at the end
of the academic cohort, which the authors attribute to the ‘social age’ effect.

Table 5: Placebo Analysis

Panel A At 15 At 16 At 17 At 18 At 19

1951 -0.0032** 0.0011 0.0002 0.0010 -0.0005
N=42,803 (0.0014) (0.0026) (0.0031) (0.0043) (0.0043)

RoSLA 0.0015 -0.0040* -0.0019 -0.0081** 0.0058*
N=64,359 (0.0011) (0.0022) (0.0026) (0.0034) (0.0031)

1964 -0.0023** 0.0013 -0.0032 0.0000 -0.0032
N=73,021 (0.0009) (0.0017) (0.0025) (0.0033) (0.0034)

Panel B By 16 By 17 By 18 By 19 By 20

1951 -0.0019 -0.0009 -0.0006 0.0004 -0.0002
N=42,803 (0.0025) (0.0040) (0.0035) (0.0068) (0.0106)

RoSLA -0.0008 -0.0049** -0.0068* -0.0147*** -0.0089*
N=64,359 (0.0013) (0.0024) (0.0037) (0.0046) (0.0053)

1964 -0.0016 -0.0002 -0.0034 -0.0033 -0.0066
N=73,021 (0.0012) (0.0020) (0.0036) (0.0040) (0.0050)

Notes: The table shows estimates from parametric estimations, as described in Section 4.2, of each dependent
variable over columns using the preferred bandwidth of 48 months, with the discontinuity defined in different
years over rows. Robust standard errors, which allow for random and identical specification errors, are reported
in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

In order to confirm that the results presented in Section 5.1 are indeed driven by the
reform rather than inherent between cohort effects two further robustness checks are
undertaken. Firstly a falsification exercise is undertaken, placebo regressions are es-
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timated under the assumption that RoSLA was implemented prior to or after actual
implementation. The results of the placebo analysis are displayed in Table 5, which are
not consistent with the estimates that use the correct RoSLA assignment. The sign,
magnitude and significance of the coefficients differ non-systematically, suggesting that
observed effect on fertility is in fact driven by the implementation of RoSLA.

Table 6: RD-DiD estimates

Panel A At 15 At 16 At 17 At 18 At 19

Pre-RoSLA DiD 0.0013 -0.0066*** -0.0116*** -0.0188*** 0.0006
N = 79,852 (0.0010) (0.0017) (0.0029) (0.0036) (0.0035)

Pre-Post RD-DiD 0.0008 -0.0043*** -0.0037* -0.0091*** 0.0007
N = 137,502 (0.0008) (0.0012) (0.0022) (0.0025) (0.0028)

Panel B By 16 By 17 By 18 By 19 By 20

Pre-RoSLA DiD 0.0003 -0.0062*** -0.0179*** -0.0363*** -0.0355***
N = 79,852 (0.0012) (0.0022) (0.0037) (0.0051) (0.0061)

Pre-Post RD-DiD 0.0000 -0.0043*** -0.0080*** -0.0169*** -0.0165***
N = 137,502 (0.0009) (0.0015) (0.0026) (0.0036) (0.0042)

Notes: The table shows estimates from the Regression Discontinuity difference in difference procedure, as described
in Section 5.2 of each dependent variable over columns, using non-overlapping windows of observations and a
bandwidth of 36 months. The Pre-RoSLA RD-DiD is estimated over the 47/48 - 52/53 and 53/54 - 59/60
windows. The Post-RoSLA RD-DiD is estimated over the 53/54 - 59/60 and 60/61 - 64/65 windows. The Pre-
Post RD-DiD is estimated over all three windows. Robust standard errors, which allow for random and identical
specification errors, are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Second, following Danzer and Lavy (2013), a difference in difference approach is applied
in the context of the regression discontinuity design (RD-DID). This procedure explicitly
nets out any inherent between cohort differences at the August-September threshold by
using three non-overlapping windows of observations19- the pre-RoSLA period (academic
cohorts 1947/48 - 1952/53), the post-RoSLA period (1960/61 - 1964/64) and the period
around the RoSLA discontinuity (1953/54 - 1959/60). For each sub-period the run-
ning variable is defined as the distance in months from the relevant August-September
threshold. Two versions of following specification are then estimated:

(5)Yij = β0 +β1Rightij +β2RoslaRightij +Σ3
k=1Periodk+γ0P

l
j +δ0(Ti×P lj)+aj + εij

where Yij is the outcome of interest for individual i born at a distance of j from the
relevant threshold; Right is an indicator variable for an observation being on the right-
hand side of the relevant discontinuity; Period are period dummies for each window
of observations; RoslaRight is a dummy equal to 1 if the observation is on the right-
hand side of the discontinuity in the period around the RoSLA discontinuity, thus β2

19Distinct windows are required to form the counterfactual observations. In order to accommodate
the total observation window a bandwidth of 36 months is used in the estimations
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describes the RD-DiD estimate. The γ and δ capture the polynomial smooth in the
running variable.

Table 6 presents the results of the difference-in-difference analysis considering first the
pre-RoSLA period only as counterfactual observations, and second using both pre and
post-RoSLA periods for comparison. The estimates are qualitatively similar to those
presented in the main analysis and therefore adjusting the original RoSLA coefficients to
account for any inherent between-cohort discontinuities does not an induce a significant
impact on the sign or magnitude of the RDD estimates, but may be considered to be
more plausible as any inherent between-cohort effects are netted out.

5.3 Further Estimations

Finally the analysis considers the impact of education as measured by years of schooling
on adolescent fertility in a two-stage approach. In the first stage the impact of the RoSLA
reform on schooling duration, measured by the age at which an individual finished full-
time education is measured. This prediction is used in the second stage to analyze the
effect on the probability of entry to motherhood. Figure 5 presents these two stages
graphically.

Figure 5: Graphical results - Fuzzy RDD

(a) Age left full-time education (b) Mother by age 19

Notes: The graphs display local-linear polynomial smooths, as described in Section 4.1, using a bandwidth of
48 months, a smoothing polynomial of degree 1, and a rectangular kernel, for a) age an individual left school
(first-stage of the fuzzy RDD) and b) the probability of becoming a mother before age 19 (second-stage of the
fuzzy RDD) . The horizontal axis measures the distance, in months, of individuals’ births to the RoSLA cutoff.
The scatterplot indicates the proportions of mothers in each month-bin. The dashed lines are 95% confidence
intervals of the local polynomial.

The analytical results are reported in Tables 7 and 8. The top panel presents the Wald
Estimates using the preferred bandwidth of 48 months, as well as estimates produced
using half and double the preferred bandwidth. The middle panel displays results of
simple OLS regressions and the bottom panel presents the reduced form and first stage
of the estimation (for expositional convenience only the preferred bandwidth estimates
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are reported in these latter panels).

Table 7: Fuzzy RDD - Impact of years of education - individual years

At 15 At 16 At 17 At 18 At 19

Wald Estimates
BW = 48 0.0047 -0.0147 -0.0064 -0.0250∗ 0.0202∗

N= 64,359 (0.0035) (0.0082) (0.0086) (0.0124) (0.0100)

BW = 24 -0.0010 -0.0207 -0.0079 -0.0126 0.0179
N = 31,566 (0.0050) (0.0124) (0.0120) (0.0184) (0.0126)

BW = 96 0.0024 -0.0176∗∗ -0.0132∗ -0.0244∗∗ 0.0091
N = 124,458 (0.0025) (0.0054) (0.0065) (0.0092) (0.0081)

OLS
Years of Education -0.0004** -0.0030*** -0.0069*** -0.0088*** -0.0096***

(0.0001) (0.0002) (0.0002) (0.0003) (0.0003)

IV
Reduced Form 0.0014 -0.0043* -0.0019 -0.0073** 0.0059*

(0.0010) (0.0023) (0.0027) (0.0033) (0.0030)

First stage 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗

(0.0586) (0.0586) (0.0586) (0.0586) (0.0586)

Notes: The table shows estimates from local parametric estimations, as described in Section 4.2, of each dependent
variable over columns, using a bandwidth of 48 months. First-stage F-statistic = 25.07. Robust standard errors,
which allow for random and identical specification errors, are reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01

The OLS coefficients consistently indicate that there is a negative relationship between
an individual’s propensity of early motherhood and the age at which she left full-time
education. However, as discussed in Section 4.4, there may be omitted variables which
imply that the residual term is correlated with years of education. If the unobserved
heterogeneity is such that it asserts a positive impact on the propensity for early moth-
erhood and a negative impact on schooling, then the OLS coefficients will be biased
upwards. Conversely if the unobserved heterogeneity impacts both teen motherhood
and years of schooling in the same direction, then the OLS estimates will be under-
stated. This potential endogeneity is addressed using the FRD procedure described in
Section 4.4. Recall this is analogous to an IV approach, where the RoSLA treatment is
applied as an instrument for schooling. The identification assumption is that the timing
of the RoSLA implementation is orthogonal to unobserved determinants of motherhood,
and therefore the effect of the reform on fertility can be understood as operating only
through its impact on years of education. The first stage reveals that the reform had a
significant positive impact on years of schooling, raising it on average by approximately
3 months, which reflects that prior to implementation of RoSLA a substantial proportion
of the school age population already stayed at school until at least age 16, as depicted
in Figure 1(c). Considering the wald estimates over the individual years, Table 7, of
the effect of the duration of education on teen motherhood, these differ from the OLS
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estimates non-systematically: the coefficients on mother at age 15 and mother at age
19 change sign (from positive to negative) indicating that the OLS estimates of these
coefficients are downwardly biased. The coefficients on mother at age 16 and at age
18 are the same sign (negative) as the OLS coefficients, and are larger in magnitude
indicating that the OLS estimates are understated. The coefficient on mother at age 17
also has the same sign (negative) but is smaller in magnitude than the OLS coefficient.
These observations imply that not only does RoSLA have a varying impact on fertility
depending on the age of the mother, but also that the correlation between unobserved
factors and years of schooling varies throughout the teen years.

Table 8: Fuzzy RDD - Impact of years of education - cumulative years

By 16 By 17 By 18 By 19 By 20

Wald Estimates
BW = 48 -0.0026 -0.0173 -0.0237 -0.0487∗∗ -0.0226
N= 64,359 (0.0047) (0.0094) (0.0122) (0.0164) (0.0187)

BW = 24 -0.0058 -0.0248 -0.0296 -0.0398 -0.0207
N = 30,338 (0.0065) (0.0150) (0.0188) (0.0269) (0.0297)

BW = 96 -0.0011 -0.0193∗∗ -0.0346∗∗∗ -0.0575∗∗∗ -0.0519∗∗

N = 118,388 (0.0031) (0.0062) (0.0098) (0.0132) (0.0161)

OLS
Years of Education -0.0007*** -0.0037*** -0.0106*** -0.0194*** -0.0290***

(0.0001) (0.0002) (0.0003) (0.0004) (0.0006)

IV
Reduced Form -0.0008 -0.0051* -0.0070* -0.0143** -0.0084

(0.0014) (0.0026) (0.0038) (0.0045) (0.0053)

First stage 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗

(0.0586) (0.0586) (0.0586) (0.0586) (0.0586)

Notes: see notes for Table 7. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Considering the cumulative fertility estimates, Table 8, the first stage of course is iden-
tical to that in Table 7. A comparison of the OLS and the wald estimates reveals that
they all share the same sign, in contrast to the results in Table 7 for the estimations
at each of the individual teen ages. The cumulative estimates thus suggest that any
positive correlation between the measure of education and unobservables (such as at age
16) is offset by negative correlation (for instance at age 15).

To reconcile the differences between the reduced form (sharp RDD) and the wald (fuzzy
RDD) estimates, recall that the SRD measures the causal effect of the reform, which is
the average effect of being subject to the RoSLA regime in comparison to the pre-RoSLA
regime (on average an extra three months of schooling). In contrast, the FRD approach
rescales the reduced form results so that the Wald estimates reflect the effect on the
propensity for motherhood of an additional year of education for the sub-population
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of individuals who were induced to increase the duration of schooling by the RoSLA
reform.

6 Conclusion

This paper has investigated the impact of an increase in the minimum compulsory school-
leaving age on teenage fertility rates, using data from the UK Labour Force Survey, the
largest representative UK household survey. The findings indicate a non-monotonic im-
pact over the individual teenage years. In contrast to previous research, the results
provide strong evidence of a large incarceration effect. This discrepancy may be ex-
plained by the proportion of individuals directly affected by the institutional change to
mandatory education. The Norwegian reform analyzed by Black et al. (2008) increased
the duration of schooling by two years, yet the estimated increase to individuals’ edu-
cation was just 0.122 years, indicating that only a small fraction of the population were
impacted. In contrast the UK’s RoSLA, compelling an increase to compulsory schooling
of just one year, increased the average years of schooling by 0.293 years due to the higher
proportion of individuals affected. Hence although the incarceration effect, by capturing
the shift in fertility for the age at which the legislation bites, may be thought of as just a
mechanical response to the extra year of schooling induced by the legislation change, the
evidence suggests that if mandating a higher school graduating age raises the schooling
durations of a large share of the school-age population, teenage fertility rates will be
substantially affected.

Unfortunately, the data used in this analysis does not allow examination of the mech-
anism that results in the beyond incarceration effect, the question therefore remains to
what extent this is attributable to the impact of education on human capital acquisition.
Extending the analysis beyond the teenage years revealed that the impact of RoSLA was
to essentially induce a postponement of fertility from early teen to the late teenage years,
with a large increase in the incidence of fertility at age 19, and the impact of the increase
in compulsory education tailing off after age 20. Given that these individuals continue
to bear children at a relatively young age, a question for future research is whether
this postponement of fertility positively impacted outcomes for these mothers and their
children.
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Appendices

A Graphical results

Figure 6: Sharp RDD

(a) Mother at age 15 (b) Mother at age 16 (c) Mother at age 17

(d) Mother at age 18 (e) Mother at age 19

(f) Mother by age 16 (g) Mother by age 17 (h) Mother by age 18

(i) Mother by age 19 (j) Mother by age 20

Notes: The graphs display local-linear polynomial smooths, as described in Section 4.1, using a bandwidth of 48
months and a rectangular kernel, for the probability of becoming a mother at age 15 - age 19 (graphs a - e) and
by age 16 - by age 20 (graphs f - j). The horizontal axis measures the distance, in months, of individuals’ births
to the RoSLA cutoff. The scatterplot indicates the proportions of mothers in each month-bin. The dashed lines
are 95% confidence intervals of the local polynomial.
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B Cross-Validation

Figure 7: Cross-Validation functions

(a) Mother at age 15 (b) Mother at age 16 (c) Mother at age 17

(d) Mother at age 18 (e) Mother at age 19

(f) Mother by age 16 (g) Mother by age 17 (h) Mother by age 18

(i) Mother by age 19 (j) Mother by age 20

Notes: The graphs display the cross-validation function for each of the outcome variables over the range of
bandwidths following the procedure described in Section 4.3. The optimal bandwidth is defined as the value of
the bandwidth, h, that minimizes the cross-validation function, CVY (h), which is computed as the mean square
difference of the predicted value to the true value of Y
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C Sensitivity Analysis

Figure 8: Sensitivity of Estimates to bandwidth choice

(a) Mother at age 15 (b) Mother at age 16 (c) Mother at age 17

(d) Mother at age 18 (e) Mother at age 19

(f) Mother by age 16 (g) Mother by age 17 (h) Mother by age 18

(i) Mother by age 19 (j) Mother by age 20

Notes: The graphs display the magnitude of the estimates, along with the 95% confidence interval, over different
bandwidths based on the parametric regression discontinuity design as described in Section 4.2.
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