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Abstract

Presented is a search in the high mass dielectron spectrum for beyond the Standard Model

physics exhibiting a non resonant behaviour. New physics processes such as four fermion

contact interactions and the ADD model with large extra dimensions, are searched for

with the ATLAS detector using proton-proton collisions from the Large Hadron Collider

at CERN. Results from two data sets are presented, the main results presented come from

a data set with
√

s = 8 TeV and an integrated luminosity of 20.3 fb−1, these results are

compared to a data set with
√

s = 7 TeV and an integrated luminosity of 4.9 fb−1 completed

prior. The main analysis was a search in the dielectron invariant mass distribution as well

as the angular variable cosθ∗, while the 7 TeV analysis searched in the dielectron invariant

mass.

No significant signal is found in either data set and so lower limits are set on the scale

of new physics for several formalisms of each model. For the 7 TeV analysis limits on the

scale of new contact interactions (Λ) are set for the bench mark formalism of LL contact

interactions of Λ > 12.7 TeV and Λ > 9.63 TeV for the model for constructive and destruc-

tive interference with the Drell-Yan background respectively. In the same analysis limits

are set on the ADD model scale of new physics (MS) of MS > 3.0 TeV on the benchmark

formalism GRW.

The 8 TeV analysis sets higher limits on the LL formalism of Λ > 21.55 TeV and Λ

> 19.61 TeV for constructive and destructive interference. Limits are also set on other

formalisms with the highest limits set on the LR formalism of Λ > 26.25 TeV and Λ >

23.77 TeV for constructive and destructive interference. Limits are set on the ADD GRW

formalism of Ms > 4.79 TeV with limits on other formalisms also presented. At the time

of writing these are the highest public limits set on either theoretical models.
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Preface

This thesis describes the work carried out for an analysis searching for new non-resonant

physics with the ATLAS detector. It focuses on the search within the electron decay channel

using ATLAS’s 8 TeV data set. This is compared and contrasted with the previous ATLAS

search using the 7 TeV data set in chapter 9 showing the evolution from this previous anal-

ysis. For the 7 TeV analysis the author was the only electron channel analyst while they

were one of two analysts for the 8 TeV analysis. The author made a major contribution to

these two analyses that are detailed in the 7 TeV [1] and 8 TeV [2] publications. The 8 TeV

non-resonant analysis discussed in this thesis was primarily carried out within a group of

four students, one researcher and four academics working on ATLAS. The search within

the electron channel was primarily carried out by two students with the author focusing on

the Contact Interaction model and necessarily this dictates the focus on this model within

this thesis. Both theoretical models (Contact Interactions and ADD) are presented however

as the search methods strongly complement each other and the comparison is important.

The author also aided in another analysis contributing to a 7 TeV [3] and an 8 TeV [4] pub-

lication searching for new resonant physics in the dilepton channel. This resonant analysis

has strong ties with the analysis presented here and the author worked on the dielectron

analysis for both. The author also made a major contribution to work in the electron photon

triggering group detailed in section 3.4.2. This work composed part of an ATLAS note

[5] with the author presenting a related poster [6] at the Computing High Energy Particle

physics conference (CHEP) in 2012 in New York. The author’s service task on ATLAS was

composed of this work and maintenance of the associated high level trigger code.

Following is an overview of this thesis describing the contents of each chapter. Chapters

1 to 4 contain background to the theory and the ATLAS experiment and do not contain work

carried out by the author apart from a section on trigger rates at high luminosity referenced

8



CONTENTS 9

above. Chapters 5 to 11 detail analysis work carried out by the author where related work

not completed by the author has been indicated. The thesis is followed by an appendix

containing additional material and information not contained in the body of the thesis.

• Chapter 1: Theory

This chapter covers an overview of the Standard Model (SM) of particle physics and

then continues on to Beyond the Standard Model (BSM) phenomena. The main focus

is on the idea of non-resonant excesses in the dilepton Drell-Yan (DY) spectrum of

which two examples are discussed. The first example is Contact Interactions, a model

which describes many BSM phenomena that can show up as four fermion contact

interactions that exhibit a divergence from the SM DY spectrum. The example shown

is that of a quark-lepton composite model where quarks and leptons are found to be

composed of smaller particles. The second example given is the Arkani-Hamed,

Dimopoulos, and Dvali (ADD) model. This is a Graviton theory with the addition of

large extra spacial dimensions to dilute gravity. These large extra spacial dimensions

create Kaluza-Klein resonances of the graviton very close to each other and so exhibit

signs of non-resonance behaviour. A look at past results for similar searches is also

discussed here.

• Chapter 2: Experiment

This chapter is an overview of the ATLAS experiment and the LHC with important

detector and LHC components discussed. A particular focus is given to the inner

tracking detector and energy calorimeters of ATLAS as these systems are the parts

used in the detection of di-electron events used in this analysis.

• Chapter 3: The Trigger & Data Acquisition

This chapter focuses on the triggering system for selecting data events in the ATLAS

detector. An overview of the whole system will be given but a focus made on the

“egamma” trigger which selects electron and photon events. A slight detour will

be made discussing the effect of increases in the luminosity of the LHC collisions

through the 2011-2012 data-taking period and efforts taken to reduce high rates of

data acquisition this led to in the “egamma” chain.

• Chapter 4: Event Reconstruction
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This chapter details the algorithms used in reconstructing electrons and photons from

the detector output. It also contains a discussion on ATLAS assignments of tight,

medium and loose electrons.

• Chapter 5: Event Selection

This chapter covers the main event selection of di-electron events for the non-resonance

analysis using the 20.3 f b−1 of data recorded in 2012. There is also a discussion of

the necessary corrections applied to energy measurements.

• Chapter 6: Background Estimate

This chapter discusses the estimate of the background processes to the non-resonant

signal. It covers the Monte Carlo (MC) samples generated to estimate these back-

grounds as well as corrections applied to match MC to the data collection conditions

used and corrections to account for next to next to leading order generator effects.

• Chapter 7: Signal and Results

This chapter shows the search for new physics in the data collected in the 2012 data

taking period. This includes a description of the MC used to predict the signals as

well as comparison between the Data and the MC prediction of the background. Also

looked at are the significance or p-value of any divergences from the SM background

prediction.

• Chapter 8: Statistical Analysis

This chapter discusses the statistical treatment of the results. First discussed are pos-

sible sources of systematic error in the analysis as well as levels of statistical error.

Then there is a look at the complications introduced with the angular analysis in

cosθ∗. Last a Bayesian approach is taken to search for signs of new physics and then

setting lower limits on the scale of new physics predicted by this analysis.

• Chapter 9: Non-Resonance 7 TeV Analysis

This chapter looks at the first non-resonant analysis completed on the 7 TeV data set

from 2011 with a luminosity of 4.9 f b−1. An overview of the full event selection

and limits set are included along with some comparisons between this and the 8 TeV

analysis. This analysis is presented after the 8 TeV analysis as a comparison to show
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the evolution of the analysis and highlight the authors work.

• Chapter 10: Conclusion

This final chapter discusses the conclusions obtained from this analysis with an overview

of the results and a comparison between the limits set and previous results. Finally

there is a look forward to the future of searches of non-resonant physics within AT-

LAS and the LHC.



Chapter 1

Theory

The Standard Model (SM) of particle physics has proven to be excellent at describing parti-

cle interactions up to the energy scale of modern colliders (∼ TeV) and with the discovery

of a Standard Model like Higgs Boson at the Large Hadron Collider (LHC) the theory will

be able to claim completeness up to the energy scale of modern colliders. However the

Standard Model is known to be incomplete, with observations such as neutrino mass, the

lack of anti-matter in the observable universe and the lack of a quantum gravity description

with the related hierarchy problem1, the Standard Model is far from a theory of Everything.

This then leaves the possibility of new physics beyond the SM that could appear in the en-

ergy scope of the LHC. Following is an overview of the Standard Model [7] followed by a

description of the theoretical models searched for in this thesis.

1.1 Standard Model

The Standard Model of particle physics is a quantum field theory describing the interaction

of particles and forces at a fundamental level. These forces and particles are so far seen to

be the most fundamental components in nature describing all know quantum systems with

the absence of gravity. Particles are split between fermions, the matter particles, and gauge

bosons, the force carriers in the model. There is also the additional scalar boson the Higgs,

discussed later. The gauge bosons are split between the three fundamental forces Strong,

Weak and Electromagnetic while the fermions are split in to two different categories leptons

1The hierarchy problem highlights the drastic difference in force strength between gravity and the other

fundamental forces seen in the Standard Model.

12



1.1 Standard Model 13

and quarks according to which forces they interact with. Fermions have the property of

having spin 1/2 while bosons have an integer spin of either 0 or 1. Each particle has an

associated anti-particle with opposite charge.

Leptons

Leptons only interact with other particles via the electromagnetic and weak forces with

neutrinos only interacting via the weak force. There are 6 leptons in total organised in to

3 flavours, the electron (e), muon (µ) and tau (τ) as well as the neutrinos, electron neutrino

(νe), muon neutrino (νµ) and tau neutrino (ντ). All the leptons along with their mass and

charge can be seen in table 1.1. It is important to note that the standard model predicts neu-

trinos to be massless while experiment has proven neutrinos to have mass via observations

of neutrino oscillations between flavours.

Charge (q)
Generation

I II III

-1
electron muon tau

e µ τ
m = 0.51 MeV m = 105.7 MeV m = 1.777 GeV

0
electron neutrino muon neutrino tau neutrino

νe νµ ντ
m < 2.2 eV m < 0.17 MeV m < 15.5 MeV

Table 1.1: The leptons found in the Standard Model [7].

Quarks

Quarks interact with other particles via all three forces electromagnetic, weak and strong.

Again there are 6 quarks organised in to 3 flavours: up (u), down (d), charm (c), strange (s),

top (t) and bottom (b). The charge and mass of the six quarks is shown in table 1.2. Quarks

also come with a property called colour charge important in how the strong interaction

works. The strong force leads to the property called colour confinement found in quarks

causing quarks to hadronise quickly with only colour neutral particles seen. These colour

neutral or “colourless” particles referred to as hadrons are composed of quarks and come

in two configurations baryons and mesons with three and two quarks each respectively.
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Protons and neutrons are baryons containing the quark configurations uud and udd which

appear within the nucleus of atoms. Many other configurations of quarks form different

baryons but none are stable. Mesons are composed of one quark and one anti-quark but

none are found to be stable in nature.

Charge (q)
Generation

I II III

+2
3

up quark charm quark top quark

u c t
m ≈ 2.3 MeV m ≈ 1.275 GeV m ≈ 173.07 GeV

−1
3

down quark strange quark bottom quark

d s b
m ≈ 4.8 MeV m ≈ 95 MeV m ≈ 4.18 GeV

Table 1.2: The quarks found in the Standard Model [7].

Gauge Bosons

There are 4 bosons in the Standard Model as well as the newly observed candidate for the

fifth the Higgs Boson. The Higgs boson is discussed later but for now we will look at

the force carriers or gauge bosons. The gauge bosons consist of the gluon (g) carrier of

the strong force, the photon (γ) carrier of the electromagnetic force and then the W and Z

bosons carriers of the weak force. All gauge bosons have a spin of 1 with only the W boson

having a electric charge and therefore the only particle with a distinguishable particle and

antiparticle. All gauge bosons and their properties can be seen in table 1.3.

1.1.1 Fundamental Forces

The Standard Model is described as a local gauge theory meaning observables remain un-

changed under transformations be they global transformations, a uniform transformation

over all space and time, or local transformations, a transformation as a function of space

and time. This is also described as gauge symmetry or gauge invariance and held as an

important trait for quantum field theories to posses. The first fundamental force to gain a

gauge theory was Quantum Electrodynamics with the U(1) symmetry referring to a theory
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Force Charge Boson

Electromagnetic 0
photon

γ
m = 0

Weak

0
Z boson

Z
m = 91.2 GeV

±1
W boson

W
m = 80.4 GeV

Strong 0
gluon

g
m = 0

Table 1.3: The gauge bosons found in the Standard Model [7].

symmetric under unitary 1×1 group transformations. The weak theory and Quantum Cro-

modynamics followed with symmetries of SU(2) and SU(3) transformations respectively.

SU(n) refers to a group of n×n special unitary matrices (Special refers to the matrices all

having a determinant of 1). This is why the SM is referred to as a U(1)×SU(2)×SU(3)

group theory after the unification of the forces.

Quantum Electrodynamics

Quantum Electrodynamics (QED) describes the interactions of the photon with charged

fermions. Photons are massless meaning the electromagnetic force has infinite reach. The

theory describes the interaction strength between the photon and both quarks and charged

leptons. The quantity conserved in these interactions is particle electric charge. QED is

important in calculating the qq → γ → ℓℓ process which is a main background to this anal-

ysis in the form of Drell-Yan. The photon has no charge so there are no self interactions

between photons. The fundamental QED interaction vertex can be seen figure 1.1.

The Weak Interaction

The Weak interaction describes interactions involving the neutral Z0 boson and the charged

W± boson. These bosons both have mass limiting the range of the weak interaction. This

theory allows for the interaction between all fermions including neutrinos (which only in-
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γ

f

f̄

Figure 1.1: Fundamental QED interaction vertex, where f can be any charged fermion.

teract via the weak force) and self interaction between Z and W bosons. This is important

for this analysis because of the diboson background to signal consisting of production of

ZZ WZ and WW events decaying to electrons as well a simple Z boson decaying to two

electrons. The fundamental weak interaction vertices can be seen in figure 1.2.

Z

f/ν

f̄/ν̄

W±

ℓ±

ν/ν̄

W±

q

q̄

Z

W+

W−

W±

W±

Z

Z

W±

W±

W±

W±

Figure 1.2: Fundamental weak interaction vertices, where f can be any charged fermion, ℓ can be

any charged lepton and q can be any quark as long as charge is conserved in each case.

Electroweak Unification & Symmetry Breaking

The electromagnetic and weak theories were united by Glashow, Weinberg and Salam [8,

9, 10] showing that at high energy (past the electroweak unification/phase transition energy

∼ 246 GeV) the forces can be considered as one and conserve a combined quantum number,
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weak hypercharge Y = 2(Q− I3) where I3 is the weak isospin and Q is the electric charge.

This combination of the forces is the U(1)×SU(2) symmetry. This conserved symmetry

then gives rise to 4 gauge fields W 1, W 2, W 3 and B0. The first three originating from

symmetries in SU(2) and the last from U(1). The gauge bosons we observe in experiment

are then obtained by a mixing of these gauge fields as found in equations 1.1 and 1.2 where

cosθw = mW /mZ .

W± =
W 1 ∓ iW 2

√
2

(1.1)





γ

Z0



=





cosθw sinθw

−sinθw cosθw









B0

W 3



 (1.2)

However electroweak unification alone causes a problem by predicting W and Z bosons

as massless contradicting experimental results and implying electroweak symmetry must

be broken. The solution to this problem comes about by the introduction of the Higgs

mechanism [11, 12, 13]. The Higgs mechanism makes the prediction of a new complex

doublet of scalar fields referred to as the Higgs field. This Higgs field has a non zero vacuum

expectation value allowing symmetry in the U(1)×SU(2) group at high energy, however

below the electroweak phase transition the Higgs potential has a non zero minimum we call

the vacuum expectation energy. This induces a spontaneous symmetry breaking allowing

the weak gauge bosons to have mass while photons remain massless. This Higgs field also

gives rise to a massive scalar boson referred to as the Higgs boson. A scalar boson fitting the

description of the Higgs boson was recently discovered at the two main LHC experiments

confirming that electroweak symmetry breaking of this form exists [14, 15].

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory associated with the strong force. It de-

scribes a interactions between particles conserving a quantum number called colour. The

SU(3) symmetric group gives rise to 8 massless gauge bosons referred to as gluons. Glu-

ons interact only with coloured particles which include quarks and gluons themselves. The

strong interaction is different in the way it strengthens with increasing distance and weak-

ens to asymptotic freedom at small distances. This increase in interaction strength with in-

creasing distance is referred to as colour confinement discussed previously where as quarks
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separate the interaction energy increases to the point that qq̄ pairs form which then combine

to produce colourless baryons and mesons. The fundamental QCD interaction vertices can

be seen in figure 1.3.

g

q

q̄

g

g

g

g

g

g

g

Figure 1.3: Fundamental QCD interaction vertices, where q can be any quark.

1.2 Non-resonant New Physics

Beyond the Standard Model (BSM) or new physics models is a staple of the physics pro-

grams of the LHC detectors. Any theoretical models not contained within the Standard

Model (SM) can fall in to this category and LHC experiments aim to search for as many

of these models as are feasible within their scope (proton-proton collisions and within the

energy range of the LHC). Within the detection channel of two lepton decays (dilepton)

non-resonant signals could be a signature of new physics. This physics would show as a

divergence from the SM background prediction in the dilepton mass spectrum contrasted

with resonant signals of particles such as the Z boson which shows as a peak in the dilepton

mass spectrum.

Non-resonant signals could be the results of many BSM theoretical models but two

main theories are presented here and searches for evidence of these compose the rest of this

thesis.

1.2.1 Contact Interaction Theory

The SM assumes quarks and leptons to be fundamental particles in nature. This assump-

tion is not without compelling argument but like the proton beforehand there is no reason

quarks and leptons should not be composite structures or bound states of more fundamental
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particles, often referred to as preons [16], only observable at an energy scale Λ we have yet

to reach.

One way quark and lepton compositeness would exhibit itself is in 4-fermion contact

interactions between two quarks from the incoming protons producing two final state lep-

tons (qq̄ → ℓ−ℓ+). This is the compositeness signal searched for at the ATLAS detector.

As can be seen in the Feynman diagrams in figure 1.4 4-fermion contact interaction are

indistinguishable from the main background process DY2 on an event-by-event basis.

q

q̄

γ∗/Z

e+

e−
q

q̄ e+

e−

Λ

Figure 1.4: Feynman diagrams of the predominant background SM process Drell-Yan (left) and by

comparison the contact interaction (right).

Without knowing the intermediate process one can write a general Lagrangian describ-

ing the new interaction:

L =
g2

2Λ2
[ηLL(ψ̄LγµψL)(ψ̄LγµψL)+ηRR(ψ̄RγµψR)(ψ̄RγµψR)+2ηLR(ψ̄LγµψL)(ψ̄RγµψR)]

(1.3)

where g is the coupling constant, Λ is the energy scale of new physics and ψL and ψR are

the left and right handed fermionic fields respectively. The sign of η defines whether the

new interaction interferes constructively (η = −1) or destructively (η = +1) with DY and

is always unity or null. For previous analyses [17, 18, 1] a benchmark model of just the

Left-Left (LL) component has been used and is defined by ηLL =± 1 and ηRR = ηLR = 0.

This thesis discusses both an analysis searching for only LL (found in chapter 9) and one

with an investigation of each of the three parameters (found in the rest of the thesis). Due

to the symmetry of left handed and right handed interactions both the LL and RR cases

predict similar distributions however the LR case exhibits a different angular dependence

2Drell-Yan describes of the annihilation of a quark and antiquark forming a virtual photon or Z boson

which then decays in to a lepton pair (qq̄ → γ∗/Z → ℓ−ℓ+).
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than either of the other formalisms or the DY background. This difference is the primary

reason for the inclusion of the angular search variables described later in the analysis. The

discriminating variables used are therefore the dilepton invariant mass and the cosine of the

decay angle θ∗. The angle θ∗ is defined in the Collins-Soper frame [19] which is defined

with the x-axis perpendicular to the incoming parton momentum frame and the z-axis bi-

secting the angle between the two incoming parton momenta. Since the incoming parton

information is understandably unavailable the z-axis is taken as the direction of the incom-

ing quark (as opposed to anti-quark) obtained from the boost in to the dilepton frame. The

angle θ∗ is then defined as the angle between this z-axis and the momentum of the outgoing

negatively charged lepton (or electron in this analysis). The angle θ∗ can be seen explained

via a diagram in figure 1.5.

θ
*

P1

P2 l
+

l
-

Figure 1.5: Showing the definition of the θ∗ variable with respect to the parton frame (P1 & P2)

decaying leptons (l).

The equation used to obtain the cosθ∗ variable in this analysis is seen in equation 1.4

where Q represents the four vector of the dilepton centre of mass system and QT the trans-

verse component of this four vector. pz and E are the z component of the momentum and

the energy for both the particle (ℓ−) and anti-particle ℓ+) leptons.

cosθ∗ =
2

Q

√

Q2 +Q2
T

(pz(ℓ
−)E(ℓ+)− pz(ℓ

+)E(ℓ−)) (1.4)

Figure 1.6 shows the difference expected between the LR CI models and DY back-

ground from a truth Monte-Carlo study. The variables used are forward backwards asym-
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metry (AFB) and dilepton invariant mass, where AFB is defined in relation to cosθ∗ as:

AFB =
NF −NB

NF +NB
(1.5)

where NF and NB are number of events found with cosθ∗ greater than 0 and less than 0

respectively.
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Figure 1.6: Monte-Carlo truth level comparison between the forward backwards asymmetry of DY

and of the CI LL and LR signals.

A differential cross section for this interaction, qq̄ → ℓ−ℓ+ (qqℓℓ), is given by

dσ

dmℓℓ
=

dσDY

dmℓℓ
−η

FI

Λ2
+

FC

Λ4
, (1.6)

where mℓℓ is the dilepton mass and Λ is the scale of the new physics. In the case of

quark/lepton compositness Λ refers to the point at which fermions stop being bound as

SM quarks and leptons. FI and FC define the interference DY-CI term and the pure CI

term respectively. The scale of the interference and pure term vary with both the dilepton

invariant mass as well as the scale of new physics Λ.

Experimentally this interaction would be seen as a deviation from the Standard Model
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Drell-Yan dilepton mass spectrum as seen in figure 1.7.
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Figure 1.7: Monte-Carlo truth level comparison between DY spectrum with and without CI signal.

Here Λ− refers to constructive interference and Λ+ to destructive.

1.2.2 ADD Theory

Arkani-Hamed, Dimopoulos, and Dvali (ADD) [20] described a model with large extra

dimensions proposed to solve the hierarchy problem and bring the energy scale associated

with gravity (the Planck scale MPl ∼ 1016 TeV) down to the level of the electroweak energy

scale (MEM ∼ 10−1 TeV). This is achieved with the introduction of n additional compacti-

fied spacial dimensions with radius R. This then gives a new scale in the 4+n dimensional

space, MD, which is related to the Planck scale by MPl = Mn+2
D Rn. If both the radius of

the extra dimensions R and number n are large enough this solves the hierarchy problem

by bringing MD down to the level of MEM. Large extra dimensions are distinct from other

extra dimensions theories due to their relatively large radius R. One version of the ADD

model proposes a Graviton that can propagate in the extra dimensions acquiring Kaluza-

Klein (KK) modes that show as a broad excess above the SM background. The Graviton is

the only propagator in these extra n dimensions with each dimension resulting in a new KK
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mass splitting of the Graviton mass. The mass splitting occurs with an interval of 1/R and

since R is required to be large by the theory this pushes the mass splitting together causing

a continuous peak like structure analogous to a non-resonant excess. The sum over these

virtual KK modes has to be regularised by an “ultra violet” cutoff (ΛT ) and it is convention

to equate this cutoff to the onset of quantum gravity (MS) only below which the theory is

valid. The scale MS is used as the scale of new physics for the ADD theory below which

ADD is a low energy effective theory. This scale can be related to the new n dimensional

Planck scale (MD) by:

MS = 2
√

π [Γ(n/2)]1/(n+2)
MD (1.7)

where Γ is the decay width. Below the scale MS virtual Graviton exchange would lead to

a broad excess over the SM Drell-Yan dilepton mass spectrum. The Feynman diagrams of

this graviton exchange are seen in figure 1.8.

G∗

e+

e−g

g

q

q̄

G∗

e+

e−

Figure 1.8: Feynman diagrams of Graviton exchange in the ADD theory coming from both gluon

(left) and quark (right) annihilation.

The total differential cross-section for the dilepton SM DY and virtual Graviton ex-

change is then:

dσ

dmℓℓ
=

dσDY

dmℓℓ
+F

FI

M4
S

+F 2 FG

M8
S

(1.8)

where σDY is the SM DY cross-section, FI and FG are the Graviton-DY interference term

and pure virtual Graviton exchange term respectively while F is a formalism dependent

parameter and also dimensionless. Three formalisms are commonly used to describe ADD

theory, these are Giudice, Rattazzi, and Wells (GRW) [21], Han, Lykken, and Zhang (HLZ)

[22] and Hewett [23]. Defining F these formalisms alter the cross-section of virtual Gravi-

ton exchange with HLZ depending on the number of extra dimensions, n, introduced by the
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ADD theory. All three formalisms are detailed in equation 1.9

F = 1, (GRW)

F =







log(
M2

S

m2
ℓℓ
), (n = 2)

2
n−2

, (n > 2)
, (HLZ)

F =
2λ

π
=

±2

π
, (Hewett)

(1.9)

The variable λ found in the Hewett formalism defines the constructive or destructive nature

of the gravitational interaction with the SM DY processes. λ is always of order unity with

+1 and -1 being constructive and destructive respectively. The GRW and HLZ with n = 2

are the two formalisms explicitly searched for in this analysis with a conversion of limits

done to asses the other formalisms (including Hewett) in the statistical analysis chapter

(chapter 8).

It is important to note the differences between this and the Randall Sundrum [24] Gravi-

ton model which predicts a Graviton signal as a peak structure at a single mass point due to

different spacing of KK towers in the theory.

Experimentally this interaction would be seen as a deviation from the SM DY (qq̄ →
γ/Z → ℓ−ℓ+) dilepton mass spectrum but with a cut-off where quantum gravity is assumed

take effect. This can be seen in figure 1.9.

1.3 Past Searches

Contact Interaction

Several previous CI analyses have been done at hadron colliders including the LHC [1, 25,

26, 27] and the Tevatron [17, 18, 28, 29, 30, 31, 32]. Searches were also performed at the

electron-proton collider HERA [33, 34, 35], previous lepton colliders [36, 37, 38, 39, 40]

and neutrino scattering experiments [41]. Of the results comparable to this analysis search-

ing for qqℓℓ contact interactions in the absence of signal the highest limits set on the scale of

new physics Λ come from the previous ATLAS analysis the author worked on [1] detailed

in chapter 9. This 7 TeV ATLAS analysis sets a limit of Λ > 12.7 TeV and Λ > 9.63 TeV

for the dilepton LL CI model for constructive and destructive interference respectively. The
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Figure 1.9: MC truth level comparison between DY spectrum with and without ADD signal.

limits obtained for the electron channel for comparison to the analysis presented here were

Λ > 11.6 TeV for constructive and Λ > 8.76 TeV for destructive interference. This 7 TeV

analysis is discussed in chapter 9. By comparison the CMS results on the same 2011 data

[26] set limits of Λ > 13.1 TeV and Λ > 9.5 TeV for constructive and destructive isola-

tion. Before the LHC the highest limits on qqℓℓ contract interactions came from CDF at the

Tevatron [18] (with 0.45 f b−1 of data) that set limits on qqee contact interactions for the

LL, Λ > 5.9 TeV and Λ > 3.7 TeV, RR, Λ > 5.6 TeV and Λ > 3.9 TeV, and LR formalism,

Λ > 5.8 TeV and Λ > 4.7 TeV, for constructive and destructive interference respectively.

ADD

The highest dilepton ADD limits set on the formalism normally used as a benchmark,

GRW, are that of the previous ATLAS analysis on which the author worked [1] discussed

in chapter 9. This analysis set a limit of MS > 3.0 TeV on the scale of new physics (MS).

Other previous analyses have also carried out searches for large extra dimensions with the

ADD model. These analyses have come from the LHC [1, 42, 43, 44], from the Tevatron

[45, 46, 17], as well as from electron-proton collider HERA [34, 33] and electron-positron
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collider LEP [47, 48, 49, 50, 31, 32]. The highest limit before the LHC were those set by

D0 at the Tevatron [45] which set a limit of MS > 1.45 TeV on the GRW model in the

electron and photon channels.



Chapter 2

Experiment

This chapter will explore the ATLAS experiment in order to explain how data specific to

this analysis is obtained. First however is a discussion of the Large Hadron Collider which

supplies the ATLAS experiment with proton collisions.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [52] is the largest and most powerful particle collider

in the world with a circumference of 27 km and design centre of mass collision energy

of 14 TeV. During the 2012 run the accelerator was run at a centre of mass energy of

8 TeV while providing an integrated luminosity of just above 20 f b−1 to its two general

purpose experiments, CMS and ATLAS, the latter of which provided data for this analysis.

An analysis is also presented in this thesis looking at the 7 TeV data set from the 2011

run. This data set provided just above 4.5 f b−1 of data. Figure 2.2 shows the luminosity

collected throughout the 2011-2012 period.

The LHC is built in the same tunnel (see figure 2.1) as was used by the Large Electron-

Positron (LEP) collider. Based at CERN (Centre of European Nuclear Research) the 27 km

tunnel is between 50 to 175 m underground and like CERN itself crosses the French-Swiss

border just outside Geneva. Installation of the LHC started in 2001 after the LEP collider

was decommissioned and dismantled with excavation of the caverns for the LHC’s four

main experiments starting slightly before in 1998. The LHC is a synchrotron machine re-

quiring 1,232 super-conducting Niobium-Titanium dipole magnets each providing an 8.33

27
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Figure 2.1: Schematic of LHC tunnel with all its caverns showing those added in preparation for the

LHC. This shows the position of the LHC’s 4 main detectors and SPS ring [51].

T magnetic field to direct the proton beams around its loop and an additional 392 quadrupole

magnets of the same type to focus the beams for the collision points. The superconducting

magnets operate at 1.9 K with the whole accelerator requiring 96 tonnes of liquid helium to

remain cooled.

For the 8 TeV run the LHC ran with 1380 proton bunches travelling in each direction

which were accelerated around the LHC with an interval of 50 ns between bunches and

with each bunch composed of ∼ 1.15× 1011 protons. These run conditions gave a peak

instantaneous luminosity of 6.6×1033cm−2s−1 at the start of a run which slowly degraded

during a run as protons collided. The 7 TeV run had an peak instantaneous luminosity of

3.6×1033cm−2s−1

The LHC cannot run in isolation to provide beams for its 4 main experiments, instead

it is the last and newest accelerator in a chain of accelerators which extract protons from a

hydrogen canister with little to no momentum and inject them in to the LHC as a 450 GeV

beam. The proton source is a device called a Duoplasmatron which injects hydrogen gas

in to a strong electric field striping electrons from their nuclei. The remaining protons are
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Figure 2.2: Cumulative luminosity versus time delivered to (green), recorded by ATLAS (yellow),

and certified to be good quality data (blue) during stable beams and for pp collisions at 7 and 8 TeV

centre-of-mass energy in 2011 and 2012. [53]

injected in to Linac 2, a linear accelerator which accelerates them to an energy of 50 MeV.

The BOOSTER or Proton Synchrotron Booster (PBS) comes next in the chain and accel-

erates protons from 50 MeV to 1.4 GeV to be injected in to the main Proton Synchrotron

(PS). The PS accelerates protons up to an energy of 25 GeV and again injects them in to

another accelerator, the Super Proton Synchrotron (SPS). The SPS (seen in figure 2.1) is the

final stage before injection in to the LHC ring and pushes protons to an energy of 450 GeV.

Protons from the SPS then get injected in to the LHC in both counter revolving directions

and accelerated to their final collision energy. For the data used in the analysis the final

proton beam energy is 3.5 TeV and 4 TeV for the 2011 and 2012 runs giving a final centre

of mass collision energy of 7 TeV and 8 TeV respectively.

Four collision points exist around the circumference of the LHC providing collisions

to the four main experiments (see figure 2.1); ATLAS (A Toroidal LHC Apparatus), CMS

(Compact Muon Solenoid), ALICE (A Large Ion Collider Experiment) and LHCb (Large

Hadron Collider beauty). ATLAS and CMS are both general purpose experiments designed



2.2 ATLAS - A Toroidal LHC Apparatus 30

to look for a variety of physics. ALICE is designed specifically to study quark-gluon plasma

in heavy ion collisions scheduled for the end of each LHC run period while LHCb looks for

beauty mesons to study for CP-violation. There are also three additional LHC detectors in

various stages of deployment without their own collision points; TOTEM (Total Elastic and

diffractive cross-section Measurement), LHCf (LHC forward) and MoEDAL (Monopole

and Exotics Detector at the LHC) which measure separate beam properties. TOTEM shares

CMS’s collision point aiming to measure the proton cross-section very accurately while

LHCf shares ATLAS’s collision point measuring the very forward region of collision with

the hope of investigating the source of ultra-high-energy cosmic rays. MoEDAL shares

a cavern with LHCb and is designed to search for magnetic monopoles and other highly

ionising stable massive particles.

2.2 ATLAS - A Toroidal LHC Apparatus

Figure 2.3: Cut-away view of the ATLAS detector. (The dimensions of the detector are 25 m in

height and 44 m in length.) The overall weight of the detector is approximately 7000 tonnes [54].

The ATLAS detector [54], seen in figure 2.3, sits 100 m underground just over the road

from the main CERN site and at 45 m long, 25 m in diameter and weighing over 7,000 tons
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is one of largest and most complex particle physics experiments in the world. The detector

itself can be divided in to four main subsystems and from the interaction point out they are;

the inner detector (ID) or tracking detector, the calorimeters both electro-magnetic (EM)

and hadronic (HCAL), the magnet system and the muon spectrometer (MS). There is also a

small set of forward detectors, not detailed here, for accurate measurement of the integrated

luminosity provided to ATLAS by the LHC named ALFA, LUCID and ZDC [54].

As a whole the detector has several different sets of coordinate systems some of which

are used in analysis and some used primarily in detector design and placement. The first

is z or the z-axis. This runs along the beam line through the centre of the detector with the

origin situated at the centre of the detector. x and y-axes do exist but are rarely needed as

radial coordinates serve the purpose better. R is the radial distance out from the beam line

and φ is the angle perpendicular to R and z measuring the angle around the barrel of the

detector. The last coordinate is θ measuring the angle with respect to the z-axis. This angle

however is not often used and instead the angle η or pseudorapidity is used. Defined in

equation 2.1 this quantity has the benefit that distances measured in η are invariant under

Lorentz boosts along the z-axis.

η = − ln[tan(
θ

2
)] (2.1)

Broadly the detector is divided in to the barrel region (cylinder surrounding the inter-

action point) and endcap regions (circles covering the ends of the barrel region) which use

slightly different configurations and technology in order to cover a full range in η. The

barrel for the EM calorimeter is found below an η of 1.37 and the endcaps above 1.52 and

below 2.47. Following is a description of each main subsystem while focusing particu-

larly on both the Inner Detector and EM calorimeter as these are the important systems in

identification of electrons used for this analysis [54].

2.2.1 Inner Detector

The Inner Detector is ATLAS’s main tracking detector which is fitted closest to the inter-

action point. A tracking detector is needed to trace charged particles from the interaction

point out to the calorimetry system and give information about particle such as; a charged
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Detector component Required resolution η coverage

Measurement Trigger

Inner Detector σpT
/pT = 0.05% pT ⊕ 1% |η|< 2.5 N.A

EM calorimetry σE/E = 10%/
√

E ⊕ 0.7% |η|< 3.2 |η|< 2.5
Hadronic calorimetry

barrel and end-cap σE/E = 50%/
√

E ⊕ 3% |η|< 3.2 |η|< 3.2

forward σE/E = 100%/
√

E ⊕ 10% 3.1 < |η|< 4.9 3.1 < |η|< 4.9
Muon spectrometer σpT

/pT = 10% at pT = 1 TeV |η|< 2.7 |η|< 2.4

Table 2.1: Detector components design resolution requirements and η ranges for triggering and

readout [54].

Figure 2.4: Cut-away view of the ATLAS inner detector [54].

particle’s position to match with the calorimeters (or Muon Spectrometer in the case of

muons) and when a magnetic field is present an estimate of a particle’s momentum to com-

pare with the calorimeter obtained from the radius of its curve. The ATLAS tracking system

is composed of three different tracking technologies in order going out from the collision

point; the Pixel Detector (PD), the Semiconductor Tracker (SCT) and the Transition Radi-

ation Tracker (TRT). The Inner Detector was designed to precisely measure charged tracks

in the energy range 0.5 GeV - 150 GeV thus complimenting the energy measurements of

the calorimetry system. Covering a range of |η| < 2.5 and full range in φ the Inner De-
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tector, with the help of the 2 T magnetic field imposed by the solenoid magnet (discussed

below), has a design momentum resolution of σpT
/pT = 0.05% pT ⊕ 1% for charged

tracks. In its design it was also important for the Inner Detector to be able to distinguish

between multiple primary vertices at the collision point, referred to as pile-up, as well as

secondary vertices from sources such as the hadronisation of b quarks. A schematic of the

inner detector with all its subsystems can be seen in figure 2.5.

Envelopes

Pixel

SCT barrel

SCT end-cap

TRT barrel

TRT end-cap

255<R<549mm
|Z|<805mm

251<R<610mm
810<|Z|<2797mm

554<R<1082mm
|Z|<780mm

617<R<1106mm
827<|Z|<2744mm

45.5<R<242mm
|Z|<3092mm

Cryostat

PPF1

Cryostat
Solenoid coil

z(mm)

Beam-pipe

   Pixel
support tubeSCT (end-cap)

TRT(end-cap)

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8

Pixel

400.5
495

580

650
749

853.8
934

1091.5

1299.9

1399.7

1771.4 2115.2 2505 2720.20
0

R50.5
R88.5

R122.5

R299

R371

R443
R514
R563

R1066

R1150

R229

R560

R438.8
R408

R337.6
R275

R644

R1004

2710848
712 PPB1

R
a
d
i
u
s
(
m
m
)

TRT(barrel)

SCT(barrel)
Pixel PP1

3512
ID end-plate

Pixel

400.5 495 580 6500

0

R50.5

R88.5

R122.5

R88.8

R149.6

R34.3

Figure 2.5: Planar view of a quarter-section of the ATLAS inner detector showing each of the major

detector elements with their active dimensions and position in z and R detector coordinates [54].

Pixel Detector

The Pixel Detector is the innermost detector and closest to the beam line consisting of three

layers of silicon pixels. Because of its proximity to the beam line the pixel detector is

designed to be radiation tolerant to high doses and needs to be understood to the degree that

its performance can be predicted over an extended period of radiation exposure. The Pixel

Detector is made of a barrel and two endcaps composed of 1744 modules all together. The

Pixel Detector consists of 80 million pixels of a size of 50 × 400 µm2.
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Semiconductor Tracker

The SCT consists of silicon strip detectors similar to the PD but is organised in to 4 layers in

the barrel region and 9 layers in each endcap. Due to the packed nature of these electronics

cooling is important in this layer and so the sensors in each module are glued to each side

of a thermally conductive spine that gives the SCT both structure and allows transport of

heat out via the mounting point of each module keeping them at their operating temperature

of −7 ◦C.

Transition Radiation Tracker

The TRT uses a completely different tracking technology to the rest of Inner Detector using

straw detectors composed of 4 mm diameter polymide tubes each with a 31 µm diameter

gold plated Tungsten-Rhenium wire. Due to the small diameter of the straws the TRT

can obtain the high read-out rate needed for experiments at the LHC. The barrel region

consists of 50,000 of these straws with a readout at each end providing 100,000 readout

channels. The endcaps contain another 320,000 straws only read out a one end giving

the TRT a total of 420,000 channels. Each channel measures drift time giving a design

resolution of 170 µm in each straw. The straws are filled with a high Xenon concentration

(Xe(70%)CO2(27%)O2(3%)) of gas in order to detect electrons via photons radiated as

the electrons traverse the material between straws. This is achieved by giving each straw

two timing thresholds, the lower to discriminate tracking hits (direct hits) while the higher

threshold discriminates transition radiation hits.

2.2.2 Calorimeters

While the Inner Detector only measures charged particles, the calorimeters (seen in figure

2.6) measure both neutral and charged particles and are split in to two sections for particles

with differing properties. The inner Electromagnetic Calorimeter is designed primarily to

measure electrons and photons as well as pions while the outer Hadronic Calorimeter looks

for hadrons such as neutrons and protons. In analyses the Hadronic Calorimeter is primarily

used to look for jet objects (a collection of particles issuing from the decay of one mother

quark or gluon). The primary method of identifying charged particles is to look for an
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Figure 2.6: Cut-away view of the ATLAS calorimeter system [54].

associated track within the Inner Detector although the shape of the energy deposit in the

calorimeters also helps with identification. Figure 2.8 shows a cross section view of the

calorimeter layout where the crack region between the barrel and endcap regions can be

seen.

Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECAL) is designed to fully stop all electromagnetic

showers within its volume. Split in to a barrel section and two endcaps the ECAL uses

Liquid Argon (LAr) as a detecting medium with lead as the absorber. The lead is arranged

in an accordion fashion (seen in figure 2.8) to ensure consistent performance throughout

φ. In the barrel section a presampler of LAr type is found before the main calorimeter to

correct for dead material. The barrel contains three layers of LAr modules of decreasing

size in towards the collision point in order to keep good position resolution. The endcap

only contains two layers of modules with the the inner layer containing smaller modules

for the same reason as the barrel region.
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Figure 2.7: Schematic of the transition region between the barrel and endcap cryostats [54].

Hadronic Calorimeter

The Hadronic Calorimeter is designed to stop all hadronic showers within its volume and

consists of two parts, the Tile Calorimeter (HCAL) in the barrel and the LAr Hadronic

Endcap (HEC). The HCAL is a tile calorimeter consisting of alternating layers of scintilla-

tor and steel as the active medium and absorber respectively. The HEC on the other hand

uses the same technology as the ECAL with copper plates filled with LAr as the detecting

medium. As the Hadronic Calorimeter sits directly behind the ECAL it is used to select

good electron candidates using hadronic isolation or the amount of leakage in to the HCAL

from a electron shower in the ECAL.

2.2.3 Magnet System

The ATLAS detector has two main magnet systems, seen in figure 2.9, the inner solenoid

magnet found between the TRT and the ECAL and the outer toroid magnets found inter-

leaved with the Muon Spectrometer.

The solenoid system is a superconducting magnet which is kept at 4.6 K to provide the
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Figure 2.8: Photograph of the stacked electromagnetic LAr modules [54].

2 T magnetic field required by the inner detector to curve high energy particles found at

the LHC. As the solenoid is found inside the calorimetry system it is important radiative

thickness is minimised to reduce efficiency losses in energy measurements. In order to

achieve this it was designed to minimise dead material and shares its cryostat vessel with

the ECAL reducing the need for two cryostats and therefore contributing only 0.63 radiation

lengths.

The outer toroid system provides a magnetic field for the muon spectrometer and con-

sists of a barrel and two endcap systems each with eight coils assembled radially around

the beam axis. The coils are all aluminium stabilised Niobium-Titanium (NbTi) supercon-

ductors with each coil in the barrel contained in its own cryostat while each of the coils in

the endcap systems are contained in one single cryostat. The peak field provided by these

toroids are 3.9 T and 4.1 T in the barrel and endcaps respectively.
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Figure 2.9: Geometry of magnet windings and tile calorimeter steel (upper left), end-cap toroid cold

mass inserted into the cryostat (upper right) and barrel toroid as installed in the underground cavern

(bottom) [54].

2.2.4 Muon Spectrometer

Due to the penetrative nature of muons, all the layers of detector discussed above do not

induce the showering of high energy muons. Therefore the outermost detector is another

tracking detector specifically for muons. It uses the outer toroid magnet system to bend

muon paths and measure muon momentum. The Muon Spectrometer is composed of 4

different technologies; Monitor Drift Tubes (MDT), Cathode Strip Chambers (CSC), Re-
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Figure 2.10: Cut-away view of the ATLAS muon system [54].

sistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) all seen in figure 2.10. Both

the MDT and the CSC boast precision tracking but both have slow readout times. The

RPCs and TGCs have the job of triggering muons and providing additional track measure-

ments. The RPCs are found in the barrel region (|η| < 1.05) while the TGC trigger in the

endcap region (1.05 < |η| < 2.4). The MDT covers a full range in η (|η| < 2.7) with

complementary measurements from the CSC at 2.0 < |η| < 2.7.



Chapter 3

The Trigger & Data Acquisition

The trigger system within ATLAS [54] is designed to manage the high rate of events pro-

duced by the LHC and bring them down to a total rate that can be written to permanent stor-

age by selecting “interesting” events. The related Data Acquisition (DAQ) system controls

the flow of data from detector hardware through the trigger system to permanent storage at

CERN and the worldwide tier 1 grid sites.

The trigger system is made up of three main decision levels; Level 1, Level 2 and Event

Filter. Level 1 (L1) is mainly hardware based using limited detector information to locate

regions of interest (RoIs) and pass them the Level 2. The Level 2 (L2) system checks the

RoIs with full detector granularity and precision and the last stage the Event Filter (EF) uses

analysis reconstruction techniques to further select “interesting” events down to the level of

400-500 Hz. Both the L2 and EF triggers compose what is called the High-Level-Trigger

(HLT) together with the event building software needed by the EF. Figure 3.1 shows the

over all trigger system and how data flows through it.

Following is a description of each of the sections of the trigger while focusing on the

selection of electron objects that are relevant for this analysis. Following this is a discussion

of how the trigger menus are formed so bandwidth can be shared between the differing

physics goals as well as how ATLAS handles the continued high luminosity push of the

LHC.

40



3.1 Level-1 Trigger 41

Detector 

Level-1

Read out driver

Level-2
RoI

builder

Read out

bu er

Event Filter Event builder

CERN data

storage facility

~600 Hz

~4 kHz

~50 kHz

Figure 3.1: Diagram showing the different stages of the trigger and how they interact. Red points

indicate points of acceptance for each trigger and numbers show the approximate number of events

accepted per second at the end of the 8 TeV run in 2012.

3.1 Level-1 Trigger

The Level 1 (L1) trigger searches for RoI’s consisting of strong signatures, i.e. high energy,

muons, electron/photons or jets. The L1 trigger also searches for events with a large missing

transverse energy (Emiss
T ) or large total transverse energy (ΣET ). Due to the decision speed

required only some parts of the detector can be used at L1 (and at a much coarser granularity

than is possible at the later stages). For muon triggering only the RPC’s and TGC’s can be

used while for electromagnetic clusters and jets as well as large Emiss
T and ΣET the full

calorimetry system can be used. The Inner Detector is not used in L1 decisions due to the
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time constraint. With a beam crossing interval of 50 ns, at the trigger latency is required

to be less than 2.5 µs with a target of 2.0 µs. However half of this quota, about 1.0 µs, is

accounted for by the cable propagation of signals.

The L1Calo system uses trigger towers with a granularity reduced to roughly 0.1×
0.1 in ∆η×∆φ in most of the detector range from both the electromagnetic and hadronic

calorimeters. The ECAL produces almost 3500 of these trigger towers via summation of

the analogue signals from a range of trigger cells. This trigger tower data is then sent to

the Cluster Processor (CP) to identify electron/photon and tau candidates with ET above a

required threshold and passing isolation requirements, which are labelled as RoI’s.
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Σ Σ
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Σ
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Figure 3.2: Electron/photon and tau trigger algorithms (left) and ET local-maximum test for a clus-

ter/RoI candidate (right). (The eta-axis runs from left to right, and the phi-axis from bottom to top.

The symbol R refers to the candidate 2x2 region being tested.)

Figure 3.2 shows how the electron/photon trigger clustering algorithm works by identi-

fying 2×2 clusters of trigger towers within which two adjacent towers sum to greater than

the triggering threshold defined in the trigger menu (seen in section 3.4). Also shown is

how three forms of isolation can be applied at this stage: the 12-tower surrounding ring,

the 2× 2 hadronic core behind the RoI and the 12-tower surrounding ring in the hadronic

calorimeter. Only the hadronic core isolation has so far been used in electron/photon trig-

gers within ATLAS. As all possible 2×2 clusters are observed in this way it is possible to

have double counting of RoIs and so the sum of each 2× 2 RoI must be greater than each

of its eight nearest overlapping neighbours. Figure 3.2 also shows how this local-maxima
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is tested to avoiding identical sums through use of ‘greater than’ and ‘greater than or equal

to’ in differing η and φ directions. So if two adjacent 2× 2 clusters have the same com-

bined energy sum the one to the top or right is chosen so as not to delay the trigger process.

The final L1 trigger decision is made by the Central Trigger Processor (CTP) which takes

information from both the CP and jet algorithm as well as the L1 muon trigger. If an accept

decision is made then RoI’s are sent to the RoI builder which seeds the L2 trigger system

and all L1 sub-systems are read out via Readout Drive’s (ROD’s)(discussed in section 3.3)

to the DAQ system for monitoring of the L1 trigger system offline.

3.2 Higher Level Trigger

Level-2 Trigger

The Level-2 (L2) trigger is seeded by and only makes decisions based on the RoI’s supplied

by the L1 trigger. However it does this with full detector information and so the first stage of

this trigger is a RoI builder. The RoI builder requests detector information for all relevant

detectors for the observed RoI, including at this level the Inner Detector. In the case of

electrons this includes the inner tracking detector, the electromagnetic calorimeter and the

hadronic calorimeter. It is at L2 that a distinction between electrons and photons can be

made due to existence of an associated track in the ID to the RoI in the ECAL. The RoI

builder identifies calorimeter clusters and nearby tracks in order for the L2 trigger to make

its decision based on algorithms reconstructing shower shapes, track-cluster matching and

ET thresholds with isolation. The list of these requirements are held within trigger chains

each designed to accept specific physics signatures (see section 3.4.1). The general idea

is simply to check if RoI’s still exist under closer inspection in order to reduce the rate of

events before full event building takes place in the Event Filter.

Event Filter

The Event Filter (EF) does not differ in approach from the L2 trigger it is purely a further

test of the signals handed over from L2. At this level a full reconstruction of the event takes

place and EF trigger requirements with slightly more stringent thresholds are applied to the



3.3 Data Acquisition 44

event. This is the final decision for whether the event is going to be copied to permanent

storage and so the EF reduces the final acceptance rate down to the 400 - 600 Hz required

by CERN’s computing systems. The requirements at the EF level are also those used in

ATLAS analysis so as to treat MC and data samples the same. These requirements are

discussed in section 3.4.1.

3.3 Data Acquisition

The Data Acquisition (DAQ) system is the set of systems that control the flow of data from

detectors, through the trigger and in to permanent storage. The first stage of this process

is the Readout System (ROS) a set of 145 PC’s or nodes which manages the collection of

all detector sub-system data and L1 trigger output from ATLAS. This system is helped by

Readout Drivers (ROD’s) which interface directly with detector components and Readout

Links (ROL’s), direct point-to-point readout connecting the ROD’s with the ROS’s. Table

3.1 shows the number of readouts for each component of the detector and L1 system.

Each ROS PC contains Readout Buffer Module’s (ROBIN’s), custom PCI-X cards, each

containing three Readout Buffers (ROB’s), at the end of each ROL. The ROB’s is where

event data is stored while the L2 trigger makes its decision which comes from the set of 10

L2 Supervisor (L2SV) nodes. This decision is then made by the DataFlow Manager (DFM)

on input from all the L2SV nodes and sends a command to the ROS’s to either expunge

data or forward it on to the event building nodes (or Sub farm Input, SFI). Once a event

fully built it is sent forward to the HLT farm which makes the EF decision, then and only

then is a message sent back down via the DFM for the ROS’s to fully delete all data from

the event. The HLT farm is the largest computing resource in the DAQ system with 1116

nodes each containing 8 CPU’s. These nodes can either be configured to run as the EF or

L2 Processing Units (L2PU’s) for the L2SV and are reconfigured as need dictates. As the

final step if an event is accepted by the EF all data is passed to the Sub Farm Output (SFO)

where it is stored before transfer to CERN’s central data-recording facility. In the case that

this connection to CERN is offline for some reason ATLAS is able to store about 24 hours

worth of data in the SFO’s so no data is lost. Table 3.2 shows the number of each DAQ

component used within ATLAS all of which are found in the USA15 service cavern next to
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Detector Partition Number of Number of Number of

RODs ROLs ROSs

Inner detector

Pixel

Layer 0 44 44 4

Disks 24 24 2

Layers 12 64 64 6

SCT

End-cap A 24 24 2

End-cap C 24 24 2

Barrel A 22 22 2

Barrel C 22 22 2

TRT

End-cap A 64 64 6

End-cap C 64 64 6

Barrel A 32 32 3

Barrel C 32 32 3

Calorimetry

Tile

Barrel A 8 16 2

Barrel C 8 16 2

Extended barrel A 8 16 2

Extended barrel C 8 16 2

LAr

EM barrel A 56 224 20

EM barrel C 56 224 20

EM end-cap A 35 138 12

EM end-cap C 35 138 12

HEC 6 24 2

FCal 4 14 2

MDT

Barrel A 50 50 4

Barrel C 50 50 4

Muon End-cap A 52 52 4

spectrometer End-cap C 52 52 4

CSC
End-cap A 8 8 1

End-cap C 8 8 1

L1

Calorimeter

CP 4 8 1

JEP 2 8 1

PP 8 32 3

Muon RPC
Barrel A 16 16 2

Barrel C 16 16 2

Muon TGC
End-cap A 12 12 1

End-cap C 12 12 1

MUCTPI 1 1 1

CTP 1 1 1

Total 932 1574 145

Table 3.1: Numbers of readout drivers (RODs), readout links (ROLs) and readout systems (ROSs)

per detector partition at design [54].

the ATLAS cavern.
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Component Number of Number of Number of

nodes racks CPUs/node

ROS 145 16 1

DFM 12 1 2

L2SV 10 1 2

SFI 48 3 2

HLT 1116 36 8

SFO 6 2 2

Monitoring 32 4 4

Operations 20 4 2

Table 3.2: The main data-acquisition system components deployed for initial operation: the readout

system (ROS), the event-building node (SFI), the data flow manager (DFM), the L2 supervisor

(L2SV), the high-level trigger (HLT) and the event filter output nodes (SFO) [54].

3.4 Trigger Menu and Rates

In its simplest form a single trigger is an energy threshold designed to select a high per-

centage of particles of a selected type. ATLAS contains many of these thresholds to select

many interesting physics objects which are roughly grouped in to similar signatures called

streams. The trigger streams are egamma (e/γ) triggers to select electrons and photons,

JetTauEtMiss triggers to select hadronic decays, tau decays and large missing transverse

energy, Muon triggers to select muons, MinBias trigger to check no biases exist in other

triggers and cosmics triggers to selected signals of cosmic radiation. Each stream has an

allocated bandwidth for readout from the trigger so all triggers need to be optimised so total

acceptance rates are within requirements. Each trigger at the HLT level is designed to select

a specific type of signal while those a L1 are more general and seed many HLT triggers.

A full run through all three stages of the trigger is called a trigger chain. Each trigger in a

trigger chain needs to not only be optimised to satisfy rate constraints but also for a high

efficiency in the targeted region. In terms of energy threshold this means an increasing

threshold through the trigger chain so that each level is selecting within the range close to

100% efficient from the previous requirement when taking in to account the different accu-

racy of energy measurement provided by each level. This section focuses on the egamma

trigger stream as all objects in this analysis where selected using it.
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3.4.1 The “e/γ” Trigger Menu

The e/γ trigger menu that is used in this analysis refers to the trigger chains designed to

select electron and photon objects, detailing requirements for all three stages of the trigger.

ATLAS uses its own terminology to name these triggers with the name giving a description

of the requirements used. At L1 electron and photon objects are selected with triggers bear-

ing the name EMXY where; ‘EM’ refers to EM calorimeter, X is the value of the energy

threshold required of RoIs in GeV and Y refers to any other specification. Other speci-

fications can be ‘V’, a threshold varying with the geometric location in the detector (η)

around the given value to optimise selection, or ‘H’, indicating hadronic isolation applied

in the RoI, both of which are discussed in section 3.4.2. An example of a L1 trigger is

then L1 EM18VH which is a trigger with an energy threshold of 18 GeV which is varied

slightly throughout the detector and has a hadronic isolation requirement. L2 and EF use

the same terminology but are prepended with either L2 or EF. They take the form such

as e22vh medium where ‘e’ represents an electron (g is used for photons), ‘vh’ represents

the same as above and ‘medium’ refers to an associated set of shower shape and tracking

requirements. As well as ‘medium’, ‘loose’ and ‘tight’ are also defined giving looser and

tighter requirements respectively. These shower shape and tracking requirements are dis-

cussed in section 4.1. Section 3.4.2 discusses the development of the L1 EM16VH trigger

which feeds in to L2 e20vh medium and then in to EF e22vh medium.

The 8 TeV analysis discussed in this thesis uses a photon trigger even though searching

for electrons. This is because photon and electron triggers are identical save for track-

ing requirements for electrons and for the 2012 run the lowest energy triggers without

hadronic isolation that were applicable for high energy dielectron decays was a dipho-

ton trigger chain. It is important that the trigger used did not have hadronic isolation

due to the very high energy nature of the electrons in this analysis which have a higher

chance of leaking through in to the hadronic calorimeter. The trigger used for the 8 TeV

analysis is EF g35 loose g25 loose which selects two photon objects with thresholds of

35 GeV and 25 GeV while both requiring ‘loose’ shower shape requirements. This trig-

ger is seeded by L2 g30 loose g20 loose which itself is seeded by L1 2EM12 EM16V.

EF g35 loose g25 loose reaches close to 100% efficency of selecting two electron just

above an electron energy of 40 GeV and maintains this to very high energy. The 7 TeV
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analysis used the trigger EF g20 loose.

3.4.2 Trigger Rates in High Luminosity Regime

Due to the bandwidth limitations each level of the trigger is restricted to a certain output

rate. During 2011 the L1 output rate was kept below 60 kHz, L2 below 5 kHz and the

EF output rate at ∼ 400 Hz averaged over the LHC fills. The bandwidth allocated to the

e/γ triggers was approximately 30% of the total EF output rate however throughout 2011

the luminosity continued to increase putting pressure on the trigger’s ability to control the

output rate. Several methods were employed to reduce the trigger rate and in the e/γ trigger

a variable threshold and hadronic core isolation were investigated to reduce the rate of the

Level-1 trigger. In order to keep within timing constraints only a low resolution of 0.4 η

is available at L1. Threshold requirements were therefore investigated varying every 0.4 η.

The effect of a hadronic core isolation was also investigated on the selection of electrons

which defines a region in the hadronic calorimeter behind the e/γ candidate in which a

minimum amount of energy is required to be deposited in order to distinguish between jets

and e/γ objects.

A study in to introducing these new requirements [55] at L1 was carried out using data

from the trigger stream with a “tag & probe”1 study to calculate the efficiency of an array of

new L1 requirements. Objects selected with “tag & probe” were organised in to bins of 0.4

in η and threshold of 16, 17, 18 and 19 GeV were applied as a L1 trigger. Within each 0.4 η

bin acceptance efficiency versus reconstructed transverse energy was studied. The highest

threshold for which greater than 99% efficiency was reached for a transverse energy of 22

GeV (threshold at EF) was then selected as the threshold in that region. The results of this

optimisation can be seen in table 3.3 where the threshold for each eta region is given.

Hadronic core isolations was investigated for isolation less than 1, 2 and 3 GeV. A

hadronic core isolation of less than 1 GeV was chosen as this was seen to have a less that

1% effect on acceptance. Both of these requirements then went in to the specification of

the L1 EM16VH trigger.

Figure 3.4 shows the performance of the trigger after these changes had been made. It

1A method of identifying a good electron candidate as a tag and then associating it with another probe

electron where the combined dilepton invariant mass lies within the Z peak. With this probe electron you can

then measure the efficiency of a set of selections.
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|η| region Level-1 threshold [GeV]

< 0.8 18

0.8 - 1.2 17

1.2 - 1.6 16

1.6 - 2.0 17

2.0 - 2.4 18

> 2.4 16

Table 3.3: Optimised L1 thresholds for the L1 EM16 trigger.

can be seen that a minimal impact of these new requirements is felt in efficiency for both

η and number of primary vertices. Most importantly the “turn on” curve for efficiency as

a function of ET shows the point at which 100% efficiency is reached is not that much

higher than EM16. This then introduced the new lowest threshold electron trigger chain

used in ATLAS. The effect of this introduction can be seen during the middle of the year

in figure 3.3 where a significant decrease in the event filter acceptance rate is seen with the

introduction of this and several other trigger strategies.
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Figure 3.3: Event Filter stream recording rates from 2011. [56]

For the 2012 run this trigger went through a revision raising the thresholds of each

trigger in the chain to accommodate higher luminosity at 8 TeV, this chain is discussed in

section 3.4.1. This study was completed by the author as a part of the ATLAS service task

and became part of a ATLAS conference note [55].
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Chapter 4

Event Reconstruction

Reconstruction refers to the algorithms that attempt to extract information about collision

events and their final-state products from detector signals. This process is done at several

points in the ATLAS analysis procedure. First partial reconstruction of RoI’s is done at the

Level-2 trigger while an almost complete detector reconstruction is done at the EF. After

the data has been permanently stored full reconstruction of all possible signatures in each

event as well as whole event variables can be completed if it failed to finish live during the

trigger decision.

The other main source of reconstruction is done in a process called reprocessing. After

data has been stored updates to sub-detector calibrations and optimisations can take place.

Reconstruction of entire data sets takes place to update variables to more accurate measure-

ments.

The Data format used in this analysis is an internal ATLAS format called a D3PD. This

format is a type of ROOT [57] ntuple, or sequence of ordered lists, which stores ATLAS

event data. The data used has passed through the ATLAS software reconstruction while

the Monte-Carlo (MC) background estimate samples have gone through a GEANT 4 [58]

detector simulation as well as the ATLAS reconstruction. This means analysis of these

D3PD’s with root requires only minor corrections.

Some of the many variables reconstructed are whole event variables and one of the

more important of these is the mean number of interactions per bunch crossing. As more

than one proton collision takes place with each bunch collision a lot of physics background

can appear in an event. This makes the search harder and needs to be modelled correctly

51
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by background estimates. The problem is referred to as pile-up and corrections needed to

accommodate for it are discussed in section 6.1.1. Figure 4.1 shows the distribution of the

mean number of interactions per bunch crossing seen in the 7 TeV and 8 TeV ATLAS data

sets.
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Figure 4.1: Luminosity-weighted distribution of the mean number of interactions per crossing for

the 2011 and 2012 data. [59, 60]

Below will mainly be a discussion of the reconstruction of electron (and related photon)

objects as these are the decay products searched for in this analysis.

4.1 Electron Reconstruction and Identification

During reconstruction each EM calorimeter energy signature with an associated track in the

inner detector gets listed as an electron object. These objects get selected via a clustering

algorithm in the EM calorimeter which defines the energy and is then matched to a track.

The objects then have a list of associated variables derived from detector readouts on which

an analysis selection for ‘good’ electrons can be made. These variables range from simple

values of position and energy to more complex derived values such as isolation. A few

variables relevant to this analysis will be listed below and it will be explained how they are

derived.
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• η & φ, a particle trajectory or position in detector. These are the main variables for

measuring the direction the particle went in the detector and for electrons can be

measured in two ways. Either via cluster location in the EM calorimeter or via the

measurement in the inner detector.

• pT or transverse momentum. pT is the main measure of energy used for particles

where pT = |p|coshη. Here η comes from either the inner detector or calorimeter

cluster hit location and the choice is dependent on a how many hits the track made

travelling though the inner detector and therefore how accurate the track measure-

ment is.

• ET cone20. This is a cluster isolation variable measuring the sum of energy found

around the region of interest minus the electron cluster for ∆R < 0.20 where ∆R =
√

∆η2 +∆φ2. ET cone20 is used to check cone isolation in order to eliminate jet like

signatures from the analysis which often create large showers in the calorimeters.

• Electron Charge. By measuring the curvature of electron tracks in the inner detector

the charge of an electron can be determined. However as discussed in chapter 5 this

can be hard for very high energy electrons.

• loose, medium, tight. These are labels given to a set of selections reflecting how

likely it is for the object to be an electron. The selections and variables associated

with this are discussed below.

Loose, medium and tight define an increasingly strict series of selections for identifying

good electron signatures in the detector. The selections range from shower shape variables

to track quality and track cluster matching. Some of the important associated variables are

discussed in table 4.1 however the full selections are two dimensional arrays of threshold

for most selections. Also to note there are two different definitions of medium referred to as

medium and medium++. The latter is a re-optimisation of the selection and slightly stricter

than the original medium. medium++ is used in the 8 TeV analysis and medium in the 7

TeV analysis.
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Loose selection

Type Description Name

Acceptance |η| < 2.47 η

Hadronic leakage Ratio of ET in the first layer of the hadronic calorimeter to ET
Rhad1of the EM cluster (used over the range |η|< 0.8 and |η|> 1.37)

Ratio of ET in the hadronic calorimeter to ET of the EM cluster
Rhad(used over the range |η| < 0.8 and |η| > 1.37)

Middle layer of Ratio of the energy in 3×7 cells over the energy in 7×7 cells
Rη

EM calorimeter centred at the electron cluster position

Lateral shower width,

√

(∑Eiη
2
i )/(∑Ei)− ((∑Eiηi)/(∑Ei))2,

ωη2where Ei is the energy and ηi is the pseudorapidity of cell i and

the sum is calculated within a window of 3 × 5 cells

medium & medium++ selection (includes loose)

Type Description Name

Strip layer of EM Shower width,
√

(∑Ei(i− imax)2)(∑Ei), where i runs over all

ωstot
calorimeter strips in a window of ∆η × ∆φ ≈ 0.0625 × 0.2,

corresponding typically to 20 strips in η, and imax is the index

of the highest-energy strip

Ratio of the energy difference between the largest and second
Eratio

largest energy deposits in the cluster over the sum of these

energies

Track quality Number of hits in the pixel detector (≥ 1) npixel

Number of total hits in the pixel and SCT detectors (≥ 7) nSi

Transverse impact parameter (|d0| < 5 mm) d0

Track-cluster ∆η between the cluster position in the strip layer and the
∆η

matching extrapolated track (|∆η| < 0.01)

Tight selection (includes medium)

Type Description Name

Track-cluster ∆φ between the cluster position in the middle layer and the
∆φ

matching extrapolated track (|∆φ| < 0.02)
Ratio of the cluster energy to the track momentum E/p

Tighter ∆η requirement (|∆η| < 0.005) ∆η

Track quality Tighter transverse impact parameter requirement (|d0|< 1mm) d0

TRT Total number of hits in the TRT nT RT

Ratio of the number of high-threshold hits to the total number
fHT

of hits in the TRT

Conversions Number of hits in the b-layer (≤ 1) nBL

Veto electron candidates matched to reconstructed

photon conversions

Table 4.1: The variables associated with definitions of loose, medium and tight [61].



Chapter 5

Event Selection

The main event selection for this analysis is based on a standard cut-flow selection used

within ATLAS to select high energy di-electron events. Following will be the basic outline

of each requirement an event must satisfy followed by a discussion of optimisations done to

some cuts for this analysis. Finally a discussion of corrections is included; spanning minor

variable corrections to data obtained by performance groups after reconstruction and more

substantial corrections to MC samples to correctly estimate run conditions. The following

analysis selection is applied to the data and MC background samples unless where stated

otherwise.

5.1 Analysis Selection

The following selection is made to all data and MC events for this analysis. Before selec-

tion several data flags are checked to insure full operation of the detector at the time of data

taking.

Event Selection

• Each event is required to have passed the chosen unprescaled electron trigger (EF g35 loose

g25 loose).

• Each event is required to contain at least one reconstructed primary vertex with at

least 2 associated charged tracks.
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Electron Selection

• Electrons are required to have |η|< 2.47 and for the electron to not be within the LAr

calorimeter crack region 1.37 ≤ |η| ≤ 1.52 where energy resolution is poorer.

• Each electron is required to have a transverse momentum (pT ) greater than 30 GeV

with the highest pT electron lying above 40 GeV.

• Electrons are required to pass identification criteria on the transverse shower shape,

the longitudinal leakage into the hadronic calorimeter, and the association to an inner

detector track, defined together as a medium++ electron identification (see section

4.1).

Dielectron Selection

• Selection of two highest pT electrons left in event.

• Lead electron isolation (ET cone20 of the candidate in the calorimeter is required to

be < 0.007 × pT + 5.0 GeV ) of the highest pT electron in the event is used to

suppress jet background.

• Sub-leading electron isolation (ET cone20 of the candidate in the calorimeter is re-

quired to be < 0.0022 × pT + 6.0 GeV ) of the second highest pT electron in the

event is used to suppress more jet background.

• Dielectron invariant mass (mee) is required to be greater than or equal to 80 GeV.

• Both electrons are required to have opposite charge.

5.2 Isolation Requirement

When optimising for the 8 TeV analysis a re-investigation of the isolation requirement

was needed, updating the selection from its previous iteration in the di-electron analysis

on 7 TeV ATLAS data. The previous threshold was a flat, less than 7 GeV, cut on the

calorimeter cluster isolation (ET cone20) of the highest ET electron in the selected pair. The

first investigation was to see how this cut performed in the selection of MC signal at 8 TeV
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centre of mass energy. Due to the better statistics found in the DY→ee MC sample and this

being an irreducible background and therefore indistinguishable from the signal this was

used in the following investigation.

The flat cut of 7 GeV causes an increasing efficiency loss at high energy and was deemed

unsuitably high for this iteration of the analysis due to the higher reach in energy expected

from the higher centre of mass collision energy. The introduction of an isolation require-

ment on the second highest electron was also proposed which did not exist in the 7 TeV

analysis.

The possibility was an isolation requirement varying with energy. The main source of

background the isolation cut is to reduce is jets that fake an electron signal in the detector.

Jet backgrounds are estimated via a reverse ID method on data seen in section 6.2 with

low statistics at high energy. For this reason it is hard to optimise the isolation requirement

against rejection of this background at high energy. Therefore it was chosen to optimise the

new selection against the acceptance of signal. This study was undertaken by the author to

optimise the isolation requirement.

Figure 5.1 shows the distribution of DY MC events in ET and cluster isolation. It can

be seen that electrons become less isolated under this definition of isolation as the energy

of the electron increases. This is to be expected as higher energy electrons produce larger

showers and have spread out over more EM calorimeter cells.

In order to define a requirement varying in ET , the 99% acceptance point for each ET

column was calculated and a first order polynomial fit to these points was done. The 99%

acceptance points can be seen in figure 5.1 and this as well as the new cut can be seen in

figure 5.2. The same thing was determined for the second highest ET electron and can be

seen in figure 5.3.

The two first order polynomials shown here correspond to isolation requirements of;

Lead Isolation < 0.007× ET + 5.0 GeV

Subleading Isolation < 0.022× ET + 6.0 GeV

for the highest and second highest pT electrons respectively.

An analysis of the efficiency of these cuts on signal can be seen in figures 5.4 and 5.5

where it can be seen they maintain a flat behaviour as ET increases.
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Figure 5.1: Distribution of DY MC in ET and cluster isolation for the highest energy electron. The

colour density reflects the fraction of electons from that ET column found in the cell. The red

line shows the 99% acceptance point of electrons in the ET columns. While the black vertical and

horizontal lines show the pT and old isolation cut respectively.

5.3 Opposite Sign requirement

The opposite sign requirement was introduced to the analysis specifically due to the use

of cosθ∗ in the search. As specified in section 1.2.1 distinguishing the electron from the

positron is important for the definition of cosθ∗. A reversed identification would dilute

the asymmetry seen in the SM or the CI LR signal as seen in figure 1.6. The effect of

swapping charge at reconstruction level comes about due to two main effects, very high

energy electrons with very straight tracks getting miss identified and hard bremsstrahlung

from an electron undergoing decay to an electron pair with the wrong electron getting iden-

tified. These are not a small effects at high dielectron mass ( 15%) and so the requirement

is introduced to solve the issue of misidentification. The effect of both electrons being

misidentified was studied and found to have only a small probability. This requirement also

does a good job in the exclusion of the Multijet background reducing this by approximately

50% throughout the signal region. The effect of the loss of acceptance attributed to this
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Figure 5.2: Similar plot to figure 5.1 but with a fit to 99% efficiency suggested as a possible isolation

requirement.

requirement is discussed in section 8.2.1. As this requirement has an error associated with

it a systematic is introduced to accommodate this (see section 8.1).

5.4 Energy Scale Correction

During the selection process an additional correction to the energy of electrons is applied

that is not included in the reconstruction. This correction is obtained from a study using

e+e− events within the Z boson peak [62]. This results in an array of energy scale correc-

tions distributed in ET and η and applied before electron selection.

5.5 Selection Acceptance × Efficiency

Table 5.1 shows the efficiency of each part of the event selection. It can be seen that

the opposite charge requirement causes a 7% drop in efficiency rate in the signal region.

Although this is substantial it can be seen in section 8.2.1 that the effect of this drop is
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Figure 5.3: Similar plot to figure 5.2 but for second highest energy electrons after the 99% isolation

efficiency selection is applied to the highest energy electron.
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Figure 5.4: Efficiency of new leading electron isolation cut on selection of signal MC. Red and

orange lines indicate the 99% and 98% efficiency levels respectively. Errors do not represent their

correct size with efficiencies being close to 1.
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Figure 5.5: Efficiency of new subleading electron isolation cut on selection of signal MC. Red and

orange lines indicate the 99% and 98% efficiency levels respectively. Errors do not represent their

correct size with efficiencies being close to 1.

compensated for by the new angular variables introduced in this analysis.

Criterion Relative Eff [%] Cumulative Eff [%]

Trigger 90.36±0.03 90.36±0.03

η 96.97±0.02 87.51±0.03

pT 94.14±0.02 82.38±0.03

Shower Shape 90.37±0.03 74.45±0.04

Isolation 97.76±0.02 72.78±0.04

Charge 90.43±0.03 65.81±0.04

Table 5.1: The efficiency of event selection on DY MC within the signal region above 400 GeV.

DY MC is used due to higher statistics but is indistinguishable from signal with respect to analysis

selection. Selection of number of primary vertices, of two highest pT electrons and the invariant

mass requirement are omitted due to near 100% acceptance in MC. Statistical errors are included

only as a guide.



Chapter 6

Background Estimate

This chapter discusses methods the used to estimate the background to the signal. These

background processes can be split up in to two categories; reducible and irreducible. Irre-

ducible backgrounds consist of those backgrounds almost indistinguishable from our signal

process namely clean high energy dielectron decays such as decays of the Z boson and the

Drell-Yan (DY) spectrum. DY (qq̄ → Z/γ∗ → ℓ−ℓ+) is the largest background pro-

cess and also interferes with the signal processes. Another irreducible background is the

Photon-Induced processes (γγ → ℓ−ℓ+) coming from the collision of two photons. Re-

ducible backgrounds are those that can be reduced through event selection and three are

considered in this analysis. These reducible backgrounds consist of Top processes, colli-

sions creating single top quarks and tt̄ events which decay to include two electrons; Diboson

events, the creation of WW, WZ and ZZ events that decay in to two electron events; and

finally Multi-jet & W+jets events where one or more electron signatures is faked by jet

objects. All of these backgrounds are estimated via Monte Carlo generators except for the

Multi-jet & W+jets background which is estimated via a data-driven fake factor method.

All background samples are summed together to create the full background estimate. MC

samples are then scaled to the integrated luminosity of data collected in 2012 which is 20.3

fb−1. Within the Z boson peak region (80 - 120 GeV) were it is known no new physics is

found MC samples are scaled to data minus the multijet sample in order to rule out lumi-

nosity errors. This scale factor is found to be 1.048. Detailed below is the full derivation of

the background estimates ready for comparison to data.
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6.1 Monte Carlo samples

Monte Carlo (MC)1 samples are produced centrally within ATLAS using MC generators

specific to the generated sample which then undergo detector simulation using GEANT 4

[58] which produces a data format identical to a readout from the ATLAS detector plus

additional “truth” parameters from the original MC generation. The samples then undergo

the same reconstruction as data events within ATHENA producing a MC sample ready to

be analysed using the same software as for the data.

Drell-Yan

The Drell-Yan (DY) background is simulated using the POWHEG + PYTHIA generator

which is a next to leading order (NLO)2 generation with POWHEG [63, 64] with event

showering handled by PYTHIA 8 [65]. The parton density functions (PDF) used is CT10

[66]. A K-factor is then used in order to weight the cross-section from NLO to next to

next to leading order (NNLO). This NNLO K-factor is derived using FEWZ [67] which

uses the MSTW2008 NNLO PDF [68] from which a QCD+EW mass-dependent K-factor

is obtained. The DY sample is split in to 16 MC truth dilepton mass bins with bin edges at

(60, 120, 180, 250, 400, 600, 800, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000)

GeV. The first bin from 60 - 120 GeV is a very high statistics bin providing a low statistical

uncertainty for the region used for scaling MC in the Z boson peak.

Photon-Induced

The Photon-Induced (PI) background is estimated via PYTHIA 8 [65] generator with the

LO PDF MRST2004QED [69]. This sample is split in to 5 dilepton mass bins with bin

edges at (60, 200, 600, 1500, 2500) GeV.

Diboson

The Diboson MC sample is produced using HERWIG 6.510 [70] with the LO PDF CTEQ6L1

[71]. The sample is split in to the three processes, WW, WZ and ZZ, with each process split

1Computer algorithm designed to simulate physical systems using random sampling to obtain results for

a statistical physics theories such as quantum field field theories
2LO, NLO and NNLO refer to the complexity of feynman diagrams considered when calculating the cross

section of an interaction
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in to 3 mass bins with bin edges of (60, 400, 1000) GeV. The sample is then scaled to NLO

in a mass-independent way using MCFM [72] with the PDF MSTW2008 NLO [68]

Top

The top sample is estimated using MC@NLO 3.41 [73] with NLO PDF CT10 [66] to gen-

erate matrix elements with JIMMY 4.31 [74] describing parton interactions and HERWIG

[70] to describe the underlying event and parton showers. Both tt̄ and single Top processes

are generated in two inclusive samples. A NNLO QCD K-factor is also derived using

Top++ 2.0 [75, 76]. The top sample also undergoes a fit at high mass where the MC has

low statistics. A dijet function (c0xc1xc2 logx) is used to fit between 200 - 700 GeV. The

sample is then cut at 500 GeV above which the dijet fit is used.

6.1.1 MC Corrections

Corrections are applied to MC samples due to several factors including corrections for the

run conditions in the ATLAS detector due to MC samples being generated before the LHC

run as well as known inefficiencies in the reconstruction of MC events. Below are listed all

of the corrections which are applied on an event by event basis during the analysis of MC

samples.

Pile-up Correction

Pile-up (PU) is related to additional simultaneous proton-proton interactions within an

event. MC samples are produced with a broad range of PU values which then get weighted

according to run conditions within the detector. PU conditions can change throughout data

taking and so the PU correction is specified for a particular set of ATLAS data. The distri-

butions the MC are weighted to can be seen in figure 4.1.

Vertex Position Reweighting

The vertex position is hard to predict pre-run and can therefore be weighted later once run

conditions are known. This correction is not widely used within ATLAS due to its minimal

effect however it was found to improve the data background agreement in the cosθ∗ distri-

bution in the control region. The vertex position reweighting was found to have a minimal
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effect on the invariant mass distribution.

Energy Smearing Correction

The energy smearing correction is used to better estimate the energy of electron signatures.

This correction is derived from a Z peak calibration study [62] done within the ATLAS elec-

tron and photon performance group and matches MC to data. These corrections provide a

η and ET dependent smearing value applied to electron energy before electron selection.

Electron Efficiency Scale Factor

The electron photon performance group also identified inefficiencies in electron reconstruc-

tion and identification. These form a set of scale factors applied in bins of ET and η after

event selection.

Isolation and Trigger Scale Factor

Data/MC comparison for the isolation selections and the trigger requirements highlighted

minor differences between data and MC. The differences were found to be below 1% yet

a uniform scale factor accommodating this was applied after event selection for complete-

ness.

6.2 Fake Factor Multi-Jet Estimate

One of the major sources of background to di-electron signals are di-jets or electron+jets

(mainly W+jets) events where one or both selected leptons are jets faking electron signa-

tures. The method for estimating this background, described here, is a “fake factor” or

“matrix-method”. This is a data-driven method where electrons are selected by a tight

(Ntight) and loose (Nloose) selection. The tight selection is the standard electron selection

used in this analysis while the loose selection has no isolation requirement and must only

pass a loose++ egamma definition (see section 4.1) with no track matching requirement.

Ntight is therefore by design a subset of Nloose. Two more hidden variables are also assigned,

real and f ake referring to the true origin of each electron. This gives us two coefficients to

determine from data.
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f =
N

f ake
tight

N
f ake

loose

r =
Nreal

tight

Nreal
loose

(6.1)

The fake rate f denotes the probability that a f ake electron which passes the loose

requirement also passes tight while r refers to the probability that a real electron which

passes the loose requirement also passes the tight. Reconstructed events are split in to two

distinct groups, tight(T ), and loose while failing tight(L), where T is now no longer a subset

of L. This allows the reconstructed events to be related to the underling truth events via a

matrix of fake rates shown in equation 6.2.
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The first index in equation 6.2 refers to the highest pT electron while the second index

refers to the second highest pT electron. So NLT indicates the reconstructed events with

highest pT electron only passing the Loose selection while the second highest pT electron

passes Tight selection. The indices 1 and 2 refer to fake rates ( f ) and efficiencies (r) on

leading and sub-leading electrons respectively. Therefore NRR, NRF , NFR and NFF refer to

the true underlying source of each event.

The interesting part for this study is the contribution to NT T coming from sources other

than NRR, these can be seen in equation 6.3.

N
ℓ+ jets
T T = r1 f2NRF + f1r2NFR

N
di− jets
T T = f1 f2NFF

N
ℓ+ jets & di− jets
T T = r1 f2NRF + f1r2NFR + f1 f2NFF (6.3)

This function however contains unknown variables and so equation 6.2 is inverted to

derive a better formalism in equation 6.4.
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where,

α =
1

(r1 − f1)(r2 − f2)
(6.5)

The fraction of selected events with at least one fake is then given by equation 6.3

resulting in equation 6.6.

N
ℓ+ jets & di− jets
T T = αr1 f2[( f1 −1)(1− r2)NT T + (1− f1)r2NT L + f1(1− r2)NLT − f1r2NLL]

+ α f1r2[(r1 −1)(1− f2)NT T + (1− r1) f2NT L + r1(1− f2)NLT − r1 f2NLL]

+ α f1 f2[(1− r1)(1− r2)NT T + (r1 −1)r2NT L + r1(r2 −1)NLT + r1r2NLL]

(6.6)

= α[r1 f2( f1 −1)(1− r2) + f1r2(r1 −1)(1− f2) + f1 f2(1− r1)(1− r2)]NT T

+ α f2r2[r1(1− f1) + f1(1− r1) + f1(r1 −1)]NT L

+ α f1r1[ f2(1− r2) + r2(1− f2) + f2(r2 −1)]NLT

− α f1 f2r1r2NLL

(6.7)

Equation 6.7 shows the derived formula relating the multi-jet background to fake rates,

efficiencies and four independent samples NT T , NT L, NLT and NLL which can be selected

from data. Following are the details of this method used on the full 20.3 f b−1 of integrated

luminosity from ATLAS’s 2012 run. This method was developed centrally in the resonant

analysis which the author then applied and checked for this non-resonant analysis.
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6.2.1 Real Electron Efficiency Estimation

The real electron efficiency is defined in equation 6.1 as r = Nreal
tight/Nreal

loose. This is deter-

mined from MC using a mass binned Drell-Yan sample. The efficiencies are found for both

the leading and sub-leading electrons and binned in eight pT and three eta bins of |η|< 1.37

(barrel), 1.52 < |η| < 2.01 and 2.01 < |η| < 2.47 (endcap). The efficiency is distributed

between 90 - 96% as is shown in figure 6.1.
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Figure 6.1: Real electron efficiencies obtained from Drell-Yan MC and binned in pT and three coarse

η bins covering the barrel and two endcap regions. Efficiencies for leading electrons are shown on

the left while those for subleading electron are on the right [77].

6.2.2 Fake Electron Rate Estimation

The default method selected for analysing the fake rates is a single object method selec-

tion on the jet stream data. This has the advantage of more statistics and a higher energy

reach compared to methods such as using “tag & probe” on electron candidates. An array

of triggers are used for selecting suitable events with many different thresholds. Events

are associated to groups with the lowest trigger threshold they pass as each trigger has a

different prescale. Objects are selected with jet algorithms and then matched to objects

identified as electrons candidates with a ∆R < 0.1. Two further steps are taken to suppress
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real electrons from W decays and real Drell-Yan events. A veto of ET miss > 25 GeV is

introduced to combat the former while events with two medium++ or loose++ electrons

with |mtag & probe −91 GeV | < 20 GeV are vetoed to counter the real Drell-Yan.

The fake rate as defined in equation 6.1 ( f = N
f ake

tight /N
f ake

loose) with the N
f ake

tight and N
f ake

loose

distributions selected using the standard event selection on the matched egamma objects.

Due to the different prescales of each trigger a separate set of fake rates are calculated

for each trigger, these are then combined as a weighted average of all fake rates. Figure

6.2 shows the distribution of fake rates for the leading and subleading electron candidates.

These are distributed between 3 - 20%.
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Figure 6.2: Fake rates obtained from data and binned in pT and four coarse η bins covering the

barrel and three endcap regions. Fake rates for leading electrons are shown on the left while those

for subleading electron are on the right [77].

6.2.3 Properties of Multi-Jet Background

In order to compose the final sample data events are separated in to the distributions NT T ,

NT L, NLT or NLL and weights are applied according to each electron’s pT and η with respect

to equation 6.7, using the appropriate efficiencies and fake rates. Figure 6.3 shows these

distributions before the efficiencies and fake rates are applied to weight to the final back-

ground prediction. This method is not suited to predicting the Multi-Jet background in the
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Z peak region due to contamination of Z boson decays and so a fit is obtained between 120

GeV and 400 GeV and stitched from 110 GeV and below. This gives a good estimate to the

integral in this region for use in scaling MC’s to luminosity but is not expected to be good

at predicting other variables in this region. At high-mass statistics of the sample decline

and so an additional fit is made at high mass with the lower edge of the fit varied between

425 and 600 GeV and the upper edge from 700 to 1200 GeV, with the fit used above 500

GeV.
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Figure 6.3: NT T , NT L, NLT and NLL distributions from data with no weightings applied.

6.2.4 Other Methods and Estimation of Error

Two other methods and variations upon them were used to test the validity of this method

as well as estimate the systematic error of this background estimation procedure. These

two methods are both “tag & probe” measurements; one on jet candidates from data, and

another electron candidates where the method is more an “inverse” “tag & probe” (using

“tag & probe” but selected objects that are not considered probes) with the selection of

a tag with high probability of being a jet. Variations are also made on the method by



6.3 Total Background Estimate 71

assuming r1 and r2 = 1.0 in all cases as well as changing the definition of loose but fail

tight. These variations simplify the equations slightly but the method remains the same.

Variations compared to the default method used to obtain the estimation were found to vary

between ± 20% throughout the invariant mass distribution and can be seen in figure 6.4.

The systematic uncertainty of the multi-jet estimate was therefore taken to be a flat 20%

throughout the distribution.
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Figure 6.4: Ratio of the final background estimate of all method variation to the default method (fail

tight selection using fake factors from the single object method). The ratio starts at 116 GeV and

ends at 1500 GeV [77].

6.3 Total Background Estimate

The total stacked summation of all the backgrounds, after all corrections and scaling within

the Z peak have been applied, can be seen in figure 6.5.
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Figure 6.5: Combined background samples scaled to data in the Z peak.



Chapter 7

Signal and Results

This chapter discusses the MC generators used to model signal distributions and how these

are parametrised for input to the statistical analysis. This is followed by the results of the

data background comparison looking for any sign of new physics signal.

7.1 Signal Monte Carlo

All signal MC is produced in the same way as the background MC and then summed with

the other background predictions to arrive at the full signal plus background prediction.

Each sample also gets scaled by the same factor as the background MC from the Z peak

scaling.

Contact Interaction

Contact Interaction samples are generated using PYTHIA 8 [65] with the leading order PDF

MSTW2008LO [68]. The CI MC samples also have a K-factor applied that is derived in the

same way as the DY K-factor but scaling from LO to NNLO (see section 6.1). A selection

of Λ values was chosen to cover the reach in new physics for all formalisms of the model

(LL, LR and RR). This selection includes Λ = 7, 10, 14, 20 and 28 TeV. For each of these

working points parametrisations of constructive and destructive interference and LL, LR

and RR models are all generated. This makes 6 parametrisations with 5 Λ values produced

for each one. Each MC sample is composed of three dilepton mass binned samples above

73
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300 GeV in order to maintain statistics. Below 300 GeV negligible new physics is predicted

and so the SM DY prediction is used below this point. Because this MC sample is LO a

PYTHIA 8 LO DY sample is also produced. This sample models the DY in the same way

as the signal samples allowing you to subtract it from the signal samples to leave a pure

new physics signal sample. This signal sample can then be added to the other background

samples including the background MC DY sample (seen in section 6.1) to give a full signal

prediction with a more consistent and higher statistics DY sample.

ADD

The ADD samples used are produced using the SHERPA 1.4.1 [78] generator and NLO

PDF CT10 [66]. Only two formalisms are produced as limits for other formalisms can

be converted from the GRW one. The only formalism this is not possible for is HLZ (n

= 2). For these 2 formalisms 4 values of Ms are generated; Ms = 4.75, 4.0, 3.75 and 3.5

TeV. Again 3 dilepton mass bins are used above 300 GeV with the SM DY replacing the

distribution below this. Also, like the CI samples, a specific DY only SHERPA sample is

produced which is them subtracted from the signal samples so the background MC DY can

be used.

7.2 Signal Parametrisation

Each formalism of the CI and ADD model is parametrised according to the form of their in-

dividual cross-sections (Eq’s 1.6 and 1.8) and as a function of their parameter of interest (Λ,

Ms). The parametrisations predict the number of expected events Nexp where the parameter

of interest (Λ, Ms) at ∞ equates to no signal and just the SM background prediction, these

can be seen in equations 7.1 and 7.2.

Nexp(Λ) = c0 +
c1

Λ2
+

c2

Λ4
(7.1)

Nexp(Ms) = c0 +
c1

M4
s

+
c2

M8
s

(7.2)

Here c0 refers to the SM background prediction while c1 and c2 show the dependence
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of the number of expected events on the scale of new physics. Each formalism gets

parametrised in every search bin. These search bins are described at the start of chapter

8 while the parametrisations can be seen in figure 7.1 for every CI mass bin. The full list of

all of the parametrisations used can be found in appendix B.
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Figure 7.1: Parametrisations of the CI signal for number of expected events as a function of Λ

according to equation 7.1 and for each CI mass bin.
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7.3 Results

Following are full results of the event selection for observed data, predicted background

and some example signal models. Figures 7.2 and 7.3 show the distributions of the two

main search variables dielectron invariant mass and cosθ∗. A comparison between data and

background is given with the expected shapes of some signal models shown for comparison.

Ratio’s are also shown between data and background along with a band showing the size of

the total systematic uncertainty as described in section 8.1. Figure 7.4 then shows forward

backward asymmetry (AFB) defined in equation 1.5. Statistical errors on the data points are

calculated using the function ∆AFB =
√

(1−A2
FB)/N where N is the number of events in

both the forward and backwards regions. The ratio shown in figure 7.4 is the difference

between data and the background AFB values, ∆, divided by the total systematic uncertainty

found in that bin, σ. It can be seen that the data set favours the angular dependence of the

SM prediction or the CI LL formalism with no divergence similar to the CI LR formalism.

In figure 7.5 control plots are seen showing electron pT , η and φ. More results and control

plots can be found in appendix A. Lastly tables 7.1, 7.2, 7.3 and 7.4 show the full extracted

results for all search bins ascending in invariant mass. Each invariant mass bin is shown as

well as the forward and backward regions within each bin where forward refers to events

with cosθ∗ greater than 0 and backwards events with cosθ∗ less than 0. The expected

number of events is given for each of the background as well as a selection of CI signal

formalisms and the data observed. Table 7.5 shows the results for the single ADD search

bin the same as the CI tables. The reason a single bin is used is discussed in chapter 8.

It can be seen from these results that no significant difference is seen between data

observed and the background predicted. A slight discrepancy is seen between data and

background in the 1200 - 1800 GeV invariant mass bin. The background predicts 10.8

events with a total systematic error of 1.6 events while only 7 events are observed in data.

As seen later this does not constitute a significant difference but has an effect on the limits

set in chapter 8.
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Figure 7.2: Dielectron invariant mass comparison between data and MC with possible signal over-

lays of CI and ADD. Ratio between data and background included with band showing size of total

background systematic. The distribution has bin width constant in log(Mee).

Process

mee [GeV]

120 - 200 200 - 400

All Forward Backward All Forward Backward

Drell-Yan 72000 ± 5000 41500 ± 2600 31000 ± 2200 13100 ± 900 7900 ± 500 5200 ± 400

Top 6900 ± 400 3480 ± 210 3410 ± 210 2840 ± 170 1400 ± 90 1440 ± 90

Multijets & W+Jets 1650 ± 330 900 ± 180 780 ± 160 670 ± 130 330 ± 70 340 ± 70

Diboson 1330 ± 70 710 ± 40 619 ± 33 583 ± 31 331 ± 19 252 ± 15

Photon-Induced 1200 ± 1200 600 ± 600 600 ± 600 400 ± 400 230 ± 230 220 ± 220

Total SM 84000 ± 5000 47200 ± 2800 36400 ± 2500 17600 ± 1200 10200 ± 600 7400 ± 500

Data 83824 46910 36914 17525 10107 7418

Table 7.1: Comparison of background prediction to data. Binning covering the control region. Total

systematic error is included on each number. See section 8.1 for details of systematics.
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Figure 7.3: cosθ∗ comparison between data and MC in control and signal regions with possible

signal overlay of the CI LR formalism. Ratio between data and background included with band

showing size of total background systematic. cosθ∗ plots for each mass bin are found in appendix

A.
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Figure 7.4: AFB comparison between data and MC with possible signal overlay of CI. Ratio shows

the difference between data and background prediction divided by total background systematic.

Process

mee [GeV]

400 - 550 550 - 800

All Forward Backward All Forward Backward

Drell-Yan 910 ± 70 580 ± 40 333 ± 32 302 ± 25 193 ± 13 109 ± 12

Top 153 ± 13 87 ± 8 72 ± 7 35.2 ± 2.7 18.2 ± 1.6 17.5 ± 1.6

Multijets & W+Jets 88 ± 18 43 ± 9 45 ± 9 27 ± 6 13.0 ± 3.0 13.0 ± 3.1

Diboson 62.2 ± 3.5 36.0 ± 2.2 26.2 ± 1.7 22.3 ± 1.3 13.8 ± 0.9 8.5 ± 0.7

Photon-Induced 40 ± 40 22 ± 22 22 ± 22 17 ± 17 8 ± 8 8 ± 8

Total SM 1260 ± 100 770 ± 50 500 ± 50 404 ± 35 247 ± 18 156 ± 17

Data 1262 754 508 388 251 137

SM+CI(Λ−14
LL ) 1310 ± 110 810 ± 60 510 ± 50 440 ± 40 276 ± 22 167 ± 18

SM+CI(Λ−20
LL ) 1290 ± 110 780 ± 60 510 ± 50 430 ± 40 271 ± 22 157 ± 18

SM+CI(Λ−14
LR ) 1340 ± 110 790 ± 60 550 ± 50 460 ± 40 266 ± 22 195 ± 19

SM+CI(Λ−20
LR ) 1290 ± 110 780 ± 60 510 ± 50 420 ± 40 249 ± 21 174 ± 19

SM+CI(Λ−14
RR ) 1310 ± 110 810 ± 60 510 ± 50 440 ± 40 276 ± 22 167 ± 18

SM+CI(Λ−20
RR ) 1290 ± 110 780 ± 60 510 ± 50 430 ± 40 271 ± 22 157 ± 18

SM+CI(Λ+14
LL ) 1230 ± 110 730 ± 60 510 ± 50 380 ± 40 227 ± 21 155 ± 18

SM+CI(Λ+20
LL ) 1230 ± 110 740 ± 60 490 ± 50 390 ± 40 234 ± 21 156 ± 18

SM+CI(Λ+14
LR ) 1200 ± 110 740 ± 60 470 ± 50 400 ± 40 247 ± 21 154 ± 18

SM+CI(Λ+20
LR ) 1210 ± 110 740 ± 60 470 ± 50 390 ± 40 238 ± 21 150 ± 18

SM+CI(Λ+14
RR ) 1230 ± 110 730 ± 60 510 ± 50 380 ± 40 227 ± 21 155 ± 18

SM+CI(Λ+20
RR ) 1230 ± 110 740 ± 60 490 ± 50 390 ± 40 234 ± 21 156 ± 18

Table 7.2: Comparison of background prediction to data with prediction of several CI signal models.

Signal models are refereed to showing constructive or destructive interference (-/+ in superscript), Λ

value (numberin superscript) and formalism (letters in subscript). Binning used is the same as used

for statistical analysis of CI model with the two lowest mass regions shown here. Total systematic

error is included on each number. See section 8.1 for details of systematics.
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Figure 7.5: Control plots of pT , η and φ distributions of selected electrons.
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Process

mee [GeV]

800 - 1200 1200 - 1800

All Forward Backward All Forward Backward

Drell-Yan 63 ± 6 41.4 ± 3.4 22.1 ± 2.9 8.2 ± 1.2 5.3 ± 0.6 2.9 ± 0.6

Top 3.06 ± 0.18 1.58 ± 0.10 1.45 ± 0.09 0.140 ± 0.008 0.073 ± 0.004 0.065 ± 0.004

Multijets & W+Jets 5.8 ± 1.5 2.6 ± 0.9 2.5 ± 0.8 0.87 ± 0.32 0.35 ± 0.16 0.32 ± 0.24

Diboson 5.4 ± 0.4 3.41 ± 0.28 2.02 ± 0.17 0.83 ± 0.05 0.542 ± 0.035 0.287 ± 0.016

Photon-Induced 4 ± 4 2.2 ± 2.2 2.1 ± 2.1 0.7 ± 0.7 0.34 ± 0.34 0.4 ± 0.4

Total SM 82 ± 9 51 ± 5 30 ± 4 10.8 ± 1.6 6.6 ± 0.7 4.0 ± 0.8

Data 84 53 31 7 5 2

SM+CI(Λ−14
LL ) 108 ± 10 68 ± 6 39 ± 5 20.9 ± 1.9 13.5 ± 1.0 7.2 ± 0.9

SM+CI(Λ−20
LL ) 90 ± 10 58 ± 5 32 ± 4 14.4 ± 1.7 9.2 ± 0.9 5.0 ± 0.8

SM+CI(Λ−14
LR ) 118 ± 10 62 ± 6 56 ± 5 26.3 ± 2.1 11.3 ± 1.0 14.8 ± 1.1

SM+CI(Λ−20
LR ) 98 ± 10 57 ± 5 41 ± 5 15.7 ± 1.7 8.3 ± 0.9 7.2 ± 0.9

SM+CI(Λ−14
RR ) 108 ± 10 68 ± 6 40 ± 5 20.8 ± 1.9 13.6 ± 1.0 6.9 ± 0.9

SM+CI(Λ−20
RR ) 91 ± 10 58 ± 5 32 ± 4 14.3 ± 1.7 9.1 ± 0.9 5.0 ± 0.8

SM+CI(Λ+14
LL ) 79 ± 9 47 ± 5 32 ± 4 12.2 ± 1.7 7.3 ± 0.8 4.7 ± 0.8

SM+CI(Λ+20
LL ) 77 ± 9 48 ± 5 29 ± 4 10.0 ± 1.6 6.1 ± 0.8 3.7 ± 0.8

SM+CI(Λ+14
LR ) 88 ± 10 55 ± 5 32 ± 4 18.9 ± 1.8 9.2 ± 0.9 9.5 ± 0.9

SM+CI(Λ+20
LR ) 81 ± 9 52 ± 5 29 ± 4 11.5 ± 1.6 6.8 ± 0.8 4.5 ± 0.8

SM+CI(Λ+14
RR ) 79 ± 9 47 ± 5 32 ± 4 12.1 ± 1.7 7.3 ± 0.8 4.6 ± 0.8

SM+CI(Λ+20
RR ) 77 ± 9 48 ± 5 29 ± 4 10.2 ± 1.6 6.3 ± 0.8 3.8 ± 0.8

Table 7.3: Comparison of background prediction to data with prediction of several CI signal models.

Signal models are refereed to showing constructive or destructive interference (-/+ in superscript),

Λ value (numberin superscript) and formalism (letters in subscript). Binning used is the same as

used for statistical analysis of CI model with the two mid mass regions shown here. Total systematic

error is included on each number. See section 8.1 for details of systematics.

Process

mee [GeV]

1800 - 3000 3000 - 4500

All Forward Backward All Forward Backward

Drell-Yan 0.64 ± 0.17 0.41 ± 0.09 0.23 ± 0.08 0.006 ± 0.004 0.0039 ± 0.0021 0.0022 ± 0.0018

Top < 0.004 < 0.002 < 0.002 < 0.001 < 0.001 < 0.001

Multijets & W+Jets 0.11 ± 0.04 0.040 ± 0.020 0.033 ± 0.027 0.0058 ± 0.0012 < 0.002 < 0.001

Diboson 0.075 ± 0.006 0.053 ± 0.004 0.0224 ± 0.0026 < 0.001 < 0.001 < 0.001

Photon-Induced 0.08 ± 0.08 0.04 ± 0.04 0.04 ± 0.04 0.0016 ± 0.0016 < 0.002 < 0.002

Total SM 0.91 ± 0.21 0.55 ± 0.10 0.33 ± 0.10 0.014 ± 0.005 0.0065 ± 0.0026 0.0042 ± 0.0022

Data 0 0 0 0 0 0

SM+CI(Λ−14
LL ) 4.2 ± 0.4 2.75 ± 0.23 1.38 ± 0.15 0.141 ± 0.028 0.080 ± 0.020 0.058 ± 0.016

SM+CI(Λ−20
LL ) 2.01 ± 0.25 1.26 ± 0.14 0.72 ± 0.12 0.045 ± 0.012 0.021 ± 0.007 0.022 ± 0.007

SM+CI(Λ−14
LR ) 6.0 ± 0.5 2.31 ± 0.21 3.69 ± 0.30 0.28 ± 0.05 0.127 ± 0.030 0.146 ± 0.032

SM+CI(Λ−20
LR ) 2.58 ± 0.28 1.01 ± 0.13 1.54 ± 0.16 0.078 ± 0.018 0.036 ± 0.011 0.039 ± 0.012

SM+CI(Λ−14
RR ) 3.78 ± 0.34 2.51 ± 0.22 1.23 ± 0.15 0.23 ± 0.04 0.155 ± 0.031 0.069 ± 0.018

SM+CI(Λ−20
RR ) 1.86 ± 0.24 1.11 ± 0.13 0.71 ± 0.12 0.072 ± 0.015 0.047 ± 0.011 0.022 ± 0.008

SM+CI(Λ+14
LL ) 2.08 ± 0.25 1.30 ± 0.14 0.75 ± 0.12 0.075 ± 0.015 0.050 ± 0.012 0.023 ± 0.007

SM+CI(Λ+20
LL ) 0.95 ± 0.22 0.55 ± 0.11 0.36 ± 0.11 0.029 ± 0.008 0.019 ± 0.006 0.0073 ± 0.0034

SM+CI(Λ+14
LR ) 4.2 ± 0.4 1.60 ± 0.16 2.51 ± 0.22 0.191 ± 0.034 0.081 ± 0.020 0.107 ± 0.023

SM+CI(Λ+20
LR ) 1.65 ± 0.24 0.82 ± 0.12 0.79 ± 0.12 0.058 ± 0.013 0.017 ± 0.006 0.039 ± 0.010

SM+CI(Λ+14
RR ) 2.26 ± 0.26 1.44 ± 0.15 0.78 ± 0.12 0.098 ± 0.018 0.057 ± 0.012 0.038 ± 0.010

SM+CI(Λ+20
RR ) 1.06 ± 0.22 0.65 ± 0.11 0.37 ± 0.11 0.036 ± 0.009 0.028 ± 0.008 0.0044 ± 0.0029

Table 7.4: Comparison of background prediction to data with prediction of several CI signal models.

Signal models are refereed to showing constructive or destructive interference (-/+ in superscript), Λ

value (numberin superscript) and formalism (letters in subscript). Binning used is the same as used

for statistical analysis of CI model with the two high mass regions shown here. Total systematic

error is included on each number. See section 8.1 for details of systematics.
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Process 1900 ≤ mee ≤ 4500 GeV

Drell-Yan 0.435 ± 0.002

Top 0.003± 0.000

Multi-Jet 0.062 ± 0.012

Diboson 0.053 ± 0.004

Photon-Induced 0.058 ± 0.001

Total SM 0.611 ± 0.129

Data 0

SM+ADD (MS = 3.50 TeV) 21.637 ± 2.144

SM+ADD (MS = 3.75 TeV) 13.171 ± 1.295

SM+ADD (MS = 4.00 TeV) 8.436 ± 0.821

SM+ADD (MS = 4.75 TeV) 2.952 ± 0.282

Table 7.5: Comparison of background prediction to data with prediction of several ADD signal

models. One bin used the same in the statistical analysis of ADD. Total systematic error is included

on each number. See section 8.1 for details of systematics.



Chapter 8

Statistical Analysis

The statistical analysis of results is done via a Bayesian approach where first a search for

signs of new physics is done with a calculation of the significance of any excesses. Then

in the absence of a signals exclusion limits on the scale of new physics (either Λ or Ms)

are set. A slightly different search approach is made between CI and ADD. In CI the shape

of new physics is studied and therefore a series of invariant mass search bins are used

with bin edges of 400, 550, 800, 1200, 1800, 3000 and 4500 GeV. With the addition of

information from the cosθ∗ variable in this analysis bins are also then split up in cosθ∗ as

well as invariant mass. As seen in section 8.2.2 most of the new information is obtained via

using two bins in cosθ∗ making a total of 12 search bins distributed in invariant mass and

cosθ∗. ADD on the other hand cannot use the many search bin approach due to a sharper

turn-on and undefined nature of the signal after the cut-off point. Therefore only one search

bin is used to search for ADD with a minimum invariant mass cut of 1900 GeV and upper

cut of 4500 GeV. The lower range of this search bin is optimised by choosing the value

with the highest expected limit. The ADD model gains no additional discriminating power

from the cosθ∗ variable. For each search bin a parametrisation of new physics is produced

(discussed in section 7.2) as well as the background predicted and data observed. Also

included is the background and signal parametrisation varied by each of the appropriate

sources of systematic error (discussed in section 8.1) for signal and background. This all

composes the input to the statistical analysis.

The statistical analysis is carried out using the ROOT [57] package BAT or Bayesian

Analysis Tool-kit [79]. This package allows for the integration over nuisance parameters

83
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(discussed below) using the Markov Chain Monte Carlo method. The statistical analysis

starts off with the definition of the number of expected events µ found in the signal region

as seen in equation 8.1.

µ = ns(Θ,Ω)+nb(Ω) (8.1)

Here ns is the number of signal events predicted by the model with a particular model

parameter Θ and nb is the total number of predicted background events. Ω is then a set

of Gaussian nuisance parameters or systematic uncertainties on the number of expected

events for signal and background. A product of Poisson probabilities for each search bin k

gives the Bayesian likelihood, seen in equation 8.2, of observing n events given the signal

parameter Θ and nuisance parameters Ω.

L(n | Θ,Ω) =
N

∏
k=1

µ
nk

k e−µk

nk!
(8.2)

where µ
nk

k and nk are the total number of expected events and observed number of events

in search bin k respectively.

P (Θ | n) =
1

Z
LM (n | Θ)P(Θ) (8.3)

Equation 8.3 shows the posterior probability using Bayes’ theorem for the observation

of Θ given n. Here Z is the normalisation factor and LM is the marginalised likelihood after

all nuisance parameters have been integrated out. It is assumed all nuisance parameters are

correlated across all search bins. A full description of nuisance parameters can be found

in section 8.1. Finally P(Θ) is the prior probability of Θ. A 95% confidence level (CL)

limit can then be found by finding Λlim that satisfies
∫ θlim

0 P(θ | n̄)dθ = 0.95. For CI P(Θ)

is chosen to be uniform and positive with respect to 1/Λ2 or 1/Λ4. This form of priors is

chosen due to the form of differential cross-section (equation 1.6) and its dependence on

Λ. It is not obvious which prior is more correct as these forms refer to the interference

and pure CI terms respectively which change in dominance throughout the search bins and

model parameters, therefore the search is done using both parameters for completeness. A

similar effect is seen in the form of the ADD differential cross-section (equation 1.8) and

so there a prior of 1/M4
s or 1/M8

s is used for the same reason.
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In order to check all signal formalisms 1000 background-like Pseudo-Experiments (PE)

are run using BAT for each formalism. Each PE is then passed through the Bayesian sta-

tistical method above so they can be compared to data and signal predictions. Figure 8.1

shows posterior probability density functions (pdf’s), for two CI formalisms, of these 1000

PE’s.
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Figure 8.1: Posterior pdf distributions for the CI model formalisms LL and LR with constructive

interference and a uniform positive prior in 1/Λ2.

8.1 Systematics

The list of nuisance parameters used for this statistical analysis make up a list of all system-

atic errors considered as relevant for this analysis. Table 8.1 lists all the systematic errors

used for this analysis along with their size while figures 7.2, 7.4 and 7.3 in the previous

chapter show total background systematic errors in their ratio’s. Due to this analysis using

both the forward and backwards regions in the search all systematics needed to be assessed

for both these regions separately. Following is a brief description of each of the systematics

including how they were derived.

Normalization - This systematic accommodates the error associated with scaling MC sam-

ples within the Z peak to avoid luminosity errors however it also protects against any other

sources of mass independent error. This systematic was investigated by looking at the effect

of altering scale factor to its effect on the background cross-section.
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PDF Variation - PDF variation was investigated as another source of systematic error using

the set of 20 eigenvector error sets provided with the MSTW2008NNLO PDF [68]. These

eigenvectors were organised into 4 groups, A, B, C and D, of eigenvectors with effects in

similar regions of the invariant mass spectrum. These 4 groups were then used as separate

nuisance parameters and applied to events based on dielectron invariant mass and cosθ∗.

PDF Choice - PDF choice refers to a comparison between the effects of different PDF’s

on the expected events from MC. Several other NNLO PDF are looked at including CT10

but the only PDF with predictions outside of the PDF variation systematic (seen above) is

ABM11 [80] and so an additional systematic is introduced of the order of this difference.

αSαSαS - A systematic is introduced to account for the uncertainty in the value αS. It is varied

between the values 0.11365 and 0.12044 according to the limits in MSTW. Recalculated

cross-sections give a variation in the expected background and taken as the systematic.

EW Corrections - The EW correction is derived via the use of a different generator (MC-

SANC [81]) when calculating the EW K-factor and differences between the method give

the systematic.

Photon-Induced - The MC estimate for the PI fraction is predicted to be an upper estimate

and so the effect of not including this background is studied and this effect on the event

yield is taken as the systematic.

Efficiency - Systematic provided by the ATLAS electron photon performance group to ac-

commodate the trigger and reconstruction efficiency corrections (see section 6.1.1).

Scale/Resolution - Systematic provided by the ATLAS electron photon performance group

to accommodate the energy scale and energy resolution corrections (see section 6.1.1).

Multijet/W+jets - Systematic associated with the data driven multijet & W+jets estimate

and seen in section 6.2.4. It is taken as a flat 20% on the Multijet & W+jets background.

Beam Energy - The beam energy uncertainty of the LHC 4 TeV beams is given as 0.65%

giving this uncertainty which is again analysed to see its effect on event yield.

Charge MisID - Systematic associated with opposite sign requirement in the analysis.

This error is estimated by injecting a higher fraction of charge misidentification in to the

DY MC sample and looking at the effect on background prediction. This is found to have

an, at most, 3% effect at high mass.

Statistical - Systematic error of the statistical error of each of the MC samples used to es-
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timate background and signal.

8.2 Angular Analysis Optimisation

This section looks at some of the issues revolving around the introduction of the angular

search within cosθ∗ as well as invariant mass. First a look at the effect of the loss in

selection efficiency coming from the opposite sign requirement on the sensitivity of the

search. Next is then a discussion on the optimisation of the binning used to search in cosθ∗.

8.2.1 Effect of the Opposite Sign Requirement on Analysis Reach

The opposite sign requirement is needed to ensure that calculations of the variable cosθ∗

correctly use the particle instead of anti-particle. However the selection comes with a 7%

drop in acceptance of signal in the signal search region (see table 5.1). The important

question becomes what effect this has on the sensitivity of the analysis. This is important

because angular dependence was introduced for a single CI formalism LR and not predicted

to strongly impact the results for other formalisms. A study was done on the expected limits

set by the Bayesian statistical analysis (see chapter 8) both with the opposite sign require-

ment introduced and without it for both a search in invariant mass only and search bins

distributed in both invariant mass and cosθ∗ (called the 1D and 2D search respectively be-

low). Table 8.2 show limits for all of these possibilities for both the LL and LR formalisms.

It is important to bear in mind this study was done before the analysis was finalised and so

the limits do not represent the final results of the analysis but are consistent enough to rep-

resent the effects we are looking at. It can be seen that the introduction of the opposite sign

requirement leads to a reduction in the reach of the limits while the introduction of the 2D

search bin approach greatly increases the limits for the LR formalism while regaining the

lost sensitivity in the case of the LL formalism. Although no difference is seen between the

angular dependence of background and the LL formalism (see figures 7.3 and 7.4) the 2D

search approach gains some extra shape information from the extra search bins used which

offsets the loss of sensitivity from the opposite sign requirement. The same was found to

be true for the ADD model as the LL formalism.
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8.2.2 Optimisation of Search Bins in cosθ∗

The belief at the start of the analysis was that binning within cosθ∗ would be optimised

with 2 to n evenly distributed bins, varying bins in cosθ∗ or even varying number of bins

throughout invariant mass. This study was carried out at two different points; early on in the

analysis when search bins were first discussed, then towards the end when the full analysis

was almost finalized. The first study looked at expected limits for individual invariant

mass bins while varying the number of cosθ∗ bins. These “limits” do not give an accurate

estimate of final limits but are used as a guide to see the sensitivity of each binning. The

results from this study can be seen in table 8.3 where 600 PEs are run for each individual

bin combination and expected limits are extracted from these. Random fluctuations in the

limits are seen but are almost consistent through many of the binning structures. The highest

limits found within each invariant mass bin can be seen as bold and a structure with more

bins at low mass while less bins at high mass can be seen. However this structure does not

gain a very big advantage over any other binning structures that could be chosen due to the

small size of the differences. The study was postponed until systematics were finalised.

The second study seen in table 8.4 found very quickly that while changing from a 1D

to a 2D search strategy using two evenly sized bins in cosθ∗, gave a moderate increase in

limits, any further increase in the number of cosθ∗ search bins gave no increase or a slight

decrease in limits. This found that most of the extra information gained from searching in

cosθ∗ was seen in a split between forward (cosθ∗ > 0) and backwards (cosθ∗ < 0) regions.

The cause of this effect comes from the introduction of systematics that grow at high mass

as well as the increase in MC statistical error when binning the signal in finer bins. The

two bin search structure was therefore chosen as optimal for searching in the cosθ∗ variable

meaning that with 6 invariant mass search bins 12 total search bins are used.

8.3 Signal Search & p-Values

Consistency between data and background predictions is estimated by taking the likelihood

of the signal given n observed events (observed) and comparing this to the likelihood of

signal given the outcome of a set of 1000 PE (expected given no signal) calculated above.

A likelihood ratio is then calculated between the signal prediction and background only
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hypothesis where the signal predictions likelihood is maximised to the highest likelihood

in Θ. This is done for both the observed likelihood and the set of 1000 PE likelihoods for

the expected result given no signal. These are converted to the distribution of negative Log

Likelihood Ratios (LLR) given in figure 8.2 comparing observed values to the expected

values in the distribution of PEs. More of these distributions are found in appendix C.

p-values are also derived for each formalism quantifying the probability of observing a

fluctuation in PEs at least as signal-like as is observed in data. A table of p-values for each

formalism for CI can be found in table 8.5 and for ADD in table 8.6.
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Figure 8.2: Distribution of negative Log Likelihood Ratio’s for the CI formalisms LL (left) and LR

(right) with constructive interference given a uniform positive prior in 1/Λ2.

8.4 Setting Limits

With no sign of new physics found, limits are set on the lower value of the scale of new

physics for each CI and ADD formalism. Limits in Θ are extracted from each of the 1000

PE’s for each formalism and the mean of this distribution is taken as the expected limit and

converted into a limit on Λ for CI and Ms for ADD. Figure 8.3 shows the distribution of

these PE’s in Θ along with the mean value of the distribution taken as the expected limit.

More of these distributions are found in appendix C. Tables 8.7 and 8.8 then show the

expected limits converted into Λ and Ms respectively where the same procedure had been

done in the ADD channel. The final observed limits are also included in these figures and

tables compared to the expected limits and extracted from the observed data. The limits in

the ADD search are also converted from the GRW formalism to all of the other formalism
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discussed in section 1.2.2 by a rearrangement of equation 1.9. The exception is the HLZ

n = 2 formalism which has its own MC sample and limits are set in the same way as for

GRW. The limits on all other formalisms discussed are then seen in 8.9.

Θ
0 0.002 0.004 0.006 0.008 0.01 0.012

P
E

s

1

10

Pseudo experiments

Expected limit

Observed limit

 InternalATLAS

 ee Search®CI 

-1 L dt = 20.3 fb∫ee: 

 = 8 TeVs

Θ
0 0.002 0.004 0.006 0.008 0.01 0.012

P
E

s

1

10

Pseudo experiments

Expected limit

Observed limit

 InternalATLAS

 ee Search®CI 

-1 L dt = 20.3 fb∫ee: 

 = 8 TeVs

Figure 8.3: Distribution of PE’s with associated limits for CI formalisms LL (left) and LR (right)

with constructive interference given a uniform positive prior in 1/Λ2. The mean value is shown as

the expected limit for comparison to the observed limit shown. Θ = 1/Λ2

8.5 Combination with the Muon Search

A similar analysis was carried out at the same time as this one looking at the dimuon decay

channel instead. This analysis followed the same procedure and after failing to find any

signals limits were set on the scale of new physics. Assuming lepton universality integrated

luminosity can effectively be doubled by combining the results from both channels. There-

fore the posterior pdf’s from each analysis were combined in BAT and new limits set on the

scale of new physics. Care was taken to correctly treat sources of systematic uncertainty

that are correlated between analyses. Combined limits of this form can be found in tables

8.10 and 8.11 for the CI and ADD models respectively while table 8.12 shows the combined

limits for the other ADD formalisms. It can be seen that that limits do not increase to a large

degree. This is due to two factors; on the whole muon limits are lower that electron limits

due to a greater inefficiency in selecting muon candidates, also this analysis has started to

reach the stage that it is not statistics limited and an increase in collision energy is required

to push the limits higher. The muon invariant mass distribution can be seen in figure 8.4 for

comparison with the electron distribution.
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Figure 8.4: Dimuon invariant mass comparison between data and MC with possible signal overlays

of CI and ADD. Ratio between data and background included with band showing size of total

background systematic. The distribution has bin width constant in log(Mµµ).

The combined limits mark the highest limits set for this analysis owing to the higher

effective luminosity.
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Source
Signal Systematic [%]

Forward Backward

Normalization 4.0 (4.0) [4.0] 4.0 (4.0) [4.0]

PDF Variation < 0.1 (0.2) [0.5] < 0.1 (0.2) [0.5]

PDF Choice NA NA

αS NA NA

EW Corrections < 0.1 (< 0.1) [0.1] < 0.1 (< 0.1) [0.1]

Photon-Induced NA NA

Efficiency 1.0 (2.0) [3.0] 1.0 (2.0) [3.0]

Scale/Resolution 1.2 (2.4) [5.0] 1.2 (2.4) [5.0]

Multijet/W+jets NA NA

Beam Energy 1.0 (3.0) [5.0] 1.0 (3.0) [5.0]

Charge MisID 1.2 (2.0) [2.9] 1.2 (2.0) [2.9]

Statistical 3.0 (3.0) [3.0] 3.0 (3.0) [3.0]

Total 5.5 (6.9) [9.6] 5.5 (6.9) [9.6]

Source
Background Systematic [%]

Forward Backward

Normalization 4.0 (4.0) [4.0] 4.0 (4.0) [4.0]

PDF Variation 6.0 (12.5) [35.0] 10.0 (28.0) [62.5]

PDF Choice 1.0 (7.0) [22.0] 1.0 (7.0) [22.0]

αS 1.0 (3.0) [5.0] 1.0 (3.0) [5.0]

EW Corrections 1.0 (2.0) [4.0] 1.0 (2.0) [4.0]

Photon-Induced 6.0 (10.0) [17.0] 9.5 (16.5) [29.0]

Efficiency 1.0 (2.0) [3.0] 1.0 (2.0) [3.0]

Scale/Resolution 1.2 (2.4) [5.0] 1.2 (2.4) [5.0]

Multijet/W+jets 3.0 (5.0) [21.0] 3.0 (5.0) [21.0]

Beam Energy 1.0 (3.0) [5.0] 1.0 (3.0) [5.0]

Charge MisID 1.2 (2.0) [2.9] 1.2 (2.0) [2.9]

Statistical 0.5 (0.5) [0.5] 0.5 (0.5) [0.5]

Total 10.3 (19.6) [50.6] 14.9 (34.4) [76.1]

Table 8.1: All sources of systematic error and their approximate size as a percentage (%) for dielec-

tron mass of 1 TeV (2 TeV) [3 TeV].

Search strategy LL LR

1D approach no
19.27 21.64

opposite sign requirement

1D approach with
18.86 21.17

opposite sign requirement

2D approach with
19.40 22.31

opposite sign requirement

Table 8.2: Expected Limits [TeV] calculated with 600 PE’s for the LL and LR constructive CI

formalisms looking at the effect of the opposite sign requirement on limits and introduction of 2D

limits.
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Constructive Interference Mass bins [GeV]

cosθ∗ binning 400-550 550-800 800-1200 1200-1800 1800-3000 3000-4500

1 bin 13.7154 15.0867 17.2645 17.4408 16.8898 8.81322

2 even bins 14.0608 15.9546 18.0246 17.9244 17.4196 8.82076

4 even bins 14.0553 15.9607 18.1429 18.1086 17.2942 8.74857

3 even bins 14.1691 15.7593 18.0305 18.1593 16.9797 8.8057

4 bins A 14.0999 16.053 18.1057 18.1086 17.1486 8.82008

4 bins B 14.1655 16.0005 18.3324 18.1146 17.3696 8.81391

5 even bins 13.7568 15.8124 18.2437 18.1414 17.0067 8.7914

Destructive Interference Mass bins [GeV]

cosθ∗ binning 400-550 550-800 800-1200 1200-1800 1800-3000 3000-4500

1 bin 8.31287 8.98298 12.5147 14.7194 15.3456 8.52415

2 even bins 8.87217 9.22688 12.7154 15.0151 15.8282 8.5155

4 even bins 8.77311 9.38027 12.7906 15.0944 15.6893 8.49673

3 even bins 8.94302 9.30384 12.7526 15.0372 15.4184 8.51457

4 bins A 8.98625 9.28697 12.7833 15.0953 15.5823 8.4854

4 bins B 8.93035 9.50594 12.8105 15.0585 15.773 8.42107

5 even bins 9.22944 9.59655 12.7666 15.0764 15.7632 8.44356

Table 8.3: Expected Limits on Λ [TeV] calculated with 600 PE’s for individual mass bins while

varying cosθ∗ binning to select variable search bins. The highest limits found for each invariant

mass bin are shown in bold. No systematics were included in this study. Even bins refer to bins

distributed evenly in cosθ∗ while A and B refer to larger bins in the centre of the cosθ∗ distribution

and larger bins at the extremes in cosθ∗ respectively while still being symmetric around cosθ∗ = 0.

cosθ∗ bins Constructive Destructive

1 bin 21.1691 17.0884

2 bin 22.3078 17.6309

4 bin 22.1839 17.5169

Table 8.4: Expected Limits on Λ [TeV] on the LR formalism calculated with 600 PE’s showing the

effect of changing from 1 to 2 to 4 search bins in cosθ∗.

p-value [%]
1/Λ2 1/Λ4

Constructive Destructive Constructive Destructive

LL: ee 58 60 > 76 > 58

LR: ee > 35 36 > 85 > 62

RR: ee > 35 68 > 75 > 62

Table 8.5: p-values for all CI formalisms and prior’s.

p-value [%] 1/M4
S 1/M8

S

GRW: ee 51 > 58

Table 8.6: p-values for ADD with each prior.
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Limits [TeV]
1/Λ2 1/Λ4

Constructive Destructive Constructive Destructive

Expected LL: ee 19.11 14.02 17.44 13.02

Observed LL: ee 20.71 16.35 18.58 14.72

Expected LR: ee 22.01 17.37 20.09 16.26

Observed LR: ee 25.16 19.19 22.19 17.68

Expected RR: ee 18.97 14.23 17.23 13.14

Observed RR: ee 20.22 16.57 18.34 14.89

Table 8.7: Expected and observed 95% C.L. lower limits for all CI formalisms and prior’s.

GRW ADD Limits [TeV] 1/M4
S 1/M8

S

Expected: ee 4.79 4.50

Observed: ee 4.79 4.50

Table 8.8: Expected and observed 95% C.L. lower limits for ADD with each prior.

Expected and Observed Limit on MS [TeV]

Channel Prior GRW Hewett
HLZ

n= 2 n=3 n=4 n=5 n=6 n=7

Expected: ee
1/M4

S

4.79 4.28 4.85 5.70 4.79 4.33 4.03 3.81

Observed: ee 4.79 4.28 4.86 5.70 4.79 4.33 4.03 3.81

Expected: ee
1/M8

S

4.50 4.25 4.42 4.90 4.50 4.27 4.12 4.01

Observed: ee 4.50 4.25 4.42 4.90 4.50 4.27 4.12 4.01

Table 8.9: Expected and observed 95% C.L. lower limits on MS, for ADD signal in the GRW, Hewett

and HLZ formalisms.

Limits [TeV]
1/Λ2 1/Λ4

Constructive Destructive Constructive Destructive

Expected LL: ℓℓ 21.44 19.11 14.73 13.81

Observed LL: ℓℓ 21.55 19.61 17.15 15.35

Expected LR: ℓℓ 24.78 23.12 18.46 17.57

Observed LR: ℓℓ 26.25 23.77 18.95 17.79

Expected RR: ℓℓ 20.98 19.11 14.99 14.21

Observed RR: ℓℓ 21.11 19.31 17.50 15.58

Table 8.10: Combined expected and observed 95% C.L. lower limits for the 2D LL, LR, and RR

Contact Interaction search using a uniform positive prior.
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GRW ADD Limits [TeV] 1/M4
S 1/M8

S

Expected: ℓℓ 4.83 4.60

Observed: ℓℓ 5.12 4.79

Table 8.11: Combined expected and observed 95% C.L. lower limits for the ADD search using a

uniform positive prior.

Expected and Observed Limit on MS [TeV]

Channel Prior GRW Hewett
HLZ

n= 2 n=3 n=4 n=5 n=6 n=7

Expected: ℓℓ
1/M4

S

4.83 4.31 5.09 5.74 4.83 4.36 4.06 3.84

Observed: ℓℓ 5.12 4.57 5.47 6.09 5.12 4.62 4.30 4.07

Expected: ℓℓ
1/M8

S

4.60 4.35 4.67 5.01 4.50 4.37 4.22 4.10

Observed: ℓℓ 4.79 4.53 4.94 5.23 4.79 4.56 4.40 4.27

Table 8.12: Expected and observed combined 95% C.L. lower limits on MS, for ADD signal in the

GRW, Hewett and HLZ formalisms.



Chapter 9

Non-Resonant 7 TeV Analysis

This chapter looks at the non-resonant analysis done within ATLAS on 2011 data and was

a measurement made prior to the other analysis presented in this thesis. The author made a

major contribution to this analysis working on the dielectron search channel and following

it to publication [1]. The 7 TeV analysis major differences come from not including the

angular search in cosθ∗ and looking at only the LL CI formalism and GRW ADD formal-

ism. Background simulation differs slightly with different generators used and the change

from using a QCD and a W+jets background to the more inclusive Multijets & W+jets

obtained via a data driven method. The event selection also differs between the two anal-

yses with the optimisation of the isolation selection and updated shower shape selection in

the 8 TeV analysis. The big change is the addition of the angular analysis with respect to

cosθ∗ introducing the opposite sign requirement and changing the search bins used in the

Bayesian analysis. A slightly smaller list of systematic errors were included in this anal-

ysis compared to the 8 TeV one. Below is an overview of each part of this analysis with

comparisons between this and the main analysis spoken of in this thesis.

9.1 Data and Background Processes

Data

All data used in this analysis is taken from the LHC 2011
√

s = 7 TeV proton-proton col-

lision data of which ATLAS recorded 4.9 f b−1 of electron candidate data. The data set
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was collected with stable LHC beams and a fully operational inner detector and calorimeter

each being important in the identification of good electron candidates.

Background

The background processes are the same between analyses with slight differences in the MC

generators used. The bigger difference however are the comparisons between the W+jets

and QCD backgrounds used in this analysis with the multijet & W+jets background used in

the 8 TeV analysis. This difference is mainly a change in naming convention but here the

background is produced through a combination of a MC sample and a data driven method

while the 8 TeV analysis uses only a data driven method.

Standard Model Drell-Yan was simulated by the leading-order (LO) PYTHIA 6 [82]

Monte Carlo (MC) event generator. This method was used to generate a Z → ee sample

for the low dielectron invariant mass region (mee < 120 GeV) and a DY → ee mass binned

sample for the high invariant mass (mee > 120 GeV) to keep high statistics. Similarly to

the 8 TeV analysis K-factors are used here to weight from the LO prediction up a NNLO

prediction. Four other samples are included to produce the background estimate, these

are: tt̄, produced with MC@NLO [73]; diboson, WW, WZ and ZZ decays produced with

HERWIG [70]; W+jets, produced with ALPGEN [83], JIMMY [74] and HERWIG [70];

and QCD, produced using a data driven method.

Signal

Five benchmarks for the value of Λ where chosen for the CI signal samples for both con-

structive and destructive interference. Like the DY these were also produced with LO

PYTHIA 6 [82] containing both the pure DY contribution as well as the interference and

pure CI components. Samples where produced above dilepton invariant mass of 120 GeV

to increase statistics above the Z boson peak where new physics would appear.

ADD samples were generated using SHERPA [78] at leading order with 4 values of Ms

produced. Samples were again produced above dilepton invariant mass of 120 GeV.

Corrections are applied to all MC samples. A correction handling event pile-up is ap-

plied on an event by event basis as well as QCD and Electroweak K-factor corrections
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applied as a function of invariant mass to the signal samples and SM DY samples. The

K-factors applied to DY scales the original LO predictions using the MRST2007LO** [69]

PDF to the MSTW2008NNLO [68] PDF. These corrections did not change in method be-

tween the 7 and 8 TeV analyses and are discussed in more detail in section 6.1.1.

9.2 Electron Identification and Selection

The selection of electron candidates for the CI and ADD analysis can be split into three

main parts, selection of a good event, selection of a set of good electrons and selection of a

good dielectron pair.

Event Selection

• Each event is required to contain at least one reconstructed primary vertex with more

than 2 charged tracks traceable to it.

• Event is required have passed the chosen unprescaled electron trigger (EF g20 loose).

Electron Selection

• Each electron is required to have a transverse momentum (pT ) greater than 25 GeV.

• Electron |η|< 2.47 and not lie within the detector crack region 1.37 ≤ |η| ≤ 1.52 due

to a decreased energy resolution.

• Electrons are required to pass identification criteria on the transverse shower shape,

the longitudinal leakage into the hadronic calorimeter, and the association to an inner

detector track, defined together as a “medium” electron identification.

• If expected electron is required to have signal in the inter most level of the tracking

detector (B-layer). Used to suppress background from photon conversions.

Dielectron Selection

• Selection of two highest pT electrons left in event.
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• Isolation (A cone around the candidate in the calorimeter is required to have < 7 GeV

deposited in it) of the highest pT electron in the event is required to suppress QCD

jet background.

• Dielectron invariant mass (mee) is required to be greater than or equal 70 GeV.

There are several differences between the 7 and 8 TeV event selections. The trigger used

is different in each case as the lowest threshold unprescaled trigger that is available is used

for each data set. Transverse momentum requirements have then changed in accordance

with the thresholds of the triggers as well as the increase in the invariant mass requirement

for the same reason. The identification of a “medium” electron was updated between the

two analyses with the 8 TeV version also including the expected signal in the tracking

detector B-layer as a requirement. The isolation requirement underwent an optimisation

between the two analyses detailed in section 5.2. The final difference is the lack of opposite

sign requirement in this analysis.

These remaining candidates are then the results. The signal region is defined as mee >

200 GeV while the 70 ≤ mee ≤ 200 GeV region is used as a control region.

mee [GeV] 70-110 110-200 200-400

DY 1231053.7 ± 1109.5 26756.7 ± 163.6 2964.0 ± 54.4

tt̄ 879.6 ± 29.7 1008.8 ± 31.8 315.8 ± 17.8

Dibosons 1827.1 ± 42.7 415.4 ± 20.4 146.6 ± 12.1

QCD + W+jets 2885.7 ± 53.7 1892.0 ± 43.5 510.5 ± 22.6

Total 1236646.0 ± 1112.0 30072.9 ± 173.4 3936.9 ± 62.7

Data 1236646 29816 4026

400-800 800-1200 1200-3000

266.0 ± 16.3 12.2 ± 3.5 1.5 ± 1.2

20.5 ± 4.5 0.3 ± 0.6 0.0 ± 0.2

16.5 ± 4.1 0.9 ± 0.9 0.1 ± 0.3

49.5 ± 7.0 2.0 ± 1.4 0.3 ± 0.5

352.4 ± 18.8 15.4 ± 3.9 1.9 ± 1.4

358 17 3

Table 9.1: Data yield compared to background MC scaled to luminosity of data. Errors shown are

statistical only.
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9.2.1 Data and Background Comparison

Table 9.1 shows the number of data events remaining after selection of dielectron candidates

compared to the total background prediction with all individual background components

also shown. The simulated MC samples also undergo a scaling factor to scale within the

Z boson peak. This scale factor works the same as in the 8 TeV analysis only within the

slightly more limited range 70 ≤ mee ≤ 110 GeV. As can be seen the background prediction

matches very closely to data within the statistical errors shown.
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Figure 9.1: pT distribution of the leading (left) and subleading (right) electrons showing data, MC

background and example CI signal samples compared to data.

Leading electron eta

-3 -2 -1 0 1 2 3

E
ve

nt
s

20

40

60

80

100

120

310´
Data 2011

ee®DY

DiBoson

tt

QCD and W+jets

 work in progressATLAS

-1
 L dt = 4.9 fb∫       

 = 7 TeVs          

Subleading electron eta

-3 -2 -1 0 1 2 3

E
ve

nt
s

20

40

60

80

100

120

310´
Data 2011

ee®DY

DiBoson

tt

QCD and W+jets

 work in progressATLAS

-1
 L dt = 4.9 fb∫       

 = 7 TeVs          

Figure 9.2: η distribution of the leading (left) and subleading (right) electrons showing data, MC

background compared to data.

Control plots were produced to display that the distributions were behaving as predicted

such as the pT (Fig. 9.1) and the η (Fig. 9.2) distributions.
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mee [GeV] 110-200 200-400 400-800 800-1200 1200-3000

Λ− = 3 TeV 18790.8 ± 137.1 5022.4 ± 70.9 2766.3 ± 52.6 1089.2 ± 33.0 673.3 ± 25.9

Λ− = 4 TeV 18212.5 ± 135.0 3707.1 ± 60.9 1102.5 ± 33.2 356.9 ± 18.9 214.3 ± 14.6

Λ− = 5 TeV 17821.5 ± 133.5 3310.5 ± 57.5 653.1 ± 25.6 160.6 ± 12.7 97.7 ± 9.9

Λ− = 7 TeV 17711.1 ± 133.1 3018.8 ± 54.9 385.0 ± 19.6 56.1 ± 7.5 26.5 ± 5.1

Λ− = 12 TeV 17693.4 ± 133.0 2992.7 ± 54.7 296.5 ± 17.2 20.4 ± 4.5 5.6 ± 2.4

Λ+ = 3 TeV 18106.6 ± 134.6 4063.8 ± 63.7 2103.3 ± 45.9 918.1 ± 30.3 621.4 ± 24.9

Λ+ = 4 TeV 17958.1 ± 134.0 3178.6 ± 56.4 765.6 ± 27.7 288.0 ± 17.0 194.9 ± 14.0

Λ+ = 5 TeV 18026.6 ± 134.3 2895.6 ± 53.8 432.1 ± 20.8 111.4 ± 10.6 78.8 ± 8.9

Λ+ = 7 TeV 17926.4 ± 133.9 2857.5 ± 53.5 278.2 ± 16.7 34.3 ± 5.9 19.1 ± 4.4

Table 9.2: CI signal yields for 4.9 f b−1.

mee [GeV] ≥ 1300

MS = 1500 GeV (GRW) 94.8 ± 9.7

MS = 2000 GeV (GRW) 42.7 ± 6.5

MS = 2500 GeV (GRW) 11.3 ± 3.4

MS = 3000 GeV (GRW) 3.2 ± 1.8

Table 9.3: ADD analysis region yields for 4.9 f b−1.

9.2.2 New Physics Signal Expectation

Tables 9.2 and 9.3 show the yield from the CI and ADD MC signals used after scaling to

data luminosity. The ADD yield is only shown in a single bin above 1300 GeV as the ADD

statistical analysis uses only a one bin approach to set a limit of a general increase over SM

background. Table 9.4 shows the same one bin approach to the data MC comparison table.

mee [GeV] ≥ 1300

DY 1.1 ± 1.1

tt̄ 0.0 ± 0.1

Dibosons 0.1 ± 0.3

QCD + W+jets 0.2 ± 0.4

Total 1.4 ± 1.2

Data 2.0

Table 9.4: Data and MC yields for ADD analysis region.

Figures 9.3 (9.5) show the dielectron invariant mass distribution comparing data to
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Figure 9.3: Dielectron invariant mass distribution for data and Monte Carlo simulation. Lines show

expected distributions for the pressence of Contact Interactions.
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Figure 9.4: Dielectron intergrated invariant mass distribution for data and total background Monte

Carlo simulation. Lines show expected distributions for the presence of Contact Interactions.
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Figure 9.5: Dielectron invariant mass distribution for data and Monte Carlo simulation. Lines show

expected distributions for the pressence of ADD.
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Figure 9.6: Dielectron intergrated invariant mass distribution for data and total background Monte

Carlo simulation. Lines show expected distributions for the presence of ADD.
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background MC while showing the effect CI (ADD) would have on this spectrum. Figures

9.4 (9.6) then show the same spectrum but with an integrated invariant mass distribution in-

stead which indicates better general increases in the dielectron spectrum. These integrated

invariant mass distributions show that although no excess is seen a slight difference exist

between data and background prediction. This difference leads to a decease in the observed

limits compared to the expected limits as seen in section 9.3.

9.3 Statistical Analysis

No evidence of new physics was seen in this analysis and the same procedure was carried

out here as discussed in chapter 8 to obtain limits on the minimum scale of new physics.

This search differers as only dielectron invariant mass is used as a search variable and

search bins are found at a lower invariant mass due to the lower energy and statistics of

this analysis. The CI search is carried out in 5 search bins with bin edges of 110, 200,

400, 800, 1200, 3000 GeV while the ADD search was carried out in a single bin above

1300 GeV which is optimised by selecting the bin providing the highest expected limit.

As in the 8 TeV analysis the expected number of events from signal was parametrised as a

function of 1/Λ2 and 1/Λ4 for CI and 1/M4
s and 1/M8

s for ADD. Table 9.5 shows the list of

systematics considered at nuisance variables for this statistical analysis. The PDFs/αs and

Weak k-factor systematics are analogous to the PDF variation systematic from the 8 TeV

analysis while all others mentioned are the same.

Source Signal Background

Normalization 5.0% (5.0%) NA

PDFs/αs NA 7.0% (20.0%)

Weak k-factor NA 2.3% (4.5%)

Efficiency 1.0% (2.0%) 1.0% (2.0%)

Scale/Resolution 1.2% (2.4%) 1.2% (2.4%)

QCD/W+jets background NA 12.0% (26.0%)

Total 5.0% (6.0%) 14.0% (33.0%)

Table 9.5: All sources of systematic error and their approximate size for dielectron mass of 1 TeV

(2 TeV).

As no evidence of new physics was found then a Bayesian statistical analysis was used

to set a limit on Λ and Ms. These limits can be seen in table 9.6. Expected limits were
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obtained by running 1000 PE’s and the mean limit taken with respect to Λ and Ms for CI

and ADD. Combined limits were also calculated with the dimuon search channel giving

the highest limits on the scale of new physics for both CI and ADD at the time the paper

was released. The Limits obtained in the 7 TeV analysis constituted the highest limits on

either model when obtained the 8 TeV results then replace them within more formalisms.

Improvements can also be seen in the upgrades to the analysis procedure between the two

making the 8 TeV analysis a more mature analysis.

Channel ee ee+µµ

Expected CI constructive 13.73 TeV 15.10 TeV

Expected CI destructive 10.41 TeV 11.42 TeV

Observed CI constructive 11.60 TeV 12.70 TeV

Observed CI destructive 8.76 TeV 9.63 TeV

Expected ADD 2.84 TeV 2.94 TeV

Observed ADD 2.71 TeV 2.94 TeV

Table 9.6: 95% confidence level limits found in the CI and ADD analyses.



Chapter 10

Conclusion

To conclude this analysis sees no evidence of new non-resonant physics at high mass in

the dielectron decay channel and along with the dimuon decay channel sees no evidence in

the dilepton decay channel either. Limits are set using a Bayesian statistical approach on

the scale of new physics in the dilepton decay channel for two models of non-resonant new

physics, CI and ADD. The limits set the highest limits found for qqℓℓ contact interactions

with limits set on three formalisms of LL, LR and RR Contact Interactions. While the ADD

limits mark a large increase in the previous dilepton searches at the LHC.

Comparing to the previous CI ATLAS analysis [1], detailed in chapter 9, where limits

of Λ > 12.7 TeV and Λ > 9.63 TeV for the dilepton LL CI model for constructive and

destructive interference were set, limits established using the 8 TeV data of Λ > 21.55 TeV

and Λ > 19.61 TeV for the dilepton LL CI model for constructive and destructive interfer-

ence mark a significant increase. Higher limits were also set for new LR formalism where

limits of Λ > 26.25 TeV and Λ > 23.77 TeV for constructive and destructive interference

were obtained which was made possible by the additional information coming from the

new angular analysis used. As expected similar limits were set for the RR formalism as

for the LL formalism due to the symmetry of these interactions. Observed limits within

the electron channel were found to vary up slightly from the expected value due to a slight

deficit of observed events in the 1200-1800 GeV search bin for forward and backwards.

This deficit was found to not be significant and figure 8.3 shows the observed limits to be

in agreement with the distribution of expected limits from pseudo experiments.

CMS have not yet released limits on contact interactions for the 8 TeV data set to com-
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pare to.

ADD limits also saw a significant increase from the previous analysis [1] with combined

dilepton limits for the GRW formalism at Ms > 4.79 TeV compared to the previous limits

of Ms > 2.94 TeV set on 2011 data. Limits were also converted in to many different

formalisms seen in table 8.9.

For completeness all limits are also calculated for two separate priors in Bayesian sta-

tistical analysis motivated by the form of the differential cross-section of new physics for

both CI and ADD.

10.1 Looking Forward

Beyond this analysis, ATLAS looks towards RunII due to start in 2015. With no new

physics discovered beyond the Standard Model so far, the next few years will be important

for searches such as this. An increase in centre of mass energy to 13 and eventually 14

TeV would give an increase in the reach of limits but after just over a year of running at

the proposed centre of mass energy a final limit for the LHC will be reached. The final

limit is because centre of mass energy is far more important in the sensitivity of the non

resonant search than statistics obtained from a higher integrated luminosity. If new physics

such as proposed here is not found within a few years of running then it will be ruled out

in this form from the reach of the LHC. Non-resonant physics as well a resonant decays,

particularly in the clean dilepton channel, will be some of the first physics to be seen at a

new collision energy if it exists. If it is not found this does not mean there are not other

beyond the SM process that could exist in nature but would have to be less obvious or at a

higher energy scale. The SM has been shown to make very accurate predictions for a host

of phenomena yet we know it is not a complete theory. If it holds up within the energy

range of the LHC is yet to be seen.
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Appendix A

Extra Results & Control Plots

This appendix contains additional plots of the data background comparison. Figure A.1

shows the same AFB distribution as in the main text but with a different example signal

overlaid. Figures A.2 and A.3 show the pT and η distributions for the highest and second

highest pT electrons with comparison between background and data. While figures A.4,

A.5, A.6, A.7 and A.8 show the comparison within the cosθ∗ variable for each of the

search bins.
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Figure A.1: AFB comparison between data and MC with alternate signal overlay of CI. Ratio shows

the difference between data and background prediction divided by total background systematic.
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Figure A.2: Distribution of pT of the selected highest (left) and second highest (right) pT electrons

comparing data to background prediction.
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Figure A.3: Distribution of η of the selected highest (left) and second highest (right) pT electrons

comparing data to background prediction.
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Figure A.4: Plot of cosθ∗ comparing background to data in the invariant mass search bin 400-550

GeV with signal overlay.
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Figure A.5: Plot of cosθ∗ comparing background to data in the invariant mass search bin 550-800

GeV with signal overlay.
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Figure A.6: Plot of cosθ∗ comparing background to data in the invariant mass search bin 800-1200

GeV with signal overlay.
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Figure A.7: Plot of cosθ∗ comparing background to data in the invariant mass search bin 1200-1800

GeV with signal overlay.
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Figure A.8: Plot of cosθ∗ comparing background to data in the invariant mass search bins 1800-3000

GeV and 3000-4500 GeV with signal overlay.



Appendix B

Signal Parametrisations

The appendix contains the parametrisations of signal within each search bin and for each

formalism of CI. Parametrisations of each systematic are also included in each plot. Figures

B.1, B.2, B.3 and B.4 parametrise the LL signal formalism while figures B.5, B.6, B.7 and

B.8 do the same for the RR formalism and figures B.9, B.10, B.11 and B.12 for the LR

formalism.
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Figure B.1: Signal paramaterisations for the LL formalism with constructive interferences for low

mass bins
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Figure B.2: Signal paramaterisations for the LL formalism with constructive interferences for high

mass bins
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Figure B.3: Signal paramaterisations for the LL formalism with destructive interferences for low

mass bins
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Figure B.4: Signal paramaterisations for the LL formalism with destructive interferences for high

mass bins
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Figure B.5: Signal paramaterisations for the RR formalism with constructive interferences for low

mass bins
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Figure B.6: Signal paramaterisations for the RR formalism with constructive interferences for high

mass bins
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Figure B.7: Signal paramaterisations for the RR formalism with destructive interferences for low

mass bins
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Figure B.8: Signal paramaterisations for the RR formalism with destructive interferences for high

mass bins
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Figure B.9: Signal paramaterisations for the LR formalism with constructive interferences for low

mass bins
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Figure B.10: Signal paramaterisations for the LR formalism with constructive interferences for high

mass bins
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Figure B.11: Signal paramaterisations for the LR formalism with destructive interferences for low

mass bins
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Figure B.12: Signal paramaterisations for the LR formalism with destructive interferences for high

mass bins



Appendix C

Statistical Analysis Plots

This appendix contains a closer look at the statistical analysis plots. Figures C.1 and C.2

show the LLR distributions for the constructive and destructive signals respectively with

the prior 1/Λ2 and in figures C.3 and C.4 for the prior 1/Λ4. Figures C.5 and C.6 show

the peudo-experiments distributions with expected and observed limits for constructive and

destructive interference respectively with a 1/Λ2 prior and in figures C.7 and C.8 for the

prior 1/Λ4.
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Figure C.1: Distribution of negative Log Likelihood Ratio’s for the CI formalisms LL (top left), RR

(top right) and LR (bottom) with constructive interference given a uniform positive prior in 1/Λ2.
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Figure C.2: Distribution of negative Log Likelihood Ratio’s for the CI formalisms LL (top left), RR

(top right) and LR (bottom) with destructive interference given a uniform positive prior in 1/Λ2.
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Figure C.3: Distribution of negative Log Likelihood Ratio’s for the CI formalisms LL (top left), RR

(top right) and LR (bottom) with constructive interference given a uniform positive prior in 1/Λ4.
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Figure C.4: Distribution of negative Log Likelihood Ratio’s for the CI formalisms LL (top left), RR

(top right) and LR (bottom) with destructive interference given a uniform positive prior in 1/Λ4.
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Figure C.5: Distribution of PE’s with associated limits for CI formalisms LL (top), RR (middle) and

LR (bottom) with constructive interference given a uniform positive prior in 1/Λ2. The mean value

is shown as the expected limit for comparison to the observed limit shown. Θ = 1/Λ2
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Figure C.6: Distribution of PE’s with associated limits for CI formalisms LL (top), RR (middle) and

LR (bottom) with destructive interference given a uniform positive prior in 1/Λ2. The mean value

is shown as the expected limit for comparison to the observed limit shown. Θ = 1/Λ2
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Figure C.7: Distribution of PE’s with associated limits for CI formalisms LL (top), RR (middle) and

LR (bottom) with constructive interference given a uniform positive prior in 1/Λ4. The mean value

is shown as the expected limit for comparison to the observed limit shown. Θ = 1/Λ4



APPENDIX C. STATISTICAL ANALYSIS PLOTS 133

Θ
0 0.05 0.1 0.15 0.2 0.25 0.3

-310´

P
E

s

1

10

Pseudo experiments

Expected limit

Observed limit

 InternalATLAS

 ee Search®CI 

-1 L dt = 20.3 fb∫ee: 

 = 8 TeVs

Θ
0 0.05 0.1 0.15 0.2 0.25 0.3

-310´

P
E

s

1

10

Pseudo experiments

Expected limit

Observed limit

 InternalATLAS

 ee Search®CI 

-1 L dt = 20.3 fb∫ee: 

 = 8 TeVs

Θ
0 0.05 0.1 0.15 0.2 0.25 0.3

-310´

P
E

s

1

10

210 Pseudo experiments

Expected limit

Observed limit

 InternalATLAS

 ee Search®CI 

-1 L dt = 20.3 fb∫ee: 

 = 8 TeVs

Figure C.8: Distribution of PE’s with associated limits for CI formalisms LL (top), RR (middle) and

LR (bottom) with destructive interference given a uniform positive prior in 1/Λ4. The mean value

is shown as the expected limit for comparison to the observed limit shown. Θ = 1/Λ4
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