Advanced Simulations of Optical Transition and Diffraction Radiation
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Charged particle beam diagnostics is a key task in modern and future accelerator installations.

The diagnostic tools are practically the “eyes” of the operators.

The precision and resolution

of the diagnostic equipment are crucial to define the performance of the accelerator. Transition
and Diffraction Radiation (TR and DR) are widely used for electron beam parameter monitoring.
However, the precision and resolution of those devices are determined by how well the production,
transport and detection of these radiation types are understood. This paper reports on simulations
of TR and DR spatial-spectral characteristics using the Physical Optics Propagation (POP) mode
of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated.
Also, realistic optical system alignment issues are discussed.

I. INTRODUCTION

Beam dynamic considerations demand very tight tol-
erances on most beam parameters and these in turn dic-
tate most of the requirements for beam instrumenta-
tion. In future linear colliders, particle beams with ex-
tremely small emittances will be generated in the damp-
ing rings [1] and these must be conserved over several
tens of km of beam lines [2]. This requires a precise con-
trol of the beam size and emittance over a long distance.
In most cases, the measurement of the beam size serves
directly to compute the transverse beam emittance. For
next generation linear colliders such as the Compact Lin-
ear Collider (CLIC [3]) or the International Linear Col-
lider (ILC [2]) and also X-Ray FELs [4], transverse beam
size measurements must have a resolution on a micron-
scale. A wire scanner does not only have a slightly dis-
turbing effect on the beam, it can also be destroyed by
high intensity beams [5]. A laser-wire scanner is the
main candidate for non-invasive high resolution measure-
ments [6], but over such long distances many laser-wire
monitors would be required which is both costly and dif-
ficult to maintain.

Optical Transition Radiation (OTR) appearing when
a charged particle crosses a boundary between two media
with different dielectric properties has widely been used
as a tool for transverse profile measurements of charged
particle beams in various facilities worldwide [7, 8]. The
angular distribution is used for beam angular divergence
measurements [9]. OTR monitors are simple, robust,
and give a direct image of a two-dimensional beam pro-
file. The resolution of the OTR monitors is normally de-
fined as a root-mean-square of the so-called OTR point
spread function (PSF) [10]. Recently in [11], the au-
thors have demonstrated that the OTR PSF has a struc-
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ture which can be used to extract information about the
beam size with sub-micrometre resolution [12]. However,
OTR based monitors are invasive. They can degrade the
beam properties or the beam can destroy the OTR, tar-
get. Nevertheless, it still can be used to diagnose low
intensity “pilot” beams in linear colliders.

Diffraction Radiation (DR) is produced when a rel-
ativistic charged particle moves in the vicinity of a
medium [13]. The spatial-spectral properties of DR are
sensitive to a range of electron beam parameters [14-17].
Furthermore, the energy loss due to DR is so small that
the electron beam parameters are unchanged. Therefore
DR can be used to develop non-invasive diagnostic tools.

In order to study and optimize any optical system, it
is essential that real dimensions and optical elements in-
cluding aberrations are taken into account. The Zemax
Optical Design Program is a readily available commer-
cial software package which integrates all the features
required to conceptualize, design, optimize, analyze and
tolerance virtually any optical system [18]. Zemax uses
diffraction calculations to propagate a wavefront through
an optical system surface by surface. The wave-like na-
ture of light is fully accounted for.

Another dedicated software tool dealing with the
transport of radiation from electron beams through op-
tical systems and a publication using such software can
be found in [19] and [20].

A comparison of the simulation results with state of
the art theoretical models was performed and an excel-
lent agreement was achieved when applying the relevant
approximations. Furthermore, TR and DR for target and
observation properties which go beyond the scope of the
existing theory are presented in order to demonstrate the
power and flexibility of the developed tool.



II. ZEMAX

Zemax supports two modes, geometrical ray tracing
and Physical Optics Propagation (POP). Strictly speak-
ing, geometrical ray tracing can only be used when the
diffraction effect is negligible. In POP mode, diffraction
laws are used to propagate an electric field through an op-
tical system interface by interface, therefore taking into
account the full wave-like nature of light.

The wave is modelled using a 2D array of discretely
sampled points, analogous to the discrete sampling us-
ing rays for geometric optics analysis. Each point in the
array stores complex amplitude information about the
electric field. The entire array is then propagated in free
space between optical interfaces. At each optical inter-
face, a transfer function is computed which propagates
the beam from one side of the optical surface to the other,
using either Fresnel diffraction propagation or an angular
spectrum propagation algorithm [21, 22], depending on
the highest numerical accuracy. The diffraction propaga-
tion algorithms can be used for any propagation distance,
for any arbitrary source and can account for any surface
aperture, including User Defined Apertures (UDAs).

Zemax propagates any spatial complex electric field E
defined by a 2D matrix. By keeping track of the electric
field components along both the z and y axes, polar-
ization effects can be studied, such as transmission and
reflection losses, polarization aberrations and the polar-
ization state of the beam.

Several types of electric fields are already predefined as
sources in POP, but any source of light can be provided
by the user. The user has to define, among others, the
spatial distribution of the complex electric field of the
source either in a Beam File or in a DLL [23].

The number of array points describing a beam remains
constant as it propagates, but the array size and point
spacings will change. A large array width at the beam
waist compared to its waist size results in only a few
points across the beam waist and thus a smaller array
size far from the waist with more points across beam size.
On the other hand, with a smaller array at the waist the
array will grow large compared to the beam far from the
waist resulting in only a few sample points across beam.
Therefore, there is a trade-off between good sampling of
the beam near the waist and good sampling far from the
waist [24].

III. TRANSITION RADIATION

A. Model

Transition Radiation (TR) appears when a charged
particle crosses a boundary between two media with dif-
ferent dielectric properties. The theory used in this paper
is based on Huygens principle of wave diffraction [25], i.e.
when the incident particle field is introduced as a super-
position of so-called pseudo-photons which reflect off the

interface and propagate through an optical system.

For the purpose of this paper only the vertical polar-
ization component of TR is considered. This is a viable
approach given the rotational symmetry of the simplest
TR case and the asymmetric cases being studied intro-
ducing such asymmetries only in the vertical plane. The
approximation of y polarization component of the OTR
electric field induced by a single electron on a target sur-
face, is used as the source in the simulations. This is
based on the solution of Maxwell equations for a field of
a charged particle moving in free space. Its real and imag-
inary parts, R {E,} and S{E,}, are represented as [26]
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k= 2{ and p = \/22 + y2. Here z and y are two orthog-
onal coordinates of the target measured from the point of
electron incidence, ~y is the charged particle Lorentz fac-
tor, A is the radiation wavelength, 6y is the angle between
the particle trajectory normal and the target plane, K
and K are the zeroth and first order modified Bessel
function. For TR, the entire field is propagated towards
the observation plane.

This field used as the initial input for the simulation is
essentially the field at the target surface projected onto
the z—y plane. This approximation is valid for distances
much larger than %7 which in all simulations presented
in this paper is of the order of 107 m or less. The
geometry is illustrated in Fig. 1 for further clarification.
The z-axis is always in the plane of the target. The z-
axis is along the mirror reflection direction. The incident
electron trajectory is in the y—z plane
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FIG. 1. Geometry of the source field generation.



The irradiance at the image plane, I, can be calculated
using

I'= %{Ey}Q +3 {Ey}2 (3)

Following the approach for calculating TR from a par-
ticle passing through a boundary between vacuum and
an ideal conductor [7] and applying an ultra-relativistic
approximation (Hxﬁy,'y*l < 1), the following equation
is obtained for the vertically polarized component of the
spectral-angular distribution of intensity [27]:
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Here 0, and 6, are the radiation observation angles mea-

sured either from the mirror reflection direction or from

the particle trajectory and « is the fine structure con-
1

stant. It can be seen that for 0, = 5 and 0, = 0y = 0,

the intensity is maximum with a value of 2‘7";. All simula-
tions presented in this paper are normalized with respect
to this TR maximum intensity.

B. Propagation in free space

In order to demonstrate the validity of the simulation
method, this sections deals with far-field simulations and
compares the results with well-known analytical theory.
The simulation parameters for each figure were chosen to
highlight certain characteristics of TR and are stated in
the caption accordingly. To assume far-field observation
geometry, the propagation distance in free space between
the target and observation planes must satisfy the condi-
tion L > 72%)‘, i.e. L must be much larger than so-called
radiation formation length [10]. This is the far-field re-
quirement for TR.

Fig. 2 shows the effect on the angular distribution when
moving the detector plane from the pre-wave zone into
the far-field. The size of the source was 7,4 = 10%
to fulfil an infinite target approximation, i.e. ten times
the radius of the electric field. This figure is in excellent
agreement with analytical calculations presented in [28].

In Fig. 3, the TR angular distribution in the far-field is
shown when using a screen tilted at an angle of 6y = 45°
and for various target dimensions. For the first time,
it combines effects of the target tilt and finite outer di-
mensions which is a very complicated task to be realized
analytically and thus shows the power of the simulation
tool. This plot was done for a small Lorentz factor of
v = 10 to highlight the asymmetry of the pattern for
lower beam energies.

It can be seen that for lower beam energies and large
target dimensions there is a strong asymmetry in the TR
angular distribution. For smaller dimensions of the tar-
get however, the asymmetry reduces and the intensity
decreases as well.

—_

o
o0

©
o

<
=~

o
o

Normalized irradiance

FIG. 2. Comparison between theoretical (dashed) and sim-
ulated (solid) TR angular distribution for various distances
between source and image plane L (A = 550 nm, v = 2500,
0. = 0).
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FIG. 3. TR angular distribution in the far-field using a tilted
screen and for various target disc radii b (A = 550 nm, v = 10,
0, =0, 0o = 45°).

C. PSF analysis for a real optical system

To study the PSF, the simulated detector plane has to
be in the image plane of a lens (Fig. 4).

...............................

FIG. 4. Setup for studying the PSF.

The power of the ZEMAX tool is that any optical sys-
tem can be built and nominally adjusted to a real one by
using exact commercial products. In the case of the OTR
monitor at the Accelerator Test Facility (ATF2) [14], the
lens is an achromatic Sigma Koki DLB-30-120PM with
a focal length of f = 120.1 mm, set up with a magni-



fication of M = —7.4. The PSF is highly sensitive to
misalignment, which is presented in Fig. ba. The asym-
metry of the TR PSF can be expressed by taking the
peak irradiance of the left and right main lobes, I;, and
Ir, and compute (I, — Ig) / (It + Ir). In Fig. 5b, it can
be seen that the asymmetry is growing when increasing
the horizontal lens offset (transverse to the optical axis).
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FIG. 5. TR PSF (a) and asymmetry (b) for various horizontal
lens offsets AX (A =550 nm, v = 2500, 0, = 0, M = —7.4).

Displacing the lens longitudinally from the image plane
causes the TR PSF to broaden, as can be observed in
Fig. 6a. Plotting the the distance between the two main
lobes of the TR PSF for different offsets shows that mini-
mum peak separation is achieved at the image plane (see
Fig. 6b).

In Fig. 7a and 7b, the effects of diffraction with a too
small lens are demonstrated. Using a biconvex lens with
a focal length of f = 100, set up with a magnification of
M = —10, the distance between the two main lobes of the
TR PSF is measured while changing the lens diameter.
It can be seen that diffraction is reduced when increasing
the size of the lens, thus decreasing the peak separation
until the introduction of aberrations increases the peak
distance again. The peak separation remains constant as
soon as the entire OTR light is captured by the lens.

IV. DIFFRACTION RADIATION

Diffraction radiation (DR) is produced when a rela-
tivistic charged particle passes through an aperture or
near a discontinuity in the media in which it is traveling.
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FIG. 6. TR PSF (a) and distance between the two main lobes
(b) for various longitudinal lens offsets AZ (A = 550 nm,
v =2500, 0, =0, M = —7.4).
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FIG. 7. TR PSF (a) and distance between the two main lobes
(b) for various lens radii R (A = 550 nm, v = 2500, 6, = 0,
M = —10).

A. Diffraction radiation from a circular aperture in
an opaque screen

The first models appeared over 60 years ago [29]. The
model used for comparison in this section is presented
in [13]. For a charged particle moving normally through
the centre of a circular hole in an infinitely thin, perfectly
conducting disc, the following analytical expression for



the electric field in the far-field can be derived
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Fig. 8 shows DR angular distributions in the far-field
for target discs of various radii and a hole radius of a =
1 nm, i.e. assuming an infinitely small hole.
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FIG. 8. Comparison between theoretical (dashed) and simu-
lated (solid) DR angular distribution in the far-field for var-
ious target disc radii b (A = 400 nm, v = 4110, 6, = 0,
a =1 nm).

In Fig. 9, the disc radius is kept constant as b =
10% and the hole radius is varied. For both cases, a
good agreement between theory and simulation has been
achieved [13, 29].

In Fig. 10, the angular distribution in the far-field for
DR coming from a circular hole with a radius of a = %
for various tilt angles is shown. Here, a Lorentz factor
of v = 10 was used to showcase the asymmetry of the
pattern for low energies. The plot highlights the increas-
ing asymmetry of the angular distribution for large tilt
angles. The increase in overall intensity simply results
from the decrease in effective hole diameter in the pro-
jection onto the source plane, which is perpendicular to
the propagation of the electron beam.

In [7], the flight of an electron through a circular hole
is calculated for finite offsets from the centre of the hole.
However, the applied limitations over-approximate the
analytical expression, as it is only valid for very small
holes (a < %) and even smaller offsets (r < a). There-
fore, simulations have to be used to study this case.

Normalized irradiance

FIG. 9. Comparison between theoretical (dashed) and simu-
lated (solid) DR angular distribution in the far-field for vari-
ous hole radii a (A = 400 nm, v = 4110, 6, = 0, b = 102>).
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FIG. 10. DR angular distribution in the far-field for various
tilt angles o (A = 400 nm, v = 10,0, = 0,a = 22, b= 1022).

In Fig. 11, the irradiance at the source for a single elec-
tron passing through a circular hole can be seen. This
setup shows an offset of the particle with respect to the
hole centre. The field at the source is then propagated
using Zemax. Fig. 12 shows a 2D contour plot of angu-
lar distribution versus particle position with respect to
the centre of the hole r with a radius of a = 2% in the
far-field. Each horizontal line represents the cross-section
of the angular distribution for a beam of a certain offset.
Starting with a beam offset of r = 74£, the distribution
is almost pure TR. The closer the beam moves up to the
centre of the hole, the more DR-like the distribution be-
comes. It can be seen that in the far-field, the transition
from TR to DR shows the expected symmetry.

In the pre-wave zone, i.e. for a distance of 5”22—73 be-
tween the source and the observation plane, an asymme-
try can be found (see Fig. 13). This originates from the
interference of the radiation from different parts of the
target.
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FIG. 11. Vertically polarized irradiance at the source for sin-
gle electron passing through circular hole with a beam offset
of r =22 (A =400 nm, v = 4110, a = 222).
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FIG. 12. DR angular distribution in the far-field for various
2
beam offsets r (A = 400 nm, v = 4110, a = 2%, L= 100%).

B. Diffraction radiation from a slit aperture in an
opaque screen

This model considers the case, when a charged par-
ticle moves through a slit between two semi-planes i.e.
only DR produced from the target is considered. In the
case of a horizontal slit, the vertical polarization compo-
nent is sensitive to beam size [14]. Eq. 8 gives the ex-
pression for the vertical polarization component of opti-
cal diffraction radiation (ODR) convoluted with a Gaus-
sian distribution [14], where t;, = 70,,, A is the ob-
servation wavelength, o, is the rms vertical beam size,
a is the effective target aperture size (the real one is
a = a/cosfy, where 6y is the angle between the par-
ticle trajectory normal and the target), @, is the offset

-10°

4

o~

w

r [yA/27]

[\
Irradiance [arb. units]

—_

—4

FIG. 13. DR angular distribution in the pre-wave zone for
various beam offsets r (A = 400 nm, v = 4110, a = 2%,

2
L=5%2).

of the beam centre with respect to the centre of the slit

and ¢ = arctan (ty /V1+ tﬁ). This model is applicable
when the transition radiation contribution from the tails
of the Gaussian distribution is negligible, which means
approximately a > 40,.
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This expression is valid for ultra-relativistic particles and
small target tilt angles. For a slit width a = 0 follows
considering the above approximation that a; = 0 and
oy = 0, that Eq. 8 results in the angular distribution for
OTR in Eq. 4.

To obtain the DR angular distribution in the pre-wave
zone, a focusing lens with the detector positioned in the
back focal plane is used to remove the spatial contribu-
tion (see Fig. 14).

Fig. 15 compares the distribution at the detector plane
for three different setups: far-field, pre-wave zone us-
ing an ideal paraxial lens with a focal length of f =
500 mm and pre-wave zone with a plano-convex Thor-
labs LA4782-UV lens (f = 500 mm, ©50.8 mm), as used
in the real optical setup at CesrTA [30]. The results of
all three setups are in excellent agreement.

All kinds of offsets, tilts and other misalignments of
real optical systems can be studied. To illustrate the
power of this method, Fig. 16 shows the DR angular dis-
tribution for various vertical lens tilts. It can be seen that
a very serious distortion of the ODR angular distribution
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FIG. 14. Setup for studying the angular distribution in the
pre-wave zone.

o I N f\ |— Far field
% 0.8 ,’\ I\ Ideal lens
'—g l |‘ ,' “ ------ Real lens
2 06| F

T R

S 04 ,' Pl

E /T

g A

S il

Z i/

FIG. 15. Comparison of the DR angular distribution in the
far-field, in the back focal plane of an ideal lens and in the back
focal plane of the plano-convex lens (A = 400 nm, v = 4110,
6, =0,a=2).
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occurs at large lens tilt angles. However, an angular lens
alignment with accuracy much better than 10° can easily
be achieved.
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FIG. 16. DR angular distribution in the back focal plane
of the plano-convex lens for various vertical lens tilts A6z
(A =400 nm, v = 4110, 0, =0, a = 22).

For completeness, Fig. 17 shows the DR angular dis-
tribution for various vertical lens offsets. In this case
though, barely any distortion in the distribution pattern
can be observed, even for large lens offsets.
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FIG. 17. DR angular distribution in the back focal plane
of the plano-convex lens for various vertical lens offsets AY
(A =400 nm, v = 4110, 6, =0, a = 212).
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C. Diffraction radiation for an arbitrarily shaped
aperture

Zemax can also be used to simulate the vertical polar-
ization component of the DR angular distribution using a
target with arbitrarily shaped aperture. As an example,
a collimator with a four-leafed aperture can be described
as

(2 + y2)3 = da’z%y?, (9)

where a is the size of the leaf. The source distribution
with a leaf size of a = 2% is shown in Fig. 18, the corre-
sponding angular distribution in the far-field can be seen
in Fig. 19. Both plots shown are total irradiance plots
displayed in a logarithmic scale.
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FIG. 18. Vertically polarized irradiance at the source for a
four-leafed aperture (A = 400 nm, v = 4110, a = 2%)
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V. CONCLUSIONS

In this paper, advanced Zemax simulations of OTR
and ODR were presented and compared with state-of-
the-art theoretical models. Misalignment studies were
carried out to study the limitations of real optical sys-
tems. Furthermore, arbitrary ODR targets were simu-
lated to highlight the power of this method.

With assumptions similar to theoretical boundary con-
ditions, Zemax simulations of TR and DR agree with the
analytical expressions. The simulations even include a
tilt angle in the incident electric fields to enable sim-
ulating a tilted target. Introducing an off-axis incident
field or even an arbitrarily shaped aperture does not slow
down the Zemax simulations noticeably and is therefore
the preferable method. These simulations also enable
applying a finite beam size. This can be achieved by
displacing the single particle with respect to the optical
axis across the transversal profile. The resulting angular
pattern for each step can then be weighted and summed
up.

Overall, this tool represents the most comprehensive
approach to the design of a real diagnostics based on ei-
ther OTR or ODR including all misalignment errors and
optimization of a real optical system (including view-
ports, polarizers, filters, etc.). Field depth studies can
then be done as well as investigations on the behaviour
of the TR PSF in real optical setups.
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