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In many prediction problems, it is not uncommon that the number of variables used to construct
a forecast is of the same order of magnitude as the sample size, if not larger. We then face the
problem of constructing a prediction in the presence of potentially large estimation error. Control
of the estimation error is either achieved by selecting variables or combining all the variables in
some special way. This paper considers greedy algorithms to solve this problem. It is shown that
the resulting estimators are consistent under weak conditions. In particular, the derived rates
of convergence are either minimax or improve on the ones given in the literature allowing for
dependence and unbounded regressors. Some versions of the algorithms provide fast solution to
problems such as Lasso.

Keywords: Boosting; forecast; Frank–Wolfe Algorithm; Hilbert space projection; Lasso;
regression function

1. Introduction

The goal of this paper is to address the problem of forecasting in the presence of many
explanatory variables or individual forecasts. Throughout the paper, the explanatory
variables will be referred to as regressors even when they are individual forecasts that
we wish to combine or basis functions, or in general elements in some dictionary.
The framework is the one where the number of regressors is often large relatively to

the sample size. This is quite common in many fields, for example, in macroeconomic
predictions (e.g., Stock and Watson [64–66]). Moreover, when there is evidence of struc-
tural breaks, it is not always possible to use the full sample without making further
assumptions. Indeed, it is often suggested to forecast using different sample sizes in an
effort to mitigate the problem (e.g., Pesaran et al. [56], Pesaran and Picks [57]). When
doing so, we still need to make sure that the forecasts built using smaller sample sizes
are not too noisy.
For these reasons, it is critical to consider procedures that allow us to select and/or

combine variables in an optimal way when the data are dependent. It is clear that in
large-dimensional problems, variable selection via information criteria is not feasible, as
it would require the estimation of a huge number of models. For example, if we are
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2 A. Sancetta

considering 100 regressors, naive model selection of a model with only 10 variables (i.e.,
an order of magnitude lower) would require estimation and comparison of

(

100
10

)

models,
which is in the order of billions.
This paper considers greedy algorithms to do automatic variable selection. There are

many references related to the algorithms considered here (e.g., Bühlmann [15], Barron
et al. [6], Huang, Cheang and Barron [40], Bühlmann and van de Geer [17]). These
existing results are not applicable to standard prediction problems, as they assume i.i.d.
random variable with bounded regressors and in some case bounded error terms.
Greedy algorithms have been applied to time series problems both in a linear and

non-linear context (e.g., Audrino and Bühlmann [3, 4], Audrino and Barone-Adesi [2],
amongst others). However, to the author’s knowledge, in the linear case, only Lutz and
Bühlmann [49] derive consistency under strong mixing. There, no rates of convergence
are given. (See Audrino and Bühlmann [4], for the non-linear case, again where no rates
are given.) The above references only consider Boosting. It is known that other greedy
algorithms possess better convergence rates (e.g., Barron et al. [6]). Here, only linear
predictions are considered. Of course, when the regressors are a basis for some function
space, the results directly apply to series estimators, hence, non-linear prediction (e.g.,
Mallat and Zhang [50], Daubechies, Defrise and De Mol [27], Barron et al. [6], Bühlmann
and van de Geer [17], Sancetta [63], for more details along these lines).
To be precise, this paper shall consider greedy algorithms and provide rates of conver-

gence which are best possible for the given set up or considerably improve on the existing
ones, even under dependence conditions. The first algorithm is the L2-Boosting studied
by Bühlmann [15], also known as Projection Pursuit in signal processing (e.g., Mallat
and Zhang [50]) and Pure Greedy Algorithm in approximation theory (e.g., DeVore and
Temlyakov [29]). As mentioned above, it is routinely used in many applications, even in
time series problems. The second algorithm is known as Orthogonal Greedy Algorithm
(OGA) in approximation theory (e.g., DeVore and Temlyakov [29], Temlyakov [68]), and
has also been studied in the statistical literature (Barron et al. [6]). It is the one the most
resembles OLS estimation. The OGA is also reviewed in Bühlmann and van de Geer [17],
where it is called Orthogonal Matching Pursuit (see also Zhang [81], Cai and Wang [23],
for recent results). The third algorithm is a version of the Hilbert space projection algo-
rithm studied by Jones [43] and Barron [5] with the version studied in this paper taken
from Barron et al. [6], and called the Relaxed Greedy Algorithm (RGA). Adding a nat-
ural restriction to the RGA, the algorithm leads to the solution of the Lasso problem,
which appears to be relatively new (see Sancetta [63]). This constrained version will be
called Constrained Greedy Algorithm (CGA). Finally, closely related to the CGA is the
Frank–Wolfe Algorithm (FWA) (see Frank and Wolfe [35], and Clarkson [26], Jaggi [42],
and Freund, Grigas and Mazumder [36], for recent results). This selection seems to span
the majority of known algorithms used in applied work.
The general problem of variable selection is often addressed relying on penalized esti-

mation with an l1 penalty. Greedy algorithms can be related to Lasso as they both lead
to automatic variable selection. Algorithms that use a penalty in the estimation will not
be discussed here. It is well known (Friedman et al. [37]) that the Lasso solution can
be recovered via Pathwise Coordinate Optimization (a stagewise recursive algorithm),
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using the results of Tseng [71] (see also Daubechies, Defrise and De Mol [27], for related
results). On the other hand, Huang, Cheang and Barron [40] have extended the RGA to
the case of a Lasso penalty. (For recent advances on asymptotics for Lasso, the reader
may consult Greenshtein and Ritov [39], Bunea, Tsybakov and Wegkamp [19], van de
Geer [76], Huang, Cheang and Barron [40], Zhang [79], Belloni and Chernozhukov [10],
Belloni et al. [9], amongst others.) Another related approach for variable selection under
sparsity and design matrix constraints is via linear programming (e.g., Candes and Tao
[24]).
One related question which is also considered here is the one of persistence as defined

by Greenshtein and Ritov [39] and explored by other authors (e.g., Greenshtein [38],
Bühlmann and van de Geer [17], Bartlett, Mendelson and Neeman [7]). This problems is
of interest in a prediction context and relates to the idea of pseudo true value. Loosely
speaking, one is interested in finding the largest class of linear models relative to which the
estimator is still optimal in some sense. Here, it is shown that for mixing data, persistence
holds for the class of linear models as large as the ones considered in Greenshtein and
Ritov [39] and Bartlett, Mendelson and Neeman [7].
The focus of the paper is on prediction and consistency of the forecasts. Asymptotic

normality of the estimators is not derived due to the weak conditions used (e.g., see
Bühlmann [16], Nickl and van de Geer [53], van de Geer et al. [75], Zhang and Zhang [80]
for results on statistical significance for high-dimensional, sparse models, under different
estimation procedures and assumptions).
The paper is structured as follows. The remainder of this section defines the estimation

set-up, the objectives and the conditions to be used. Two different sets of dependence
conditions are used: beta mixing, which gives the best convergence rates, and more
general conditions allowing for non-mixing data and possibly long memory data. Section 2
starts with a summary of existing results comparing them with some of the ones derived
here. The actual statement of all the results follows afterward. With the exception of the
PGA, it is shown that the algorithms can achieve the minimax rate under beta mixing.
However, for the PGA, the rates derived here considerably improve on the ones previously
obtained. The algorithms are only reviewed later on in Section 2.3. The reader unfamiliar
with these algorithms can browse through Section 2 right after Section 1 if needed. A
discussion of the conditions and examples and applications of the results are given in
Section 2.4. In particular, Section 2.4.3 gives examples of applications to long memory
achieving convergence rates as good or better than the ones derived by other authors
under i.i.d. observations, though requiring the population Gram matrix of the regressors
to have full rank. In Section 3, details on implementation are given. Section 3 contains
remarks of practical nature including vectorized versions of the algorithms, which are
useful when implemented in scripting languages such as R and Matlab. This section also
gives details on finite sample performance via simulation examples to complement the
theoretical results. For example, the simulations in Section 3.3 show that – despite the
slower rates of convergence – the PGA seems to perform particularly well when the signal
to noise is low (see also Bühlmann and van de Geer [17], Section 12.7.1.1). The proofs
are all in Section 4. Section 4 contains results on the approximation properties of the
algorithms that can be of interest in their own. For example, a simple extension of the



4 A. Sancetta

result in DeVore and Temlyakov [29] to statistical least square estimation is given in order
to bound the approximation error of the PGA (L2-Boosting). Moreover, it is also shown
that the complexity of the PGA grows sub-linearly with the number of iteration, hence
compensating this way for the higher approximation error (Lemma 8 in Section 4). This
observation appears to be new and it is exploited when considering convergence under
non-mixing data.

1.1. Estimation setup

There are possibly many more regressors than the sample size. However, most of the
regressors are not needed or useful for prediction, for example, they may either be zero
or have a progressively decreasing importance. This means that most of the regressors
are redundant. Redundancy is formally defined in terms of a bound on the absolute sum
of the regression coefficients. In particular, let X be a set of regressors of cardinality K ,
possibly much larger than the sample size n and growing with n if needed. Then the
focus is on the linear regression function µ(x) =

∑K
k=1 bkx

(k) where
∑K

k=1 |bk| ≤B <∞,
and x(k) is the kth element in x. As B increases, the class of functions representable by µ
becomes larger (e.g., when X is a set of functions whose linear span is dense in some space
of functions). The same remark is valid when K grows with n, as for sieve estimators.
The absolute summability of the regression coefficients is standard (e.g., Bühlmann [15],
Barron et al. [6]). This restriction is also used in compressed sensing, where a signal
with no noise admits a sparse representation in terms of a dictionary (e.g., Temlyakov
[67], Chapter 5). Nevertheless, high-dimensional statistics also considers the problem of
consistency when B → ∞ at the rate o(

√

n/ lnK) (e.g., Greenshtein and Ritov [39],
Greenshtein [38], Bühlmann and van de Geer [17], Bartlett, Mendelson and Neeman [7]).
Here, it is shown that Greedy algorithms are consistent in this situation when the data
are dependent and the regressors are not necessarily bounded.
Notational details and conditions are introduced next. Given random variables Y and

X , interest lies in approximating the conditional regression function E[Y |X ] = µ0(X),

with the linear regression µ(X) :=
∑K

k=1 bkX
(k), where

∑K
k=1 |bk| ≤B, and X(k) denotes

the kth element of X . Hence, µ0 does not need to be linear. (Most of the literature, essen-
tially, considers the case when the true regression function µ0 ∈ L(B) with Barron et al.
[6] being one of the few exceptions.) Let {Yi,Xi: i= 1,2, . . . , n} be possibly dependent
copies of Y,X . Define the empirical inner product

〈Y,X(k)〉n :=
1

n

n
∑

i=1

YiX
(k)
i and |X(k)|2n := 〈X(k),X(k)〉n.

To make sure that the magnitude of the regression coefficients is comparable, assume that
|X(k)|2n = 1. This is a standard condition that also simplifies the discussion throughout
(e.g., Bühlmann [15], Barron et al. [6]). In practice, this is achieved by dividing the
original variables by |X(k)|n. Throughout, it is assumed that the variables have unit | · |n
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norm. This also implies that E|X(k)|2n = 1. Denote by

L(B) :=

{

µ: µ(X) =
K
∑

k=1

bkX
(k),

K
∑

k=1

|bk| ≤B,X ∈ X
}

,

the space of linear functions on X with l1 coefficients bounded by B. It follows that
L(B) is a Hilbert space under the inner product 〈X(k),X(l)〉= EX(k)X(l) as well as the
empirical inner product 〈X(k),X(l)〉n. Also, let L :=

⋃

B<∞L(B) be the union of the
above spaces for finite B. The goal it to estimate the regression function when the true
expectation is replaced by the empirical one, that is, when we use a finite sample of n
observations {Yi,Xi: i= 1,2, . . . , n}. As already mentioned, B is only known to be finite,
and this is a standard set up used elsewhere (e.g., Bühlmann [15], Barron et al. [6]).
Moreover, µ0 does not need to be an element of L(B) for any finite B.
Results are sometimes derived using some restricted eigenvalue condition on the em-

pirical Gram matrix of the regressors also called compatibility condition (e.g., Bühlmann
and van de Geer [17], for a list and discussion). For example, the minimum eigenvalue of
the empirical Gram matrix of any possible m regressors out of the K possible ones, is
given by

ρm,n := inf

{

|
∑K

k=1X
(k)bk|2n

∑K
k=1 |bk|2

:

K
∑

k=1

{bk 6= 0}=m

}

, (1)

where {bk 6= 0} is the indicator function of a set (e.g., Zhang [81], and many of the
references on Lasso cited above; see also the isometry condition in Candes and Tao [24]).
The above condition means that the regressors are approximately orthogonal, and typical
examples are frames (e.g., Daubechies, Defrise and De Mol [27]). This condition is usually
avoided in the analysis of convergence rates of greedy algorithms. Note that unless one
uses a fixed design for the regressors, (1) is random. In this paper, m usually refers to the
number of iterations or greedy steps at which the algorithm is stopped. The population
counterpart of (1) will be denoted by ρm, that is,

ρm := inf

{

E|
∑K

k=1X
(k)bk|2n

∑K
k=1 |bk|2

:

K
∑

k=1

{bk 6= 0}=m

}

. (2)

When m is relatively small, ρm plus an op(1) term can be used to bound ρm,n from
below (e.g., Loh and Wainwright [48]; see also Nickl and van de Geer [53]). Eigenvalue
restrictions will be avoided here under mixing dependent conditions. However, under non-
mixing and possibly long memory conditions, the convergence rates can deteriorate quite
quickly. Restricting attention to the case ρm > 0 allows one to derive more interesting
results.
Throughout the paper, the following symbols are used: . and & indicate inequality up

to a multiplicative finite absolute constant, ≍ when the left-hand side and the right-hand
side are of the same order of magnitude, ∧ and ∨ are min and max, respectively, between
the left-hand side and the right-hand side.
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1.2. Objective

To ease notation, let | · |2 = (E| · |2)1/2 and define

γ(B) := inf
µ∈L(B)

|µ− µ0|2 (3)

to be the approximation error of the best element in L(B), and let µB be the actual
minimizer. Since for each B <∞ the set L(B) is compact, one can replace the inf with
min in the above display. The approximation can improve if B increases. For simplicity,
the notation does not make explicit the dependence of the approximation error on K , as
K is the same for all the algorithms, while B can be different for the CGA and FWA, as
it will be shown in due course.
Let X ′ be a random variable distributed like X but independent of the sample. Let E′

be expectation w.r.t. X ′ only. The estimator from any of the greedy algorithms will be
denoted by Fm. The bounds are of the following kind:

(E′|µ0(X
′)− Fm(X ′)|2)1/2 . error(B,K,n,m) + algo(B,m) + γ(B) (4)

for any B in some suitable range, where relates to the B in the approximation µB from
(3). The possible values of B depend on the algorithm. For the PGA, OGA and RGA,
B <∞, that is, the algorithms allow to approximate any function in L, the union of L(B)
for any B > 0. The CGA and FWA restrict B ≤ B̄ which is a user specified parameter.
This gives direct control of the estimation error. The results for the CGA and FWA will
be stated explicitly in B̄, so that B̄ →∞ is allowed. The term γ(B) is defined in (3),
while

algo(B,m)2 & |Y − Fm|2n − inf
µ∈L(B)

|Y − µ|2n

defines an upper bound for the error due to estimating using any of the algorithms rather
than performing a direct optimization. It could be seen as part of the approximation
error, but to clearly identify the approximation properties of each algorithm, algo(B,m)
is explicitly defined. Finally, the term error(B,K,n,m) is the estimation error.

1.3. Approximation in function spaces

When µ0 /∈ L, the approximation can be large. This is not to say that functions in L
cannot represent non-linear functions. For example, the set of regressors X could include
functions that are dense in some set, or generally be a subset of some dictionary (e.g.,
Mallat and Zhang [50], Barron et al. [6], Sancetta [63]).
Consider the framework in Section 2.3 of Barron et al. [6]. Let µ0 be a univariate

function on [0,1], that is, µ0 is the expectation of Y conditional on a univariate vari-
able with values in [0,1]. Suppose D is a dictionary of functions on [0,1], and denote its
elements by g. Suppose that µ0 is in the closure of functions admitting the representa-
tion µ(x) =

∑

g∈D bgg(x), where
∑

g∈D |bg| ≤ B; bg are coefficients that depend on the

functions g. Examples include sigmoid functions, polynomials, curvelet, frames, wavelets,
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trigonometric polynomials, etc. Since D might be infinite or too large for practical ap-
plications, one considers a subset X ⊂D, which is a dictionary of K functions on [0,1].
Then µ0(x) =

∑

g∈X bgg(x) +
∑

g∈D\X bgg(x). Assuming that |∑g∈D\X bgg(x)|2 .K−α

for some α > 0, the approximation error decreases as one expands the dictionary. Ex-
amples for non-orthogonal dictionaries are discussed in Barron et al. [6]. However, to
aid intuition, one can consider Fourier basis for smooth enough functions to ensure that
∑

g∈D |bg|<∞. If X is large enough, one may expect the second summation to have a
marginal contribution.
Hence, with abuse of notation, the result of the present paper cover the aforementioned

problem, where the functions g ∈ X are then denoted by {x(k): k = 1,2, . . . ,K}; here
x ∈ [0,1], while each g(x) is denoted by x(k)(x), so that x(k) is not the kth entry in x
but a function of x (the kth element in a dictionary). As mentioned in the Introduction,
this paper does not make any distinction whether X is a set of explanatory variables
or functions (in general a dictionary), so it also covers problems addressed in compress
sensing with error noise.

1.4. Conditions

The theoretical properties of the algorithms are a function of the dependence conditions
used. At first, absolute regularity is used. This allows to obtain results as good as if
the data were independent (e.g., Chen and Shen [25]). However, for some prediction
problems, absolute regularity might not be satisfied. Hence, more general dependence
conditions shall be used. Generality comes at a big cost in this case.
Some notation is needed to recall the definition of absolute regularity. Suppose that

(Wi)i∈Z is a stationary sequence of random variables and, for any d≥ 0, let σ(Wi: i≤ 0),
σ(Wi: i≥ d) be the sigma algebra generated by {Wi: i≤ 0} and {Wi: i≥ d}, respectively.
For any d≥ 0, the beta mixing coefficient β(d) for (Wi)i∈Z is

β(d) := E sup
A∈σ(Wi: i≥d)

|Pr(A|σ(Wi: i≤ 0))−Pr(A)|

(see Rio [60], Section 1.6, for other equivalent definitions). The sequence (Wi)i∈Z is
absolutely regular or beta mixing if β(d)→ 0 for d→∞.
Throughout, with slight abuse of notation, for any p > 0, | · |pp = E| · |p is the Lp norm

(i.e., do not confuse | · |n with | · |p). Moreover, µ0(X) := E[Y |X ] is the true regression
function, Z := Y −µ0(X) is the error term, ∆(X) = µB(X)−µ0(X) is the approximation
residual (recall that µB is the best L2 approximation to µ0 in L(B)).
The asymptotics of the greedy algorithms are studied under the following conditions.

Condition 1. maxk |X(k)|2n = 1, maxk |X(k)|2 = 1.

Condition 2. The sequence (Xi, Zi)∈Z is stationary absolutely regular with beta mixing

coefficients β(i). βi for some β ∈ [0,1) and E|Z|p <∞ for some p > 2, maxk≤K |X(k)|
is bounded, and the approximation residual ∆(X) = µB(X) − µ0(X) is also bounded.
Moreover, 1<K . exp{Cna}, for some absolute constant C and a ∈ [0,1).
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Bounded regressors and sub-Gaussian errors are the common conditions under which
greedy algorithms are studied. Condition 2 already weakens this to the error terms only
possessing a p > 2 moment. However, restricting attention to bounded regressors can be
limiting. The next condition replaces this with a moment condition.

Condition 3. The sequence (Xi, Zi)∈Z is stationary absolutely regular with beta mixing
coefficients β(i). βi for some β ∈ [0,1) and

E|ZX(k)|p +E|X(k)|2p +E|∆(X)X(k)|p <∞, (5)

for some p > 2. Moreover, 1<K . nα for some α< (p− 2)/2 (with p as just defined).

Note that in the case of independent random variables, one could relax the moment
condition to p ≥ 2. Recall that µ0 is not restricted to be in L(B). Only the resulting
estimator will be. The expectation of ∆(X) is the bias.
There are examples of models that are not mixing (e.g., Andrews [1], Bradley [13]). For

example, the sieve bootstrap is not mixing (Bickel and Bühlmann [11]). It is important
to extend the applicability of the algorithms to such case. The gain in generality leads
to a considerably slower rate of convergence than the i.i.d. and beta mixing case. This is
mostly due to the method of proof. It is not known whether the results can be improved
in such cases. Dependence is now formalized by the following.

Condition 4. Denote by E0 the expectation conditional at time 0 (w.r.t. the natural
filtration of the random variables). Recall that | · |p := (E| · |p)1/p. The sequence (Xi, Zi)∈Z

is stationary, and for some p≥ 2,

dn,p := max
k

n
∑

i=0

(|E0ZiX
(k)
i |p + |E0[(1−E)|X(k)

i |2]|p + |E0[(1−E)∆(Xi)X
(k)
i ]|p)

(i+1)1/2
<∞

for any n.

Note that the dependence condition is in terms of mixingales and for weakly dependent
data, supn dn,p <∞ when the pth moment exists, under certain conditions. The general
framework allows us to consider data that might be strongly dependent (long memory),
when dn,p →∞ (see Example 4 for some details).

2. Algorithms

The algorithms have already appeared elsewhere, and they will be reviewed in Section 2.3.
All the algorithms studied here do achieve a global minimum of the empirical risk. This
minimum might not be unique if the number of variables are larger than the sample size.
Moreover, the convergence rates of the algorithms to the global minimum can differ. The
reader unfamiliar with them, can skim through Section 2.3 before reading the following.
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In particular, the PGA has the slowest rate, while all the others have a faster rate which
is essentially optimal (see Lemmas 4, 5, 6 and 7, for the exact rates used here; see DeVore
and Temlyakov [29], and Barron et al. [6], for discussions on optimality of convergence
rates). The optimal rate toward the global minimum is m−1/2 under the square root of
the empirical square error loss, where m is the number of greedy iterations. For the PGA
the convergence rate of the approximation error of the algorithm, algo(B,m), is only
m−1/6, without requiring the target Y to be itself an element of L(B), that is, a linear
function with no noise (Lemma 4). For functions in L(B), Konyagin and Temlyakov [45]
improved the rate to m−11/62, while Livshitz and Temlyakov [47] show a lower bound
m−0.27. Hence, the approximation rate of the PGA is an open question. The slow rate of
the PGA (L2-Boosting) has led Barron et al. [6] to disregard it. While the approximating
properties of the PGA are worse than the other algorithms, its finite sample properties
tend to be particularly good in many cases (e.g., Section 3.3). An overview of how the
present results add to the literature and further details are summarized next.

2.1. Comparison with existing results

There are many results on greedy algorithms under different conditions. Table 1 summa-
rizes and compares some of these results. For each algorithm the most interesting results
from the present paper are presented first. The symbols used to describe the conditions
are defined in the glossary of symbols at the end of this section.

2.1.1. Glossary for Table 1

2.1.1.1. Moments M (variable; moment type); moment types: p = moments, refer to
paper for exact p, g = sub-Gaussian tails, b = bounded random variables; for example,
M(X,Z; b) means that both X and Z are bounded.

2.1.1.2. Dependence D (variable, dependence type); dependence types are all station-
ary: iid = i.i.d. or just independence, αn/βn = geometric alpha/beta mixing, nα/nβ =
polynomial alpha/beta mixing; NM= non-mixing; see paper for details on the polynomial
rate and how it relates to moments.

2.1.1.3. K K (growth rate); number of regressors K : P = na for any a < ∞, E =
exp{Cna} for a ∈ [0,1), C <∞.

2.1.1.4. Design matrix X if conditions are imposed on the design matrix, for example,
compatibility conditions, otherwise, no symbol is reported.

2.1.1.5. Loss function L2 = L2 loss as in the l.h.s. of (4) and results holding in proba-
bility, EL2 = same as L2 but results holding in L1 (i.e., take a second expectation w.r.t.
to the sample data), L2n = empirical L2 loss.
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Table 1. Comparison of results

Algorithm/author/conditions Rates

PGA

M(X; b), M(Z;p), D(X,Z;βn), K(E), L2 ( lnK
n

)1/8

M(X,Z;g), D(X,Z;NM), K(P ), X, L2 (
d2n,p̄

n
)(1−ǫ)/8

Bühlmann and van de Geer [17]

M(X; b), M(Z;g), D(X,Z; iid), K(E), L2n ( lnK
n

)(1−ǫ)/16

Lutz and Bühlmann [49]

M(X,Z;p), D(X,Z;nα), K(E), L2 o(1)

OGA

M(X; b), M(Z;p), D(X,Z;βn), K(E), L2 ( lnK
n

)1/4

M(X,Z;g), D(X,Z;NM), K(P ), X, L2 (
d2n,p̄

n
)(1−ǫ)/6

Bühlmann and van de Geer [17]

M(X; b), M(Z;g), D(X,Z; iid), K(E), L2 ( 1
n
)1/6 ∨ ( lnK

n
)1/4

Barron et al. [6]

M(X,Z; b), D(X,Z; iid), K(P ), EL2 ( lnK
n

)1/4

Zhang [81]

M(X,Z; b), D(X,Z; iid), X, L2n, + (K0
n
)1/2

RGA

M(X; b), M(Z;p), D(X,Z;βn), K(E), L2 ( lnK
n

)1/4

M(X,Z;g), D(X,Z;NM), K(P ), X, L2 (
d2n,p̄

n
)(1−ǫ)/6

Barron et al. [6]

M(X,Z; b), D(X,Z; iid), K(P ), EL2 ( lnK
n

)1/4

CGA and FWA

M(X; b), M(Z;p), D(X,Z;βn), K(E), L2, +( lnK
n

)1/4

M(X,Z;g), D(X,Z;NM), K(P ), L2, + (
d2n,p̄

n
)(1−ǫ)/4

2.1.1.6. Additional remarks on glossary The true function µ0 is assumed to be in L(B)
for some finite B. When rates are included, ǫ is understood to be a positive arbitrarily
small constant. Also, p̄ in dn,p̄ refers to a large p depending on ǫ and K , with exact details
given in Corollary 5. In some cases, conditions may not fit exactly within the classification
given above due to minor differences, in which case they may still be classified within
one group. The symbol + is used to denote additional conditions which can be found in
the cited paper. For Zhang [81], K0 represents the true number of non-zero coefficients
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and it is supposed to be small. For the CGA and the FWA, the symbol + refers to the
fact that the user pre-specifies a B̄ <∞ and constrains estimation in L(B) with B ≤ B̄,
and it also assumes that µ0 ∈ L(B̄). The results in the paper are more general, and the
restrictions in Table 1 are for the sake of concise exposition and comparison.

2.1.2. Comments

Table 1 only provides upper bounds. Interest would also lie in deriving lower bound
estimates (e.g., Donoho and Johnstone [30], Birgé and Massart [12], Tsybakov [72], and
Bunea, Tsybakov and Wegkamp [20], for such rates for certain nonparametric parametric
problems; see also Tsybakov [73], Chapter 2, for a general discussion on lower bounds).
The results in Tsybakov [72] and Bunea, Tsybakov and Wegkamp [20] provide minimax
rates and explicit estimators for certain function classes which exactly apply in the present
context. Suppose that the error term Z is Gaussian, the regressorsX are bounded and an
i.i.d. sample is available. Let µn be any estimator in L(B). From Theorem 2 in Tsybakov
[72], one can deduce that

sup
µ∈L(B)

|µ− µn|&



















B

√

K

n
, if K .

√
n,

B

(

lnK

n

)1/4

, if K &
√
n.

This results is also useful to understand the difference between the result derived by
Zhang [81] for the OGA and usual results for Lasso under sparsity. In these cases, the
target function is in a much smaller class than L(B), that is, µ0 is a linear function with
a small number of K0 non-zero regression coefficients. Within this context, one can infer
that the result from Zhang [81] is the best possible (e.g., use Theorem 3 in Tsybakov
[72]).
Under mixing conditions, the convergence rates for the OGA, RGA, CGA and FWA

are optimal. Table 1 shows that the results in Barron et al. [6] for the OGA and RGA are
also optimal, but require i.i.d. bounded regressors and noise. The convergence rates for
the PGA are not optimal, but considerably improve the ones of Bühlmann and van de
Geer [17] also allowing for unbounded regressors and dependence.

2.2. Statement of results

2.2.1. Mixing data

In the following, when some relation is said to hold in probability, it means it holds
with probability going to one as n→∞. Also, note that the linear projection of µ0 onto
the space spanned by the regressors is in L (the union of the L(B) spaces) because the
number of regressors K is finite. Hence, let

B0 := arg inf
B>0

γ(B) (6)
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be the absolute sum of the coefficients in the unconstrained linear projection of µ0 onto

the space spanned by the regressors (γ(B) as in (3)). Of course, K is allowed to diverge

to infinity with n, if needed, which in consequence may also imply B0 in (6) can go to

infinity.

Theorem 1. Under Condition 1 and either Conditions 2 or 3,

(E′|µ0(X
′)−Fm(X ′)|2)1/2 . error(B,K,n,m) + algo(B) + γ(B) (7)

in probability, where

B ∈
{

[B0,∞), for the PGA, OGA, RGA,

(0, B̄], for the CGA and FWA,
(8)

where

error(B,K,n,m) =















√

m lnK

n
, for the PGA, OGA, RGA,

B̄

(

lnK

n

)1/4

, for the CGA and FWA,

(9)

algo(B,m) =











B1/3m−1/6, for the PGA,

Bm−1/2, for the OGA and RGA,

B̄m−1/2, for the CGA and FWA.

(10)

Remark 1. When B0 ≤ B̄, asymptotically, the CGA and FWA impose no constraint

on the regression coefficients. In this case, these algorithms also satisfy (7) with (8) as

for the OGA and RGA. While B0 is unknown, this observation will be used to deduce

Corollary 2. Also note that (7) for the PGA, OGA and RGA is minimized by B =B0.

Theorem 1 allows one to answer several questions of interest about the algorithms.

Note that error(B,K,n,m) in (9) does not depend on B, as a consequence of the method

of proof; it will depend on B for some of the other results. The next two results will focus

on two related important questions. One concerns the overall convergence rates of the

estimator when the true function µ0 ∈ L, that is, µ0 is linear with absolutely summable

coefficients. The other concerns the largest linear model in reference of which the estima-

tor is optimal in a square error sense (i.e., persistence in the terminology of Greenshtein

and Ritov [39], or traditionally, this is termed consistency for the linear pseudo true

value). Rates of convergence are next. These rates directly follow from Theorem 1, using

the fact that B <∞ and equating error(B,K,n,m) with algo(B,m) and solving for m.



Greedy algorithms for prediction 13

Corollary 1. Under the conditions of Theorem 1, if

m satisfies







































≍
(

n

lnK

)3/4

, for the PGA,

≍
√

n

lnK
, for the OGA and RGA,

&

√

n

lnK
, for the CGA and FWA

then, in probability

(E′|µ0(X
′)−Fm(X ′)|2)1/2 .







































(

lnK

n

)1/8

, for the PGA if µ0 ∈L,
(

lnK

n

)1/4

, for the OGA and RGA if µ0 ∈ L,

B̄

(

lnK

n

)1/4

, for the CGA and FWA if µ0 ∈ L(B̄).

The CGA and FWA achieve the minimax rate under either Conditions 2 or 3 if µ0 ∈
L(B̄) as long as the number of iterations m is large enough. The drawback in fixing B̄ is
that if µ0 ∈ L(B) with B̄ < B, there can be an increase in bias. This can be avoided by
letting B̄ →∞ with the sample size. The following can then be used to bound the error
when B̄ < B, if µ0 ∈L(B) (Sancetta [63]).

Lemma 1. Let µ ∈ L(B) for some B <∞. Then

inf
µ′∈L(B′)

|µ− µ′|2 ≤max{B −B′,0}.

The bounds are explicit in B̄ so that one can let B̄ →∞ if needed and apply Lemma 1
to show that the approximation error goes to zero if µ0 ∈ L(B) for some bounded B.
Next, one can look at the idea of persistence, which is also related to consistency of

an estimator for the pseudo true value in the class of linear functions. Adapting the
definition of persistence to the set up of this paper, the estimator Fm is persistent at the
rate B →∞ if

E
′|Y ′ − Fm(X ′)|2 − inf

µ∈L(B)
E
′|Y ′ − µ(X ′)|2 = op(1), (11)

where X ′ and Y ′ are defined to have same marginal distribution as the Xi’s and Yi’s,
but independent of them. Directly from Theorem 1 deduce the following.

Corollary 2. Let B̄ =B for the CGA and FWA. Under the conditions of Theorem 1,
(11) holds if m→∞ such that m= o(n/ lnK) and B = o(

√
m) for all algorithms.
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2.2.2. Non-mixing and strongly dependent data

In the non-mixing case, the rates of convergence of the estimation error can quickly
deteriorate. Improvements can then be obtained by restricting the population Gram
matrix of the regressors to be full rank. The next result does not restrict ρm.

Theorem 2. Under Conditions 1 and 4, (7) holds in probability, with

error(B,K,n,m) =

(

d2n,pK
4/p

n

)1/4

×











(B +m1/2), for the PGA,

(B +m), for the OGA, RGA,

B̄, for the CGA and FWA

and

B ∈
{

(0,∞), for the PGA, OGA, RGA,

(0, B̄], for the CGA and FWA

and algo(B,m) as in (10).

Unlike error(B,K,n,m) in (9) which did not depend on B, the above is derived using
a different method of proof and does depend on B. Also note the different restriction on
B. Letting µ0 ∈L, one obtains the following explicit convergence rates.

Corollary 3. Suppose that

m satisfies











































≍
(

n

d2n,pK
4/p

)3/8

, for the PGA,

≍
(

n

d2n,pK
4/p

)1/12

, for the OGA and RGA,

&

(

n

d2n,pK
4/p

)1/8

, for the CGA and FWA.

(12)

Under the conditions of Theorem 2, in probability,

(E′|µ0(X
′)−Fm(X ′)|2)1/2 .







































(

d2n,pK
4/p

n

)1/16

, for the PGA if µ0 ∈ L,
(

d2n,pK
4/p

n

)1/12

, for the OGA and RGA if µ0 ∈L,
(

d2n,pK
4/p

n

)1/4

, for the CGA and FWA if µ0 ∈ L(B̄).

The results are close to the lower bound O(n−1/4) only for the CGA and FWA under
weak dependence, not necessarily mixing data (i.e., supn dn,p <∞) and variables with
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moments of all orders (i.e., p arbitrary large). Now, restrict attention to ρK > 0, that is,
ρm in (2) with m=K . This is equivalent to say that the population Gram matrix of the
regressors has full rank. In this case, the results for the PGA, OGA and RGA can be
improved. By following the proofs in Section 4, it is easy to consider ρm going to zero as
m→∞, but at the cost of extra details, hence these case will not be reported here.

Theorem 3. Suppose that ρK > 0. Under Conditions 1 and 4, for the PGA, OGA and
RGA, (7) holds in probability with

error(B,K,n,m) = (m+m1/2B)

(

d2n,pK
4/p

n

)1/2

for any positive B, and algo(B,m) as in (10), as long as error(B,K,n,m)+algo(B,m) =
o(1).

The above theorem leads to much better convergence rates.

Corollary 4. Suppose that

m≍























(

n

d2n,pK
4/p

)3/4

, for the PGA,

(

n

d2n,pK
4/p

)1/3

, for the OGA and RGA.

(13)

Under the conditions of Theorem 3,

(E′|µ0(X
′)− Fm(X ′)|2)1/2 .



















(

d2n,pK
4/p

n

)1/8

, for the PGA if µ0 ∈L,
(

d2n,pK
4/p

n

)1/6

, for the OGA and RGA if µ0 ∈ L.

Under non-mixing dependence, deterioration in the rate of convergence due to K be-
comes polynomial rather than the logarithmic one of Theorem 1. On the positive side,
the dependence condition used is very simple and can be checked for many models (e.g.,
Doukhan and Louhichi [31], Section 3.5, Dedecker and Doukhan [28], for examples and
calculations). Interesting results can be deduced when the regressors have a moment gen-
erating function. Then the rates of convergence can be almost as good if not better than
the ones derived by other authors assuming i.i.d. data, though only when ρK > 0 holds.

Corollary 5. Suppose that X and Z have moments of all order and K . nα for some
α ∈N. Under Conditions 1 and 4, choosing m as in (13) for the PGA, OGA and RGA
and as in (12) for the CGA and FWA, for any ǫ ∈ (0,1), and p= 4α/ǫ,

(E′|µ0(X
′)−Fm(X ′)|2)1/2
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.







































(

d2n,p
n

)(1−ǫ)/8

, for the PGA if µ0 ∈ L and ρK > 0,

(

d2n,p
n

)(1−ǫ)/6

, for the OGA and RGA if µ0 ∈L and ρK > 0,

(

d2n,p
n

)(1−ǫ)/4

, for the CGA and FWA if µ0 ∈ L(B̄)

in probability.

2.3. Review of the algorithms

The algorithms have been described in several places in the literature. The following
sections review them. The first two algorithms are boosting algorithms and they are re-
viewed in Bühlmann and van de Geer [17]. The third algorithm has received less attention
in statistics despite the fact that it has desirable asymptotic properties (Barron et al.
[6]). The fourth algorithm is a constrained version of the third one and further improves
on it in certain cases. The fifth and last algorithm is the basic version of the Frank–Wolfe
[35] algorithm.

2.3.1. Pure Greedy Algorithm (a.k.a. L2-Boosting)

Boosting using the L2 norm is usually called L2-Boosting, though some authors also
call it Pure Greedy Algorithm (PGA) in order to stress its origin in the approximation
theory literature (e.g., Barron et al. [6]), and this is how it will be called here. The
term matching pursuit is also used by engineers (e.g., Mallat and Zhang [50]). Figure 1
recalls the algorithm. There, ν ∈ (0,1] is the shrinkage parameter and it controls the
degree of greediness in the algorithm. For example, as ν → 0 the algorithm in Figure 1
converges to Stagewise Linear Regression, a variant of the LARS algorithm that has
striking resemblance to Lasso (Efron et al. [34], for details). In order to avoid ruling out
good regressors that are correlated to Xs(m) (s(m) as defined in Figure 1 and Xs(m) =

Set:
m ∈N

F0 := 0
ν ∈ (0,1]
For: j = 1,2, . . . ,m

s(j) := argmaxk |〈Y − Fj−1,X
(k)〉n|

gj(X) := 〈Y −Fj−1,X
s(j)〉nXs(j)

Fj := Fj−1 + νgj(X)

Figure 1. PGA (L2-Boosting).



Greedy algorithms for prediction 17

Set:
m ∈N

F0 := 0
For: j = 1,2, . . . ,m

s(j) := argmaxk |〈Y − Fj−1,X
(k)〉n|

P j
X := OLS operator on span{Xs(1),Xs(2), . . . ,Xs(j)}

Fj := P j
XY

Figure 2. OGA (Orthogonal Matching Pursuit).

X(s(m)) throughout to ease notation) one chooses ν smaller then 1, usually 0.1 (Bühlmann
[15]).
The PGA recursively fits the residuals from the previous regression to the univariate

regressor that reduces the most the residual sum of the squares. At each step j, the
algorithm solves mink,b |Y −Fj−1 −X(k)b|2n. However, the coefficient can then be shrunk
by an amount ν ∈ (0,1) in order to reduce the degree of greediness. The resulting function
Fm is an element of L(Bm) for some Bm =O(m1/2) (Lemma 8). The algorithm is known
not to possess as good approximation properties as the other algorithms considered in
this paper. However, this is compensated by Bm not growing too fast, hence, also the
estimation error does not grow too fast.

2.3.2. Orthogonal Greedy Algorithm (a.k.a. Orthogonal Matching Pursuit)

The Orthogonal Greedy Algorithm (OGA) (e.g., Barron et al. [6]) is also known as Or-
thogonal Matching Pursuit. Figure 2 recalls that the OGA finds the next regressor to be
included based on the same criterion as for PGA, but at each m iteration, it re-estimates
the regression coefficients by OLS using the selected regressors. For convenience, the OLS
projection operator is defined by Pm

X where the m stresses that one is only using the
regressors included up to iteration m, that is, Pm

X Y =
∑m

k=1 bknX
s(k) for OLS coeffi-

cients bkn’s. Hence, in some circumstances, the OGA is too time consuming, and may
require the use of generalized inverses when regressors are highly correlated. However,
Pati, Rezaiifar and Krishnaprasad [54] give a faster algorithm for its estimation.

2.3.3. Relaxed Greedy Algorithm

The Relaxed Greedy Algorithm (RGA) is a less popular method, which however has the
same estimation complexity of the PGA. It is reviewed in Figure 3. The RGA updates
taking a convex combination of the existing regression function with the new predictor.
The RGA does not shrink the estimated coefficient at each step, but does shrink the
regression from the previous iteration j− 1 by an amount 1−wj , where wj = j−1. Other
weighting schemes such that wj ∈ (0,1) and wj = O(j−1) can be used and the results
hold as they are (see Remark 2.5 in Barron et al. [6]). The weight sequence wj = j−1

produces an estimator that has the simple average structure Fm =
∑m

j=1(
j
m )gj(X).
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Set:
m ∈N

F0 := 0
For: j = 1,2, . . . ,m
wj = 1/j
s(j) := argmaxk |〈Y − (1−wj)Fj−1,X

(k)〉n|
gj(X) := 〈Y − (1−wj)Fj−1,X

s(j)〉nXs(j)

Fj := (1−wj)Fj−1 + gj(X)

Figure 3. RGA.

The RGA is advocated by Barron et al. [6], as it possesses better theoretical properties
than PGA (L2-Boosting) and it is simpler to implement than the OGA. At each stage j,

the algorithm solves mink,b |Y − (1−wj)Fj−1 +wjX
(k)b|2n. It is possible to also consider

the case where wj is not fixed in advance, but estimated at each iteration. In Figure 3,
one just replaces the line defining s(j) with

[s(j),wj ] := arg max
k≤K,w∈[0,1]

|〈Y − (1−w)Fj−1,X
(k)〉n|. (14)

The asymptotic results hold as they are, as in this case, the extra optimization can
only reduce algo(m,B), the error in the algorithm. The same remark holds for the next
algorithms.

2.3.4. Constrained greedy and Frank–Wolfe Algorithms

The Constrained Greedy Algorithm (CGA) is a variation of the RGA. It is used in
Sancetta [63] in a slightly different context. The Frank–Wolfe Algorithm (FWA) (Frank
and Wolfe [35]; see Clarkson [26], Jaggi [42], Freund, Grigas and Mazumder [36], for
recent results on its convergence) is a well-known algorithm for the optimization of func-
tions under convex constraints. Figure 4 review the algorithms. The two algorithms are
similar, though some notable differences are present. The FWA chooses at each iteration
the regressor that best fits the residuals from the previous iteration model. Moreover,
the regression coefficient is chosen as the value of the constraint times the sign of the
correlation of the residuals with the chosen regressor. On the other hand, the difference
of the CGA from the RGA is that at each step the estimated regression coefficient is con-
strained to be smaller in absolute value than a pre-specified value B̄. When the function
one wants to estimate is known to lie in L(1), the algorithm is just a simplified version
of the Hilbert Space Projection algorithm of Jones [43] and Barron [5] and have been
studied by several authors for estimation of mixture of densities (Li and Barron [46],
Rakhlin, Panchenko and Mukherjee [59], Klemelä [44], Sancetta [62]).
At each step j, the CGA solves mink,|b|≤B̄ |Y − (1−wj)Fj−1 +wjX

(k)b|2n. Under the
square loss with regression coefficients satisfying

∑K
k=1 |bk| ≤ B̄, the FWA reduces to



Greedy algorithms for prediction 19

CGA FWA
Set: Set:
m ∈N m ∈N

F0 := 0 F0 := 0
B̄ <∞ B̄ <∞
For: j = 1,2, . . . ,m For: j = 1,2, . . . ,m
wj = 1/j wj := 2/(1 + j)

s(j) := argmaxk |〈Y − (1−wj)Fj−1,X
(k)〉n| s(j) := argmaxk |〈Y −Fj−1,X

(k)〉n|
bj :=

1
wj

〈Y − (1−wj)Fj−1,X
s(j)〉n bj := B̄ sign(〈Y − Fj−1,X

s(j)〉n)
gj(X) := sign(bj)(|bj | ∧ B̄)Xs(j) gj(X) := bjX

s(j)

Fj := (1−wj)Fj−1 +wjgj(X) Fj := (1−wj)Fj−1 +wjgj(X)

Figure 4. CGA and FWA.

minimization of the linear approximation of the objective function, minimized over the

simplex, that is, mink,|b|≤B̄〈bX(k), Fj−1 − Y 〉n with update of Fj as in Figure 4. Despite

the differences, both the CGA and the FWA lead to the solution of the Lasso problem.
In particular, the regression coefficients are the solution to the following problem:

min
b1,b2,...,bK

∣

∣

∣

∣

∣

Y −
K
∑

k=1

bkX
(k)

∣

∣

∣

∣

∣

n

, such that

K
∑

k=1

|bk| ≤ B̄.

The above is the standard Lasso problem due to Tibshirani [69]. In particular, CGA and
FWA solve the above problem as m→∞,

|Y − Fm|2n ≤ inf
µ∈L(B̄)

|Y − µ(X)|2n +
B̄2

m

(Lemma 6 and 7, in Section 4, where for simplicity, only the weighting schemes as in
Figure 4 are considered). The complexity of the estimation procedure is controlled by
B̄. This parameter can be either chosen based on a specific application, or estimated via
cross-validation, or splitting the sample into estimation and validation sample.
The CGA and FGA also allows one to consider the forecast combination problem with

weights in the unit simplex, by minor modification. To this end, for the CGA let

gj(X) := [(bj ∧ 1)∨ 0]Xs(j), (15)

so that B̄ = 1 and the estimated bj ’s parameters are bounded below by zero. For the
FWA change,

s(j) := argmax
k

〈Y − Fj−1,X
(k)〉n; bj := B̄ sign(〈Y − Fj−1,X

s(j)〉n)∨ 0,
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where one does not use the absolute value in the definition of s(j). (This follows from
the general definition of the Frank–Wolfe Algorithm, which simplifies to the algorithm in
Figure 4 when

∑K
k=1 |bk| ≤ B̄.) Hence, the resulting regression coefficients are restricted

to lie on the unit simplex.
As for the RGA, for the CGA and FWA it is possible to estimate wj at each greedy

step. For the CGA, this requires to change the line defining s(j) with (14). Similarly, for
the FWA, one adds the following line just before the definition of Fj :

wj = arg min
w∈[0,1]

|Y − (1−w)Fj−1 +wgj(X)|2n.

These steps can only reduce the approximation error of the algorithm, hence, the rates
of convergence derived for the fixed sequence wj are an upper bound for the case when
wj is estimated at each step.

2.4. Discussion

2.4.1. Objective function

The objective function is the same one used in Bühlmann [15], which is the integrated
square error (ISE), where integration is w.r.t. the true distribution of the regressors
(note that the expectation is w.r.t. X ′ only). This objective function is zero if the (out of
sample) prediction error is minimized (recall that µ0(X) = E[Y |X ]), and for this reason
it is used in the present study. Under this objective, some authors derive consistency,
but not explicit rates of convergence (e.g., Bühlmann [15], Lutz and Bühlmann [49]). An
exception is Barron et al. [6], who derive rates of convergence for the mean integrated
square error. Rates of convergence of greedy algorithms are usually derived under a
weaker norm, namely the empirical L2 norm and the results hold in probability (e.g.,
Bühlmann and van de Geer [17], and references therein). This is essentially equivalent to
assuming a fixed design for the regressors. The empirical L2 norm has been used to show
consistency of Lasso, hence deriving results under this norm allows one to compare to
Lasso in a more explicit way. Convergence of the empirical L2 norm does not necessarily
guarantee that the prediction error is minimized, asymptotically.

Example 1. Let Fm(X) =
∑K

k=1X
(k)bkn be the output of one of the algorithms, where

the subscript n is used to stress that bkn depends on the sample. Also, let Z := Y −
µ0(X), and µ0(X) =

∑K
k=1X

(k)bk0, where the bk0’s are the true coefficients. Control of

the empirical L2 norm only requires control of Control of 〈Z,∑K
k=1X

(k)(bkn − bk0)〉n
(e.g., Lemma 6.1 in Bühlmann and van de Geer [17]) and this quantity tends to be
Op(m lnK/n) under regularity conditions. On the other hand, control of the L2 norm

(i.e., ISE) also requires control of (1− E)|
∑K

k=1X
(k)(bkn − bk0)|2n. Sufficient conditions

for this term to be Op(m lnK/n) are often used, but in important cases such as dependent
non-mixing random data, this does not seem to be the case anymore. Hence, this term is
more challenging to bound and requires extra care (see van de Geer [74], for results on
how to bound such a term in an i.i.d. case).
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2.4.2. Dependence conditions

Absolute regularity is convenient, as it allows to use decoupling inequalities. In conse-
quence, the same rate of convergence under i.i.d. observations holds under beta mixing
when the mixing coefficients decay fast enough. Many time series models are beta mixing.
For example, any finite order ARMAmodel with i.i.d. innovations and law absolutely con-
tinuous w.r.t. the Lebesgue measure satisfies geometric mixing rates (Mokkadem [51]).
Similarly, GARCH models and more generally models that can be embedded in some
stochastic recursive equations are also beta mixing with geometric mixing rate for inno-
vations possessing a density w.r.t. the Lebesgue measure (e.g., Basrak, Davis and Mikosch
[8], for details: they derive the results for strong mixing, but the result actually implies
beta mixing). Many positive recurrent Markov chains also satisfy geometric absolute
regularity (e.g., Mokkadem [52]). Hence, while restrictive, the geometric mixing rate of
Conditions 2 and 3 is a convenient condition satisfied by common time series models.
In Condition 3, (5) is used to control the moments of the random variables. The geomet-

ric mixing decay could be replaced with polynomial mixing at the cost of complications
linking the moments of the random variables (i.e., (5)) and their mixing coefficients (e.g.,
Rio [60], for details).
Condition 4 only controls dependence in terms of some conditional moments of the

centered random variables. Hence, if the dependence on the past decreases as we move
towards the future, the centered variables will have conditional moment closer and closer
to zero. On the other hand, Conditions 2 and 3 control dependence in terms of the sigma
algebra generated by the future and the past of the data. This is much stronger than
controlling conditional expectations, and computation of the resulting mixing coefficients
can be very complicated unless some Markov assumptions are made as in Mokkadem
[51, 52] or Basrak, Davis and Mikosch [8] (see Doukhan and Louhichi [31], for further
discussion and motivation).

2.4.3. Examples for Conditions 3 and 4

To highlight the scope of the conditions and how to establish them in practice, consider
a simple non-trivial example.

Example 2. Let µ0(X) = g(X(k);k≤K), where g satisfies

|g(x(k);k ≤K)− g(z(k);k ≤K)|.
K
∑

k=1

λk|x(k) − z(k)|

for
∑K

k=1 λk ≤ 1, λk ≥ 0 and g(x(k);k≤K) = 0 when x(k) = 0 for all k ≤K . Since K →∞
with n, it is natural to impose this condition which is of the same flavor as

∑K
k=1 |bk| ≤B

in the linear model. Suppose that (Zi)i∈Z is a sequence of independent random variables
(Z = Y −E[Y |X ]) with finite p moments, and independent of the regressors (Xi)i∈Z. The
regressors admit the following vector autoregressive representation, Xi =HWi, where H
is a K × L matrix with positive entries and rows summing to one; Wi = AWi−l + εi,
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A is a diagonal L× L matrix with entries less than one in absolute values, and (εi)i∈Z

is a sequence of i.i.d. L dimensional random variables with finite 2p moments, that is,

E|εi,k|2p <∞, where εi,k is the kth entry in εi. Throughout, the K dimensional vectors
are column vectors.

If one takes L =K and H to be diagonal, Xi =Wi. As K →∞, the process is not
necessarily mixing. Hence, one is essentially required to either keep L fixed or impose
very restrictive structure on the innovations in order to derive mixing coefficients. Luz
and Bühlmann [15] consider vector autoregressive models (VAR) with the dimension of
the variables increasing to infinity. They then assume that the model is strongly mixing.
However, it is unclear that a VAR of increasing dimensionality can be strongly mixing.
The mixing coefficients of functions of independent random variables are bounded above
by the sum of the mixing coefficients of the individual variables (e.g., Theorem 5.1 in
Bradley [14]). If the number of terms in the sum goes to infinity (i.e., K in the present
context, q in Luz and Bühlmann [15]), such VAR may not be strongly mixing. Even
using a known results on Markov chain, it is not possible to show that VAR models with
increasing dimension are mixing without very restrictive conditions on the innovations
(e.g., condition iii in Theorem 1′ in Mokkadem [51]).
Restrictions such as A being diagonal or (Xi)i∈Z and (Zi)i∈Z being independent are

only used to simplify the discussion, so that one can focus on the standard steps required
to establish the validity of the conditions in Example 2. The above model can be used
to show how to check Conditions 3 and 4 and how Condition 3 can fail.

Lemma 2. Consider the model in Example 2. Suppose that εi has a density w.r.t. the
Lebesgue measure and L is bounded. Then Condition 3 is satisfied.

Lemma 3. Consider the model in Example 2. Suppose that εi,k only takes values in
{−1,1} with equal probability for each k, L = K and H is the identity matrix (i.e.,
Xi =Wi), while all the rest is as in Example 2. Then Condition 3 is not satisfied, but
Condition 4 is satisfied.

The proof of these two lemmas – postponed to Section 4.6 – shows how the conditions
can be verified.
The next examples provides details on the applicability of Condition 4 to possibly long

memory processes. In particular, the goal is to show that Corollary 5 can be applied. In
consequence, new non-trivial models and conditions are allowed. In these examples, the
rates of convergence implied by Corollary 5 are comparable to, or better than the ones
in Bühlmann and van de Geer [17] which require i.i.d. observations. However, one needs
to restrict attention to regressors whose population Gram matrix has full rank (ρK > 0).
The following only requires stationarity and ergodicity of the error terms.

Example 3. Let (Zi)i∈Z be a stationary ergodic sequence with moments of all orders,
and suppose that (Xi)i∈Z is i.i.d., independent of the Zi’s, and with zero mean and
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moments of all orders and such that ρK > 0. Moreover, suppose that µ0 ∈ L. By inde-
pendence of Xi and the Zi’s, and the fact the that Xi’s are i.i.d. mean zero, it follows

that E0ZiX
(k)
i = 0. Similarly, E0(1− E)|X(k)

i |2 = 0 for i > 0. Finally, given that µ0 ∈ L,
∆(X) = µB(X)− µ0(X) = 0 by choosing B large enough so that µB = µ0. Hence, this

implies that supn dn,p <∞ in Corollary 5, though for the CGA and FWA it is necessary
to assume µ0 ∈ L(B̄) and not just µ0 ∈ L, or just µ0 ∈ L but B̄ →∞.

Remarkably, Example 3 shows that if the regressors are i.i.d., it is possible to achieve
results as good as the ones derived in the literature only assuming ergodic stationary
noise. The next example restricts the noise to be i.i.d., but allows for long memory
Gaussian regressors and still derives convergence rates as fast as the ones of Example 3.

Example 4. Let X
(k)
i =

∑∞
l=0 alkεi−l,k, where (εi,k)i∈Z is a sequence of i.i.d. standard

Gaussian random variables, and a0k = 1, alk = l−(1+ǫ)/2 ǫ ∈ (0,1] for l > 0. Also, suppose
that (Xi)i∈Z is independent of (Zi)i∈Z, which is i.i.d. with moments of all orders. It is
shown in Section 4.7 that for this MA(∞) model with Gaussian errors,

|E0(1−E)|X(k)
i |2|p . i−(1+ǫ)

when i > 0. Hence, in Condition 4 supn dn,p <∞ for any p <∞, and in consequence,
one can apply Corollary 5 if ρK > 0 and the true function is in L or L(B̄) for the CGA
and FWA. For the CGA and FWA, ρK = 0 is allowed.

3. Implementation and numerical comparison

3.1. Vectorized version

Vectorized versions of the algorithms can be constructed. These versions make quite
clear the mechanics behind the algorithms. The vectorized versions are useful when the
algorithms are coded using scripting languages or when n and K are very large, but
K = o(n). In this case, the time dimension n could be about O(107) or even O(108) and
the cross-sectional dimension K = O(103). The memory requirement to store a matrix
of doubles of size 107 × 103 is in excess of 70 gigabytes, often too much to be stored in
RAM on most desktops. On the other hand, sufficient statistics such as XTX and XTY

(X being the n×K matrix of regressors and Y the n× 1 vector of dependent variables
and the subscript T stands for transpose) are manageable and can be updated through
summation.
Figure 5 shows vectorized versions of the algorithms. Of course, it is always assumed

that the regressors have been standardized, that is, diag(XTX/n) = IK , the identity
matrix, where diag(·) stands for the diagonal matrix constructed from the diagonal of its
matrix argument. The symbol 0K is the K dimensional vector of zeros, while for other
vector quantities, the subscript denotes the entry in the vector, which are assumed to be
column vectors.
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PGA OGA RGA

Set:
C =XTY/n C =XTY/n C =XTY/n
D =XTX/n D =XTX/n D=XTX/n
b= 0K b= 0K b= 0K
ν ∈ (0,1)
For:j = 1,2, . . . ,m
A=C −Db A=C −Db A=C − (1− 1

j )Db

s(j) = argmaxk≤K |Ak| s(j) = argmaxk≤K |Ak| s(j) = argmaxk≤K |Ak|
a= 0K P j

X as in Figure 2 a= 0K
as(j) =As(j) b= P j

XY as(j) =As(j)

b= b+ νa b= (1− 1
j )b+

1
j a

CGA FWA

Set:
C =XTY/n C =XTY/n
D =XTX/n D =XTX/n
b= 0K b= 0K
B̄ <∞ B̄ <∞
For:j = 1,2, . . . ,m
A=C − (1− 1

j )Db A=C −Db

s(j) = argmaxk≤K |Ak| s(j) = argmaxk≤K |Ak|
a= 0K a= 0K
as(j) = sign(As(j))(j|As(j)| ∧ B̄) as(j) = sign(As(j))B̄

b= (1− 1
j )b+

1
j a b= (1− 2

1+j )b+
2

1+j a

Figure 5. Vectorized versions of the algorithms.

3.2. Choosing the number of iterations

In order to achieve the bounds in the theorem, m needs to be chosen large enough
for the algorithm to perform well in terms of approximation error (see Lemmas 4, 5
and 6). Nevertheless, an excessively large m can produce poor results as shown in the
theorems with the exception of CGA and FWA. In consequence, guidance on the number
of iterations m is needed. The number of regressors can be left unconstrained in many
situations, as long as the dependence is not too strong. The number of iterations can be
chosen following results in the literature. Suppose the Fm estimator in the algorithm can
be represented as Fm(X) = PmY for some suitable projection operator Pm. Then one
may choose the number of iterations according the following AIC criterion:

ln(|Y − Fm(X)|2n) + 2df(Pm)/n,
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where df(Pm) are the degrees of freedom of the prediction rule Pm, which are equal
to the sum of the eigenvalues of Pm, or equivalently they are equal to the trace of the
operator. Bühlmann [15] actually suggests using the modified AIC based on Hurvich,
Simonoff and Tsai [41]:

ln(|Y − Fm(X)|2n) +
1 + df(Pm)/n

1− (df(Pm) + 2)/n
.

For ease of exposition, let Xm be the n×m matrix of selected regressors and denote

by X
s(j)
m the jth column of Xm. For the PGA, Bühlmann and Yu [18] show that the

degrees of freedom are given by the trace of

Bm := In −
m
∏

j=1

(

In − ν
X

s(j)
m (X

s(j)
m )′

(X
s(j)
m )′Xs(j)

m

)

,

where In is the n dimensional identity matrix.
The trace of the hat matrix Bm :=Xm(XT

mXm)−1XT
m gives the degrees of freedom for

the OGA, that is, Trace(Bm) =m.
Unfortunately, the projection matrix of the RGA is complicated and the author could

not find a simple expression. Nevertheless, the degrees of freedom could be estimated
(e.g., Algorithm 1 in Jianming [78]).
Choice of B̄ is equivalent to the choice of the penalty constant in Lasso. Hence, under

regularity conditions (Zou et al. [82], Tibshirani and Taylor [70]) the degrees of freedom
of the CGA and FWA are approximated by the number of non-zero coefficients or the
rank of the population Gram matrix of the selected variables. Alternatively, one has to
rely on cross-validation to choose m for the PGA, OGA, RGA and B̄ for the CGA and
FWA.

3.3. Numerical results

To assess the finite performance of the algorithms a comprehensive set of simulations
is carried out for all the algorithms. It is worth mentioning that the CGA and FWA
are equivalent to Lasso, hence, conclusions also apply to the Lasso, even though the
conditions used for consistency are very different.
For each Monte Carlo set up, 100 simulations are run, where the sample size is n=

20,100. Consider the model

Yi =

K
∑

k=1

X
(k)
i bk +Zi, X

(k)
i =

S
∑

s=0

θsεi−s,k, Zi =
κ

σ

S
∑

s=0

θsεi−s,0,

where K = 100, κ2 =
Var(

∑K
k=1 X

(k)
i bk)

Var(
∑S

s=0 θsεi−s,0)
, so that σ2 ∈ {8,0.25} is the signal to noise ratio,

corresponding roughly to an R2 of 0.89,0.2. The innovations {(εi,k)i∈Z: k = 0,1, . . . ,K}



26 A. Sancetta

are collections of i.i.d. standard normal random variables. For k, l > 0, Eεi,kεi,l = ω|k−l|

with ω = {0,0.75}with convention 00 = 1, that is, a Toeplitz covariance matrix. Moreover,
Eεi,0εi,k = 0 for any k > 0. Finally, {θs: s= 0,1, . . . , S} is as follows:

Case ID: θ0 = 1 and θs = 0 if s > 0;
Case WD: θs = (0.95)s with S = 100+ n;
Case SD: θs = (s+1)−1/2 with S = 1000+ n.

In other words, the above model allows for time dependent Zi’s and Xi’s as well for
correlated regressors (when ω > 0). However, the X and the Z are independent by con-
struction. By different choice of regression coefficients bk’s, it is possible to define different
scenarios for the evaluation of the algorithms. These are listed in the relevant subsections
below. For each different scenario, the mean integrated square error (MISE) from the sim-
ulations is computed: that is, the Monte Carlo approximation of E[E′|µ0(X

′)−Fm(X ′)|2].
Standard errors were all relatively small, so they are not reported, but available upon
requests together with more detailed results.
The number of greedy steps m or the bound B̄ were chosen by a cross-validation

method for each of the algorithms (details are available upon request). Hence, results also
need to be interpreted bearing this in mind, as cross-validation can be unstable at small
sample sizes (e.g., Efron [33], see also Sancetta [61], for some simulation evidence and
alternatives, amongst many others). Moreover, cross-validation is usually inappropriate
for dependent data, often leading to larger than optimal models (e.g., Burman and Nolan
[22], Burman, Chow and Nolan [21], for discussions and alternatives). Nevertheless, this
also allows one to assess how robust is the practical implementation of the algorithms.
Given the large amount of results, Section 3.8 summarizes the main conclusions.

3.4. Low-dimensional model

The true regression function has coefficients bk = 1/3 for k = 1,2,3, and bk = 0 for k > 3.

3.5. High-dimensional small equal coefficients

The true regression function has coefficients bk = 1/K , k ≤K .

3.6. High-dimensional decaying coefficients

The true regression function has coefficients bk = k−1, k ≤K .

3.7. High-dimensional slowly decaying coefficients

The true regression function has coefficients bk = k−1/2, k ≤K .
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Table 2. MISE: low-dimensional, K = 100

n= 20 n= 100

(ω,σ2) PGA OGA RGA CGA FWA PGA OGA RGA CGA FWA

Case ID
(0,8) 0.40 0.51 0.36 0.36 0.40 0.08 0.03 0.09 0.09 0.09
(0,0.20) 0.59 0.87 0.93 0.75 0.77 0.47 0.52 0.49 0.44 0.44
(0.75,8) 0.25 0.39 0.26 0.36 0.35 0.09 0.15 0.07 0.13 0.13
(0.75,0.25) 0.86 1.20 1.29 1.00 1.14 0.50 0.45 0.49 0.48 0.47

Case WD
(0,8) 1.65 2.06 1.56 1.51 1.52 0.67 0.68 0.54 0.56 0.54
(0,0.20) 2.81 2.95 2.97 3.49 3.01 3.07 4.01 2.82 2.93 2.95
(0.75,8) 1.25 2.21 1.24 1.35 1.32 0.87 1.18 0.79 0.85 0.89
(0.75,0.25) 4.36 4.29 4.56 5.34 5.28 4.43 5.55 4.18 4.45 4.56

Case SD
(0,8) 1.26 1.63 1.26 1.24 1.25 0.50 0.50 0.43 0.42 0.41
(0,0.20) 2.31 2.36 2.55 2.61 2.53 2.20 2.72 2.16 2.15 2.14
(0.75,8) 0.88 1.82 0.91 0.98 1.00 0.63 0.86 0.58 0.58 0.58
(0.75,0.25) 3.28 3.37 3.58 3.88 4.14 3.13 3.74 3.05 3.11 3.12

3.8. Remarks on numerical results

Results from the simulations are reported in Tables 2–5. These results show that the
algorithms are somehow comparable, within a ±10% relative performance. Overall, the
PGA (L2-Boosting) is robust and often delivers the best results despite the theoretically
slower convergence rates.
On the other hand, the performance of the OGA is somehow disappointing given the

good theoretical performance. Table 2 shows that the OGA can perform remarkably
well under very special circumstance, that is, relatively large sample size (n= 100), time
independent and uncorrelated regressors and high signal to noise ratio. To some extent,
these are the conditions used by Zhang [81] to show optimality of the OGA.
The RGA, CGA and FWA provide good performance comparable to the PGA and

in some cases better, especially when the signal to noise ration is higher. For example,
Table 2 shows that these algorithms perform well as long as the regressors are either
uncorrelated or the time dependence is low. Intuitively, time dependence leads to an
implicit reduction of information, hence it is somehow equivalent to estimation with a
smaller sample. This confirms the view that the PGA is usually the most robust of the
methods.
While somehow equivalent, the FWA updates the coefficients in a slightly cruder way

than the CGA. This seems to lead the FWA to have slightly different performance than
the CGA in some cases, with no definite conclusion on which one is best. No attempt
was made to use a line search for wj (e.g., (14)) instead of the deterministic weights.
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Table 3. MISE: high-dimensional small coefficients, K = 100

n= 20 n= 100

(ω,σ2) PGA OGA RGA CGA FWA PGA OGA RGA CGA FWA

Case ID
(0,8) 0.10 0.12 0.11 0.10 0.10 0.08 0.10 0.08 0.08 0.09
(0,0.20) 0.11 0.16 0.16 0.13 0.14 0.10 0.11 0.12 0.10 0.10
(0.75,8) 0.20 0.27 0.17 0.17 0.14 0.09 0.12 0.08 0.09 0.09
(0.75,0.25) 0.26 0.38 0.38 0.29 0.33 0.23 0.28 0.25 0.22 0.22

Case WD
(0,8) 0.35 0.40 0.35 0.37 0.33 0.27 0.36 0.25 0.25 0.22
(0,0.20) 0.50 0.56 0.53 0.59 0.52 0.53 0.68 0.51 0.54 0.56
(0.75,8) 0.65 0.88 0.65 0.63 0.50 0.34 0.44 0.29 0.31 0.33
(0.75,0.25) 1.28 1.28 1.34 1.58 1.50 1.27 1.62 1.22 1.32 1.37

Case SD
(0,8) 0.28 0.30 0.28 0.28 0.26 0.22 0.29 0.21 0.21 0.19
(0,0.20) 0.38 0.39 0.45 0.45 0.43 0.38 0.49 0.40 0.40 0.39
(0.75,8) 0.51 0.70 0.51 0.50 0.43 0.25 0.37 0.24 0.26 0.27
(0.75,0.25) 0.95 1.00 1.05 1.07 1.12 0.90 1.15 0.88 0.93 0.91

Table 4. MISE: high-dimensional decaying coefficients, K = 100

n= 20 n= 100

(ω,σ2) PGA OGA RGA CGA FWA PGA OGA RGA CGA FWA

Case ID
(0,8) 2.28 2.60 2.33 2.26 2.13 1.44 2.03 1.39 1.59 1.78
(0,0.20) 2.42 3.61 3.72 3.02 3.12 2.23 2.48 2.56 2.22 2.25
(0.75,8) 3.98 5.32 3.25 3.19 2.80 1.70 2.38 1.56 1.75 1.79
(0.75,0.25) 5.51 7.89 8.18 6.27 7.02 4.46 5.49 5.07 4.33 4.37

Case WD
(0,8) 7.80 8.72 7.91 8.01 7.28 5.34 7.23 4.60 4.53 4.43
(0,0.20) 11.27 12.83 11.96 13.43 11.79 12.31 15.83 11.55 12.15 12.54
(0.75,8) 13.01 17.84 12.66 12.10 10.22 6.65 8.78 5.86 6.30 6.62
(0.75,0.25) 26.36 28.49 27.94 32.07 31.17 26.81 33.34 25.27 27.41 28.33

Case SD
(0,8) 6.19 6.74 6.35 6.38 5.92 4.20 5.69 3.98 4.00 3.96
(0,0.20) 8.95 8.86 10.40 10.45 10.04 8.81 10.91 9.14 9.06 8.91
(0.75,8) 10.50 14.23 10.34 9.81 8.72 5.19 7.31 4.74 4.99 5.13
(0.75,0.25) 19.90 21.25 22.46 23.48 24.58 19.10 24.36 18.51 19.45 19.07



Greedy algorithms for prediction 29

Table 5. MISE: high-dimensional slow decay, K = 100

n= 20 n= 100

(ω,σ2) PGA OGA RGA CGA FWA PGA OGA RGA CGA FWA

Case ID
(0,8) 0.97 0.94 0.92 0.93 1.00 0.42 0.51 0.46 0.42 0.42
(0,0.20) 1.34 1.95 2.05 1.67 1.69 1.01 0.95 1.05 0.97 0.99
(0.75,8) 1.10 1.56 1.08 1.07 1.08 0.51 0.77 0.53 0.56 0.56
(0.75,0.25) 2.28 3.22 3.50 2.70 3.03 1.54 1.71 1.68 1.47 1.50

Case WD
(0,8) 3.54 4.31 3.49 3.52 3.41 1.88 2.22 1.62 1.70 1.68
(0,0.20) 6.16 7.68 6.59 7.51 6.58 6.73 8.38 6.11 6.40 6.71
(0.75,8) 4.48 6.73 3.99 4.03 3.89 2.46 3.33 2.21 2.44 2.55
(0.75,0.25) 11.53 12.31 11.96 13.67 13.55 11.55 14.42 10.99 11.66 12.09

Case SD
(0,8) 2.83 3.40 2.72 2.76 2.74 1.45 1.81 1.36 1.37 1.35
(0,0.20) 5.04 4.81 5.82 5.89 5.60 4.81 5.90 4.85 4.84 4.69
(0.75,8) 3.37 5.08 3.24 3.41 3.22 1.97 2.60 1.75 1.80 1.82
(0.75,0.25) 8.51 8.82 9.57 10.07 10.51 8.12 10.00 7.98 8.11 8.16

4. Proofs

The proof for the results requires first to show that the estimators nearly minimize the
objective function |Y − µ(X)|2n for µ ∈ L(B). Then uniform law of large numbers for
|Y − µ(X)|2n with µ ∈ L(B) or related quantities are established.
To avoid cumbersome notation, for any functions of (Y,X), say f and g, write

〈f, g〉P :=
∫

f(y, x)g(y, x) dP (y, x) where P is the marginal distribution of (Y,X); more-
over, |f |2P,2 := 〈f, f〉P . In the context of the paper, this means that |Y − µn|2P,2 =
∫

|y− µn(x)|2 dP (y, x) for a possibly random function µn(x) (e.g., a sample estimator).
Clearly, if µn = µ is not random, |Y − µ|2P,2 = |Y − µ|22. Consequently, the norm | · |2P,2

means that |µn−µ|2P,2 := E
′|µn(X

′)−µ(X ′)|2, where X ′ and E
′ are as defined just before

(4).

For any µ(X) :=
∑K

k=1 bkX
(k) ∈ L, |µ|L =

∑K
k=1 |bk| denotes the l1 norm of the linear

coefficients. Throughout, Rm := (Y −Fm) denotes the residual in the approximation.

4.1. Approximation rates for the algorithms

The following provide approximation rates of the algorithms and show that the resulting
minimum converges to the global minimum, which might not be unique, as the number
of iterations m goes to infinity.
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Lemma 4. For the PGA, for any µ ∈ L(B),

|Rm|2n ≤ |Y − µ(X)|2n +

(

4|Y |4nB2

ν(2− ν)m

)1/3

.

Proof. Let R̃0 = µ ∈ L(B), and

R̃m = R̃m−1 − ν〈Xs(m), Y − Fm−1〉nXs(m)

so that R̃m ∈L(Bm), where B0 :=B,

Bm := Bm−1 + ν|〈Xs(m), Y − Fm−1〉n|. (16)

Also note that R̃m = Rm − (Y − µ), where Rm = Y − Fm, F0 = 0. Unlike R0, R̃0 has
coefficients that are controlled in terms of Bm, hence, it will be used to derive a recursion
for the gain at each greedy step. Hence, using these remarks,

|R̃m|2n = 〈R̃m, R̃m〉n = 〈R̃m,Rm〉n−〈R̃m, Y −µ〉n ≤Bmmax
k

|〈X(k),Rm〉n|−〈R̃m, Y −µ〉n

because R̃m ∈ L(Bm), which, by definition of Xs(m+1) implies

|〈X(m+1),Rm〉n| ≥
〈R̃m, R̃m + Y − µ〉n

Bm
=

〈R̃m,Rm〉n
Bm

=
〈Rm,Rm〉n − 〈Rm, Y − µ〉n

Bm

using the definition of R̃m in the last equality. Then, by the scalar inequality ab ≤
(a2 + b2)/2 the above becomes

|〈X(m+1),Rm〉n| ≥
|Rm|2n − |Y − µ|2n

2Bm
. (17)

Note that the right-hand side is positive, if not, |Y − Fm|2n ≤ |Y − µ|2n and the lemma is
proved (recall that Rm = Y −Fm). Now, note that Rm =Rm−1−ν〈Xs(m),Rm−1〉nXs(m),
so that

|Rm|2n = |Rm−1|2n + ν2|〈Xs(m),Rm−1〉n|
2 − 2ν|〈Xs(m),Rm−1〉n|

2

= |Rm−1|2n − ν(2− ν)|〈Xs(m),Rm−1〉n|
2
.

The above two displays imply

|Rm|2n ≤ |Rm−1|2n − ν(2− ν)

4B2
m−1

(|Rm−1|2n − |Y − µ|2n)
2
.
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Subtracting |Y − µ|2n on both sides, and defining am := |Rm|2n − |Y − µ|2n, and τ :=
ν(2− ν)/4, the above display is

am ≤ am−1(1− τam−1B
−2
m−1). (18)

The proof then exactly follows the proof of Theorem 3.6 in DeVore and Temlyakov [29].
For completeness, the details are provided. Define

ρ(Rm) := a−1/2
m |〈Xs(m+1),Rm〉n| ≥ a1/2m B−1

m . (19)

Since Bm ≥Bm−1,

amB−2
m ≤ am−1B

−2
m−1(1− τam−1B

−2
m−1)≤

1

τm
(20)

using Lemma 3.4 in DeVore and Temlyakov [29] in the second step in order to bound the
recursion. Then (16) and (19) give

Bm = Bm−1(1 + νρ(Rm−1)a
1/2
m−1B

−1
m−1)

≤ Bm−1(1 + νρ(Rm−1)
2).

Multiply both sides of (18) by Bm, and substitute the lower bound (19) into (18), so that
using the above display,

amBm ≤ am−1Bm−1(1 + νρ(Rm−1)
2)(1− τρ(Rm−1)

2)

= am−1Bm−1(1− ντρ(Rm−1)
4)≤ |Y |2nB,

where the last inequality follows after iterating because 1 − ντρ(Rm−1)
4 ∈ (0,1) and

substituting B0 =B and a0 = |Y |2n. If am > 0, it is obvious that 1− ντρ(Rm−1)
4 ∈ (0,1).

If this were not the case, the lemma would hold automatically at step m, by definition
of am. Hence, by the above display together with (20),

a3m = (amBm)2amB−2
m ≤ 4|Y |4nB2

ν(2− ν)m

using the definition of τ = ν(2− ν)/4, so that am ≤ [4|Y |4nB/(ν(2− ν)m)]1/3. �

The following bound for the OGA is Theorem 2.3 in Barron et al. [6].

Lemma 5. For the OGA, for any µ ∈ L(B),

|Rm|2n ≤ |Y − µ(X)|2n +4
B2

m
.

The following Lemma 6 is Theorem 2.4 in Barron et al. ([6], equation (2.41)), where
the CGA bound is inferred from their proof (in their proof set their β on page 78 equal
to wkB̄ to satisfy the CGA constraint).



32 A. Sancetta

Lemma 6. For the RGA, for any µ ∈ L(B),

|Rm|2n ≤ |Y − µ(X)|2n +
B2

m
.

For the CGA the above holds with B replaced by B̄ in the above display and any µ ∈L(B̄).

Lemma 7. For the FWA, for any µ ∈ L(B̄), and m> 0,

|Rm|2n ≤ |Y − µ(X)|2n +
4B̄2

m
,

when wm = 2/(1 +m).

Proof. From Jaggi ([42], equations (3)–(4), see also Frank and Wolfe [35]), for every
m= 1,2,3, . . . , infer the first inequality in the following display:

|Rm|2n − |Y − µ(X)|2n ≤ (1−wm)(|Rm−1|2n − |Y − µ(X)|2n)

+w2
m max∑

K
k=1 |bk|≤B̄,

∑
K
k=1 |c′k|≤B̄

∣

∣

∣

∣

∣

K
∑

k=1

(bk − b′k)X
(k)

∣

∣

∣

∣

∣

2

n

≤ (1−wm)(|Rm−1|2n − |Y − µ(X)|2n) +w2
m4B̄2max

k≤K
|X(k)|2n,

where the second inequality follows because the maximum over the simplex is at one of
the edges of the simplex. Moreover, maxk≤K |X(k)|2n = 1 by construction. The result then
follows by Theorem 1 in Jaggi [42] when wm = 2/(1 +m). �

4.2. Size of the functions generated by the algorithms

The following gives a bound for the size of Fm in terms of the norm | · |L; Fm is the
function generated by each algorithm.

Lemma 8. As n→∞, Pr(Fm ∈ L(Bm))→ 1, where:

PGA: Bm . |Y |2m1/2;
OGA: Bm . |Y |2[( m

ρm,n
)1/2 ∧m∧K] with ρm,n as in (1);

RGA: Bm . |Y |2[( m
ρm,n

)1/2 ∧ m ∧ K] with ρm,n as in (1), as long as in Lemma 6

B2/m=O(1);
CGA and FWA: Bm ≤ B̄.

Proof. Note that Fm(X) =
∑m

k=1 bkX
s(k), where to ease notation bk does not make

explicit the dependence on m. A loose bound for |Fm|L is found by noting that

|〈X(k),X(l)〉n| ≤max
k

|〈X(k),X(k)〉n|= 1,
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so that each coefficient is bounded by |Y |n. Since at the mth iteration we have at most
m different terms and no more than K , |Fm|L ≤ (m∧K)|Y |n. Given that |Y |2n =Op(1),
one can infer the crude bound |Fm|L =Op(m ∧K). This is the worse case scenario, and
can be improved for all the algorithms.
For the PGA, at the first iteration, |b1| := maxk |〈X(k), Y 〉n| ≤ |Y |n, hence there is an

α1 ∈ [0,1] such that |b1| = α
1/2
1 |Y |n (the root exponent is used to ease notation in the

following steps). Then, by the properties of projections

|R1|2n = |Y −Xs(1)b1|2n = |Y |2n − |b1|2 = |Y |2n(1− α1),

where the second inequality follows from |X(k)|2n = 1 for any k. By similar arguments,

there is an α2 ∈ [0,1] such that |b2| = α
1/2
2 |R1|n and |R2|2n = |R1|2n(1 − α2). So by in-

duction |bm| = α
1/2
m |Rm−1|n and |Rm|2n = |Rm−1|2n(1 − αm). By recursion, this implies

that

|bm|2 = αm(1− αm−1) · · · (1− α1)|Y |2n
and in consequence that

m
∑

k=1

|bk| =
m
∑

k=1

α
1/2
k

∏

l<k

(1−αl)
1/2|Y |n,

where the empty product is 1. It is clear that if any αk ∈ {0,1} for k <m then bm = 0,
hence one can assume that all the αk’s are in (0,1). The above display is maximized if
αl → 0 fast enough, as otherwise, the product converges to zero exponentially fast and
the result follows immediately. Suppose that

∑∞
l=1 α

2
l < ∞. Then, using the fact that

ln(1− αl) =−αl +O(α2
l ),

∏

l<k

(1− αl) = · · ·= exp

{

k−1
∑

l=1

ln(1− αl)

}

= exp

{

−
k−1
∑

l=1

αl +O

(

k−1
∑

l=1

α2
l

)}

≍ exp

{

−
k−1
∑

l=1

αl

}

.

The above converges exponentially fast to 0 if αl ≍ l−α for α ∈ (0.5,1). While the argu-
ment is not valid for α ∈ (0,0.5], it is clear, that the convergence is even faster in this
case. Hence, restrict attention to α= 1, in which case,

∏

l<k(1−αl)≍ k−c for some c > 0,
that is, polynomial decay. On the other hand for α > 1, the product converges. Hence, it
must be the case that the maximum is achieved by setting αl ≍ l−1 and assuming that
the product converges. This implies that for the PGA,

m
∑

k=1

|bk|. |Y |n
m
∑

k=1

(k−1)
1/2

. |Y |nm1/2.



34 A. Sancetta

Now, consider the OGA and the RGA. The following just follows by standard inequalities:

(ρm,n/m)1/2
m
∑

k=1

|bk| ≤ ρ1/2m,n

(

m
∑

k=1

|bk|2
)1/2

≤ |Fm|n. (21)

For the OGA, by definition of the OLS estimator, |Fm|n ≤ |Y |n implying the result for
the OGA using the above display and the crude bound. For the RGA, consider the case
when |Fm|n is small and large, separately. If |Fm|n = op(1), then clearly, |Fm|n = o(|Y |n),
because Y is not degenerate. By this remark, the above display implies that

|Fm|L :=

m
∑

k=1

|bk|= op(
√

m/ρm,n|Y |n)

and the result for the RGA would follow. Hence, one can assume that |Fm|n & 1 in
probability, eventually asm→∞. In this case, by the approximating Lemma 6, if B2/m=
O(1),

|Y −Fm|2n ≤ |Y |2n +O(1)

which implies

|Fm|2n ≤ 2〈Y,Fm〉n +O(1)≤ 2|Y |n|Fm|n +O(1)

and in consequence

|Fm|n ≤ 2|Y |n +O(|Fm|−1
n ) = 2|Y |n +Op(1)

by the fact that |Fm|n & 1, in probablity. Hence, using the above display together with
(21), the result follows for the RGA as well.
For the CGA, the bk’s are all bounded in absolute value by B̄. Since by construction,

Fm(X) =m−1
∑m

k=1 bkX
s(k), |Fm|L ≤ B̄. A similar argument holds for the FWA. �

It is natural to replace the random eigenvalue ρm,n with the population one. This is
achieved next.

Lemma 9. Suppose Conditions 1 and 4 hold. Then ρm,n ≥ ρm −Op(dn,pmK2/pn−1/2)

implying that if dn,pmK2/pn−1/2 = o(ρm), then ρ−1
m,n =Op(ρ

−1
m ).

Proof. Note that

ρm,n = inf
|b|0≤m,|b|2≤1

1

n

n
∑

i=1

(

K
∑

k=1

bkX
(k)
i

)2

, ρm = inf
|b|0≤m,|b|2≤1

1

n

n
∑

i=1

E

(

K
∑

k=1

bkX
(k)
i

)2

,

where |b|0 =
∑K

k=1{bk 6= 0} and |b|22 =
∑K

k=1 |bk|2, that is, the number of non-zero bk’s and
their squared l2 norm, respectively. By obvious manipulations, using the above display,
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and the definition of ρm,

ρm,n ≥ ρm − sup
|b|0≤m,|b|2≤1

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(1−E)

(

K
∑

k=1

bkX
(k)
i

)2∣
∣

∣

∣

∣

,

hence it is sufficient to bound the r.h.s. of the above display. Using similar arguments as
in the control of II in the proof of Lemma 15 in Section 4.4,

E sup
|b|0≤m,|b|2≤1

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(1−E)

(

K
∑

k=1

bkX
(k)
i

)2∣
∣

∣

∣

∣

≤mE max
k,l≤K

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(1−E)X
(k)
i X

(l)
i

∣

∣

∣

∣

∣

.
dn,pmK2/p

√
n

,

and the first result follows. The second part is directly inferred from the first. �

4.3. Inequalities for dependent random variables

Two different inequalities will be needed depending on whether one assumes absolute
regularity or mixingales. The following is suitable for beta mixing random variables. It is
somewhat standard, but proved for completeness due to some adjustments to the present
context.

Lemma 10. Suppose that F is a measurable class of functions with cardinality K. Let
(Wi)i∈Z be strictly stationary and beta mixing with mixing coefficients β(i) . βi, β ∈
[0,1). Suppose that for all f ∈ F, E|f(W1)|p <∞ for some p > 2. Then

Emax
f∈F

1√
n

∣

∣

∣

∣

∣

n
∑

i=1

(1−E)f(Wi)

∣

∣

∣

∣

∣

.
√
lnK

if K . nα for some α < (p − 2)/2. If maxf∈F |f | is bounded, the result holds for K .
exp{nα}, α ∈ [0,1).

Proof. Note that

Emax
f∈F

1√
n

∣

∣

∣

∣

∣

n
∑

i=1

(1−E)f(Wi)

∣

∣

∣

∣

∣

≤ Emax
f∈F

1√
n

∣

∣

∣

∣

∣

n
∑

i=1

(1−E)f(Wi)
{

max
f∈F

|f(Wi)| ≤M
}

∣

∣

∣

∣

∣

+Emax
f∈F

1√
n

∣

∣

∣

∣

∣

n
∑

i=1

(1−E)f(Wi)
{

max
f∈F

|f(Wi)|>M
}

∣

∣

∣

∣

∣
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≤ Emax
f∈F

1√
n

∣

∣

∣

∣

∣

n
∑

i=1

(1−E)f(Wi)
{

max
f∈F

|f(Wi)| ≤M
}

∣

∣

∣

∣

∣

+ 2
√
nEmax

f∈F
|f(Wi)|

{

max
f∈F

|f(Wi)|>M
}

=: I + II ,

where in the last inequality one uses Minkowski’s inequality. (Here, {·} is the indicator
of a set.) By Hölder’s inequality,

II ≤ 2
√
n
(

Emax
f∈F

|f(Wi)|p
)1/p

Pr
(

max
f∈F

|f(Wi)|>M
)(p−1)/p

≤ 2
√
n
(

Emax
f∈F

|f(Wi)|p
)1/p

K(p−1)/pM−(p−1)

.
√
nKM−(p−1)

because by Markov inequality and the union bound,

Pr
(

max
f∈F

|f(Wi)|>M
)

.KM−p,

while Emaxf∈F |f(Wi)|p . K (e.g., Lemma 2.2.2 in van der Vaart and Wellner [77]).

Hence, set M = (
√
nK/

√
lnK)1/(p−1) to ensure that II =O(

√
lnK). Pollard ([58], equa-

tion (8)) shows that if the Wi’s are beta mixing, for any integer sequence an = o(n),

I .
√
lnK|f |2βE

(

Man
√
2 lnK

|f |2β
√
n

)

+Mβ(an)
√
n, (22)

where E is some positive increasing function such that limx→∞ E(x) =∞ and | · |2β is the
beta mixing norm introduced by Doukhan et al. [32] (see also Rio [60], equation (8.21)).
The exact form of the norm is irrelevant for the present purposes, however, |f |2β ≤ c1 <∞
for some constant c1 under the condition on the mixing coefficients (e.g., Rio [60], p. 15).
Since β(an). βan , for an ≍ lnn/ ln(1/β), and using the value for M set in II , deduce

I + II .
√
lnKE

(

c2 lnn(
√
nK/

√
lnK)1/(p−1)

√
lnK√

n

)

+
√
lnK,

for some finite positive constant c2. Substituting K ≍ nα for any positive α< (p− 2)/2,
the argument in the continuous increasing function E(·) is bounded and the result follows.
Notice that this choice of K also makes Mβ(an)

√
n. 1.

For the case of bounded maxf∈F |f |, one can take M large enough, but finite so that
II = 0. Given that M is finite, K . exp{nα}, and with an as before, (22) becomes

I .
√
lnK|f |2βE

(

c3 lnn
√
nα

√
n

)
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for some finite constant c3, and the argument of E(·) is bounded because α < 1. Some
tidying up gives the last result. �

The following is an extension of Burkhölder inequality to mixingales (see Peligrad,
Utev and Wu [55], Corollary 1 for the exact constants).

Lemma 11. Suppose that (Wi)i∈Z is a mean zero stationary sequence of random vari-
ables. Let

dn,p(W ) :=

n
∑

i=0

(i+ 1)−1/2|E[Wi|F0]|p,

where F0 := σ(Wi: i ≤ 0) is the sigma algebra generated by (Wi: i ≤ 0). Then, for all
p≥ 2, such that |Wi|p <∞,

∣

∣

∣

∣

∣

n
∑

i=1

Wi

∣

∣

∣

∣

∣

p

≤C1/p
p n1/2dn,p(W ),

where for p ∈ [2,4), Cp . pp while for p≥ 4, Cp . (2p)p/2.

4.4. Uniform control of the estimator

Next, one needs a uniform control of the objective function. Recall that µB is the best
approximation in L(B) to µ0 in the L2 sense.
Define

L0(B) :=

{

µ: µ(X) =

K
∑

k=1

bkX
(k),

K
∑

k=1

{bk 6= 0} ≤B

}

.

These are linear functions with l0 norm less or equal to B, that is, linear functions with
at most B non-zero coefficients. The following is Lemma 5.1 in van de Geer [74] with
minor differences. The proof is given for completeness.

Lemma 12. Let µ′ ∈ L(B) be an arbitrary but fixed function and m a positive integer.
Suppose that in probability, for some δ1 ∈ (0,1) and δ2, δ3 > 0:

1. supµ∈L0(2m): |µ|2≤1 |(1−E)|µ|2n| ≤ δ1,
2. supµ∈L0(2m): |µ|2≤1 |2(1−E)〈Y − µ′, µ〉n| ≤ δ2,

3. the sequence µn ∈L0(m) satisfies |Y − µn|2n ≤ |Y − µ′|2n + δ23 ,
4. the moment condition 〈Y − µ′, µn〉P = 0 holds.

Then |µn − µ′|P,2 ≤ (δ2 + δ3)/(1− δ1) in probability (recall the definition of | · |P,2 at the
beginning of Section 4).
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Proof. Starting from the assumption

|Y − µn|2n ≤ |Y − µ′|2n + δ23 ,

by algebraic manipulations, |µn − µ′|2n ≤ 2〈Y − µ′, µn − µ′〉n + δ23 . Assume that |µn −
µ′|P,2 ≥ δ3 otherwise, there is nothing to prove. Hence, δ23 ≤ δ3|µn − µ′|P,2. Also note
that 〈Y − µ′, µn − µ′〉P = 0 by definition of µ′ (point 4 in the statement). Adding and
subtracting |µn − µ′|2n, and using the just derived bounds

|µn − µ′|2P,2 ≤ |µn − µ′|2P,2 − |µn − µ′|2n + 2(〈Y − µ′, µn − µ′〉n − 〈Y − µ′, µn − µ′〉P )

+ 2〈Y − µ′, µn − µ′〉P + δ23

≤
∣

∣

∣

∣

|µn − µ′|2P,2 − |µn − µ′|2n
|µn − µ′|2P,2

∣

∣

∣

∣

|µn − µ′|2P,2

+ 2

∣

∣

∣

∣

〈Y − µ′, µn − µ′〉n − 〈Y − µ′, µn − µ′〉P
|µn − µ′|P,2

∣

∣

∣

∣

|µn − µ′|P,2 + δ3|µn − µ′|P,2.

Given that µn and µ′ are linear with at most m non-zero coefficients, then ∆µ :=
(µn − µ′)/|µn − µ′|2 is linear with at most 2m-non-zero coefficients and |∆µ|2 = 1 by
construction. Hence, in probability

|µn − µ′|2P,2 ≤ sup
∆µ∈L0(2m): |µ|2≤1

|(1−E)|∆µ|2n||µn − µ′|2P,2

+ sup
∆µ∈L0(2m): |µ|2≤1

|2(1−E)〈Y − µ′,∆µ〉n||µn − µ′|P,2 + δ3|µn − µ′|P,2

≤ δ1|µn − µ′|2P,2 + (δ2 + δ3)|µn − µ′|P,2.

Solving for |µn − µ′|2P,2 gives the result as long as δ1 ∈ [0,1). �

The next result is used to verify some of the conditions in the previous lemma.

Lemma 13. Under Condition 1 and either Condition 2 or 3, for any arbitrary but fixed
µ′ ∈ L, and positive integer m, the following hold with probability going to one:

1. supµ∈L0(m): |µ|2≤1 |(1−E)|µ|2n|.
√

m lnK
n ,

2. supµ∈L0(m): |µ|2≤1 |(1−E)〈Y − µ′, µ〉n|.
√

m lnK
n .

Proof. Let S be an arbitrary but fixed subset of {1,2, . . . ,K} with cardinality |S|.
Then, having fixed S, FS := {µS :=

∑

k∈S bkX
(k): |µS |2 ≤ A} is a linear vector space

of dimension |S|. In particular let ΣS be the m ×m dimensional matrix with entries
{EX(k)X(l): k, l ∈ S}, and bS the m dimensional vector with entries {bk: k ∈ S}. Then
|µS |22 = bTSΣSbS ≥ 0, where the superscript T stands for the transpose. In consequence,
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ΣS = CCT for some m×m matrix C. It follows that there is an isometry between FS
and {a ∈ R

m: a= CT bS}. Any vector a in this last set satisfies aTa= |µS |22, hence it is
contained into the m dimensional sphere of radius A (under the Euclidean norm). By
Lemma 14.27 in Bühlmann and van de Geer [55], such sphere has a δ cover of cardi-
nality bounded by (2A+δ

δ )m (under the Euclidean norm). Then note that the class of
functions L02(m,A) := {µ ∈ L0(m): |µ|2 ≤A}=⋃|S|≤mFS . Given that the union is over
∑m

s=1

(

K
s

)

< mKm number of elements, the covering number of L02(m,A) is bounded

above by mKm(2A+δ
δ )m.

An argument in Loh andWainwright ([48], proof of Lemma 15) allows one to replace the
supremum over L02(m,A) with the maximum over a finite set. Let {µ(l): l= 1,2, . . . ,N}
be an L2 1/3 cover for L02(m,A), that is, for any µ ∈ L02(m,A) there is a µ(l) such
that |∆µ|2 ≤ 1/3, where ∆µ := µ− µ(l). An upper bound for the cardinality N of such
cover has been derived above for arbitrary δ, so for δ = 1/3, N <mKm(6A+ 1)m. For
a 1/3 cover, one has that 3∆µ ∈ L02(m,A) or equivalently ∆µ ∈ L02(m,A/3). This will
be used next. By adding and subtracting quantities such as (1− E)〈µ(l), µ〉n and using
simple bounds, infer that (e.g., Loh and Wainwright [48], proof of Lemma 15),

I := sup
µ∈L02(m,A)

|(1−E)|µ|2n|

≤ max
l≤N

|(1−E)|µ(l)|2n|+ 2 sup
∆µ∈L02(m,A/3)

max
l≤N

|(1−E)〈µ(l),∆µ〉n|

+ sup
∆µ∈L02(m,A/3)

|(1−E)|∆µ|2n|

= max
l≤N

|(1−E)|µ(l)|2n|+
2

3
sup

∆µ∈L02(m,A)

max
l≤N

|(1−E)〈µ(l),∆µ〉n|

+
1

9
sup

∆µ∈L02(m,A)

|(1−E)|∆µ|2n|

= max
l≤N

|(1−E)|µ(l)|2n|+
2

3
sup

µ∈L02(m,A)

|(1−E)|µ|2n|

+
1

9
sup

µ∈L02(m,A)

|(1−E)|µ|2n|.

This implies that I := supµ∈L02(m,A) |(1−E)|µ|2n| ≤ 9
2 maxl≤N |(1−E)|µ(l)|2n|. By a similar

argument,

II := sup
µ∈L02(m,A)

|(1−E)〈Y − µ′, µ〉n|

≤ max
l≤N

|(1−E)〈Y − µ′, µ(l)〉n|+ sup
∆µ∈L02(m,A/3)

|(1−E)〈Y − µ′,∆µ〉n|

= max
l≤N

|(1−E)〈Y − µ′, µ(l)〉n|+
1

3
sup

µ∈L02(m,A)

|(1−E)〈Y − µ′, µ〉n|
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implying II := supµ∈L02(m,A) |(1 − E)〈Y − µ′, µ〉n| ≤ 3
2 maxl≤N |(1 − E)〈Y − µ′, µ(l)〉n|.

Hence, to bound I and II use the above upper bounds together with Lemma 10 and the
upper bound for N (N <mKm(6A+ 1)m with A= 1). �

The following is a modification of a standard crude result often used to derive consis-
tency, but not convergence rates. However, for the CGA and FWA this will be enough
to obtain sharp convergence rates independently of the number of iterations m. Recall
µ0(X) := E[Y |X ].

Lemma 14. Let µ′ ∈ L be arbitrary, but fixed. Suppose that in probability, for some
δ1 ∈ (0,1) and δ2, δ3 > 0, and for a positive Bm:

1. supµ∈L(Bm) |(1−E)(|Y − µ|2n − |Y − µ′|2n)| ≤ δ1;

2. |µ′ − µ0|22 ≤ δ2;
3. the sequence µn ∈L(Bm) satisfies |Y − µn|2n − |Y − µ′|2n ≤ δ3.

Then |µn − µ0|P,2 ≤
√
δ1 + δ2 + δ3 in probability.

Proof. By simple algebra, |Y −µn|2P,2− |Y −µ′|2P,2 = |µn −µ0|2P,2− |µ′ −µ0|2P,2. Adding

and subtracting |Y − µn|2n − |Y − µ′|2n,

|µn − µ0|2P,2 ≤ |µ′ − µ0|2P,2 + [|Y − µn|2P,2 − |Y − µ′|2P,2]− [|Y − µn|2n − |Y − µ′|2n]

+ [|Y − µn|2n − |Y − µ′|2n]

≤ δ2 + [|Y − µn|2P,2 − |Y − µ′|2P,2]− [|Y − µn|2n − |Y − µ′|2n] + δ3,

where the last step follows by points 2 and 3 in the lemma. However,

(|Y − µn|2P,2 − |Y − µ′|2P,2)− (|Y − µn|2n − |Y − µ′|2n)

≤ sup
µ∈L(Bm)

||Y − µ|2P,2 − |Y − µ′|2P,2 − (|Y − µ|2n − |Y − µ′|2n)|

= sup
µ∈L(Bm)

|(1−E)(|Y − µ|2n − |Y − µ′|2n)| ≤ δ1,

where the last inequality follows by assumption. Putting everything together the result
follows. �

In what follows, define L01(m,B) := L0(m) ∩ L1(B), where L1(B) = L(B) the usual
linear space of functions with absolute sum of coefficients bounded by B. The next result
will be used to verify the conditions of the previous lemma in the case of the CGA and
FWA but also as main ingredient to derive consistency rates for non-mixing data in a
variety of situations.
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Lemma 15. Suppose Condition 1. For any arbitrary, but fixed µ′ ∈L01(m,B), and Bm <
∞,

E sup
µ∈L01(m,Bm): |µ−µ′|2≤δ

|(1−E)(|Y − µ(X)|2n − |Y − µ′(X)|2n)| . error(δ),

where, under either Condition 2 or 3,

error(δ) =min

{

δ

√

m

ρ2m
,B +Bm

}(

1 +min

{

δ

√

m

ρ2m
,B +Bm

})(

√

lnK

n

)

while under Condition 4,

error(δ) =min

{

δ

√

m

ρ2m
,B +Bm

}(

1 +K1/pmin

{

δ

√

m

ρ2m
,B +Bm

})(

dn,pK
1/p

√
n

)

.

Proof. Note that Y = µ0 + Z , where Z is mean zero conditionally on X . Then, by
standard algebra

(1−E)|Y − µ|2n − (1−E)|Y − µ′|2n

=
1

n

n
∑

i=1

2Zi(µ
′(Xi)− µ(Xi))

+
1

n

n
∑

i=1

(1−E)(µ(Xi)− µ′(Xi))(µ(Xi) + µ′(Xi)− 2µ0(Xi))

=: I + II ,

using the fact that E[Z|X ] = 0 in the equality. The two terms above can be bounded

separately, uniformly in µ such that |µ − µ′|2 ≤ δ. First, let µ′(X) =
∑K

k=1 b
′
kX

(k)
i ,

where by definition of L01(m,B), only m coefficients are non-zero. Note that for

µ(X) =
∑K

k=1 bkX
(k) in L01(m,B), (µ′ − µ) ∈ L01(2m,B + Bm), because µ and µ′

are arbitrary, hence do not need to have any variables in common for 2m ≤ K (re-

call that there are K variables X(k), k ≤K). Define ck := sign(b′k − bk)
∑K

k=1 |b′k − bk|,
λk := (b′k − bk)/

∑K
k=1 |b′k − bk|, where there are at most 2m non-zero λk’s by the restric-

tion imposed by L01(2m,B+Bm). Hence,

µ′(X)− µ(X) =

K
∑

k=1

(b′k − bk)X
(k) =

K
∑

k=1

λkckX
(k),

with |ck| ≤ |µ′−µ|L, and λk’s in the 2m dimensional unit simplex. Given this restrictions,
also note that

√

ρ2m
2m

K
∑

k=1

|b′k − bk| ≤

√

√

√

√ρ2m

K
∑

k=1

(b′k − bk)
2 ≤ |µ′ − µ|2
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so that for any δ > 0, |µ− µ′|2 ≤ δ implies |µ′ − µ|L ≤ δ
√

2m/ρ2m or equivalently |ck| ≤
min{δ

√

2m/ρ2m,B + Bm}. Going from right to left, the above inequality is obtained

from the Rayleigh quotient, and by bounding the l1 norm by
√
2m times the l2 norm

(e.g., use Jensen inequality of Cauchy–Schwarz). To ease notation, write sup|µ−µ′|2≤δ

for supµ∈L01(m,B): |µ−µ′|2≤δ. Then, using the previous remarks, and also noting that the
supremum over the unit simplex is achieved at one of the edges of the simplex,

E sup
|µ−µ′|2≤δ

|I| = 2E sup
|µ−µ′|2≤δ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi

(

K
∑

k=1

(b′k − bk)X
(k)
i

)∣

∣

∣

∣

∣

= 2E sup
|∑K

k=1 λkckX(k)|2≤δ

∣

∣

∣

∣

∣

K
∑

k=1

λkck
1

n

n
∑

i=1

ZiX
(k)
i

∣

∣

∣

∣

∣

= 2Emax
k≤K

sup
|ck|≤min{δ

√
2m/ρ2m,B+Bm}

∣

∣

∣

∣

∣

ck
1

n

n
∑

i=1

ZiX
(k)
i

∣

∣

∣

∣

∣

= 2min

{

δ

√

2m

ρ2m
,B +Bm

}

Emax
k≤K

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ZiX
(k)
i

∣

∣

∣

∣

∣

.

Hence, it is sufficient to bound the expectation of the sequence (ZiX
(k)
i )i≥1, which is mean

zero by construction. Under Conditions 2 or 3, Emaxk≤K | 1n
∑n

i=1ZiX
(k)
i |.

√

lnK
n , by

Lemma 10, while under Condition 4,

Emax
k≤K

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ZiX
(k)
i

∣

∣

∣

∣

∣

.K1/pmax
k≤K

(

E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ZiX
(k)
i

∣

∣

∣

∣

∣

p)1/p

.
dn,pK

1/p

√
n

by Lemma 11. To bound the terms in II , note that

µ+ µ′ − 2µ0 = µ− µ′ +2(µ′ − µ0).

Then, recalling ∆(X) := (µ′(X)− µ0(X)),

E sup
|µ−µ′|2≤δ

|II | ≤ E sup
|
∑

K
k=1 λkckX(k)|2≤δ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(1−E)

(

K
∑

k=1

λkckX
(k)
i

)2∣
∣

∣

∣

∣

+E sup
|∑K

k=1 λkckX(k)|2≤δ

∣

∣

∣

∣

∣

2

n

n
∑

i=1

(1−E)

(

K
∑

k=1

λkckX
(k)
i

)

∆(Xi)

∣

∣

∣

∣

∣

=: III + IV .

Using arguments similar for the bound of I,

III ≤ E sup
|
∑

K
k=1 λkckX(k)|2≤δ,|

∑
K
l=1 λlclX(l)|2≤δ

∣

∣

∣

∣

∣

K
∑

k=1

λkck

K
∑

l=1

λlcl
1

n

n
∑

i=1

(1−E)X
(k)
i X

(l)
i

∣

∣

∣

∣

∣



Greedy algorithms for prediction 43

= E max
k,l≤K

sup
|ck|,|cl|≤min{δ

√
2m/ρ2m,B+Bm}

∣

∣

∣

∣

∣

ckcl
1

n

n
∑

i=1

(1−E)X
(k)
i X

(l)
i

∣

∣

∣

∣

∣

≤
(

min

{

δ

√

2m

ρ2m
,B +Bm

})2

E max
k,l≤K

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(1−E)X
(k)
i X

(l)
i

∣

∣

∣

∣

∣

.

To finish the control of III , one can then proceed along the lines of the control of the I
term:

E max
k,l≤K

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(1−E)X
(k)
i X

(l)
i

∣

∣

∣

∣

∣

.











√
lnK2, under Condition 2 or 3,

dn,pK
2/p

√
n

, under Condition 4.

Similar arguments are used to bound IV . Putting these bounds together, and disregard-
ing irrelevant constants, the result follows. �

4.5. Proof of theorems

Proof of Theorem 1. At first, prove the result for the PGA, OGA and RGA. The
estimators satisfy Fm ∈L0(m). Hence, apply Lemma 12. Verify points 1–2 in Lemma 12,

using Lemma 13, so that δ1, δ2 .
√

m lnK
n in Lemma 12. By Lemmas 4, 5 and 6, point 3

in Lemma 12 is verified with δ3 proportional to B1/3m−1/6 for the PGA, Bm−1/2 for the
OGA and RGA with µ′ = µB . Point 4 is satisfied by the remark around (6) for B ≥B0

as required in (8). Hence, in probability, by the triangle inequality,

|µ0 − Fm|P,2 .

√

m lnK

n
+ |µ0 − µB |2 + algo(B,m),

where algo(B,m) is the appropriate error term in Lemmas 4, 5, 6.
For the CGA and FWA use Lemma 14 with µ′ = µB ∈ L(B), B =Bm = B̄, and µn =

Fm; recall µB is the minimizer in (3). In Lemma 14, δ1 . B̄
√

lnK
n by Lemma 15 with m=

K , so that L01(m,B) = L(B). By definition of µB , in Lemma 14, δ2 = γ2(B̄). Moreover,
δ3 . B̄2m−1 by Lemmas 6 and 7. Hence, Lemma 14 is verified. �

The proof of Theorem 2 is next.

Proof of Theorem 2. By Lemma 8, Fm ∈ L(Bm) in probability, for some suit-
able Bm depending on the algorithm. The theorem then follows by an application
of Lemma 14 with µ′ = µB ∈ L(B) for arbitrary B, and µn = Fm. In Lemma 14,

δ1 . (B + Bm)2(
dn,pK

2/p

√
n

) by Lemma 15. Then substitute Bm with the upper bounds

given in Lemma 8. Finally, in Lemma 14, δ2 = γ(B) and δ3 = algo(B,m) by Lemmas 4,
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5, or 6. Hence, Lemma 14 and the fact that
√
δ1 + δ2 + δ3 ≤

√
δ1 +

√
δ2 +

√
δ3 imply the

result. �

Theorem 3 relies on Theorem 3.4.1 in van der Vaart and Wellner [77], which is here
recalled as a lemma for convenience, using the present notation and adapted to the
current purposes.

Lemma 16. Suppose that for any δ > δn > 0, and for Bm ≥B, and fixed function µ′ ∈
L0,1(m,B):

1. E|Y − µ(X)|2n − E|Y − µ′(X)|2n & E|µ(X)− µ′(X)|2n for any µ ∈ L0,1(m,Bm) such
that |µ− µ′|2 ≤ δ;

2. E supµ∈L0,1(m,Bm): |µ−µ′|2≤δ |(1−E)|Y −µ(X)|2n − (1−E)|Y −µ′(X)|2n|. δ an

n1/2 for

some sequence an = o(n1/2);

3. there is a sequence rn such that rn . δ−1
n and rn . n1/2

an
;

4. Pr(Fm ∈ L0,1(m,Bm))→ 1, and |Y − Fm|2n ≤ |Y − µ′(X)|2n +OP (r
−2
n ).

Then (E|µ0(X
′)− Fm(X ′)|2n)1/2 . |µ0 − µ′|2 + r−1

n in probability.

Here is the proof of Theorem 3.

Proof of Theorem 3. It is enough to verify the conditions in Lemma 16 and then show
that one can replace the approximation error w.r.t. µ′ ∈ L0,1(m,B) with the one w.r.t.
µB . To verify point 1 in Lemma 16, restrict attention to µ such that E|µ(X)−µ′(X)|2n ≥
4E|µ0(X)− µ′(X)|2n. If this is not the case, the convergence rate (error) is proportional
to E|µ0(X)− µ′(X)|2n and Lemma 16 would apply trivially. Hence, suppose this is not
the case. By standard algebra,

E|Y − µ(X)|2n −E|Y − µ′(X)|2n = E|µ0(X)− µ(X)|2n −E|µ0(X)− µ′(X)|2n
≥ 1

4E|µ(X)− µ′(X)|2n,

where the inequality follows by problem 3.4.5 in van der Vaart and Wellner [77]. Hence,
point 1 in Lemma 16 is satisfied. By construction, Fm has at most m non-zero coeffi-
cients. By this remark and Lemma 8, Fm ∈ L0,1(m,Bm) with Bm = Op(m

1/2) for the

PGA, Bm = Op(m
1/2/ρ

1/2
m ) for the OGA, and Bm = Op(m

1/2/ρ
1/2
m,n) for the RGA if

algo(B,m) = B2/m = O(1), which holds by the conditions in the theorem. The equal-
ity algo(B,m) =B2/m follows by Lemma 6. By Lemma 9, if dn,pmK2/pn−1/2 = o(ρm),
then ρ−1

m,n =Op(ρ
−1
m ). By the conditions in the theorem, ρm > 0, and dn,pmK2/pn−1/2 .

error(B,K,n,m) = o(1). Hence, infer that Bm = Op(m
1/2) for the OGA and RGA.

Hence, point 2 in Lemma 16, is satisfied for any δ and an =m1/2(B+m1/2)dn,pK
2/p by

Lemma 15, where

error(δ). δm1/2(B +m1/2)

(

dn,pK
2/p

√
n

)
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using the fact that ρ2m > 0 and Bm =Op(m
1/2).

It follows that point 3 in Lemma 16 is satisfied by rn = n1/2/[m1/2(B+m1/2)dn,pK
2/p].

Moreover, by Lemma 4, 5 and 6

|Y − Fm|2n ≤ |Y − µ′(X)|2n +Op(u
−2
n ),

with u−2
n as given in the aforementioned lemmas because µ′ ∈ L0,1(m,B)⊆ L(B). Since

point 4 in Lemma 16 requires un =O(rn), the actual rate of convergence is u−1
n ∨ r−1

n ≤
u−1
n + r−1

n as stated in the theorem.
It is now necessary to replace the approximation error E|µ0(X)−µ′(X)|2n with γ(B) :=

E|µ0(X)− µB(X)|2n. To this end, consider Lemmas 4, 5 and 6 with the empirical norm
| · |n replaced by | · |P,2. Going through the proof, the results are seen to hold as well
with the same error rate (implicitly using Condition 1). Hence, note that, by standard
algebra,

|Y − µ′(X)|2P,2 −E|Y − µB(X)|2P,2 = E|µ0(X)− µ′(X)|2P,2 −E|µ0(X)− µB(X)|2P,2.

The above display together with the previous remark and Lemmas 4, 5 and 6 imply that

E|µ0(X)− µ′(X)|22 ≤ E|µ0(X)− µB(X)|2n +O(u−2
n ),

with un as defined above. Hence, Lemma 16 together with the above display gives the
result which is valid for any B. �

4.6. Proof of Lemmas 1, 2 and 3

Proof of Lemma 1. If B′ ≥B, the lemma is clearly true because L(B)⊆L(B′). Hence,
assume B′ < B. W.n.l.g. assume that

∑

k |bk|=B, as µ ∈ L(B). Let λk = (|bk|/B)≥ 0,

and ck =B(bk/|bk|). Then µ=
∑

k λkckX
(k). Define

µ′′ =
∑

k

λk

(

B′

B

)

ckX
(k)

and note that µ′′ ∈ L(B′) by construction and B′/B < 1. Then

inf
µ′∈L(B′)

|µ′ − µ|22 ≤
∣

∣

∣

∣

∑

k

λkckX
(k) −

∑

k

λk

(

B′

B

)

ckX
(k)

∣

∣

∣

∣

2

2

=

[

1−
(

B′

B

)]2
∑

k,l

λkckλlclEX
(k)X(l)

≤
[

1−
(

B′

B

)]2(
∑

k

|λkck|
)2

=

[

1−
(

B′

B

)]2

B2,
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where the second inequality follows using the fact that |EX(k)X(l)| ≤ E|X(k)|2 = 1 and
the last equality because

∑

k |λkck|=
∑

k |bk|=B. �

Proof of Lemma 2. At first, show (5). By independence, |ZX(k)|p = |Z|p|X(k)|p <
∞. Let Akl be the (k, l) entry in A and similarly for Hkl. By stationarity, and the
fact that A is diagonal, the lth entry in Wi is Wil =

∑∞
s=0A

s
llεi−s,l, and by definition

X
(k)
i =

∑L
l=1Hkl

∑∞
s=0A

s
llεi−s,l. Hence, by Minkowski inequality, and the fact that As

ll

decays exponentially fast because less than one in absolute value, and the fact that
{Hkl: l = 1,2, . . . , L} is in the unit simplex, |X(k)|2p ≤maxl≤L

∑∞
s=0 |As

ll||εi−s,l|2p <∞.
Finally, by Hölder’s inequality, the Lipschitz condition for g, and Minkowski inequality,
for any µB(X) =

∑K
k=1X

(k)bk,

|∆(X)X(k)|p ≤
∣

∣

∣

∣

∣

K
∑

l=1

(λl + |bl|)|X(l)|
∣

∣

∣

∣

∣

2p

|X(k)|2p . (1 +B)max
l

|X(l)|2p|X(k)|2p

≤ (1 +B)max
k

|X(k)|22p <∞.

This completes the proof of (5). Geometric absolute regularity follows using the fact that
by construction, the mixing coefficients of (Xi)i∈Z are equal to the mixing coefficients of
(Wi)i∈Z because Xi is just a linear transformation of Wi (i.e., the sigma algebras gener-
ated by the two processes are the same). The process (Wi)i∈Z follows a L dimensional
stationary AR(1) model with i.i.d. innovations having a density w.r.t. the Lebesgue mea-
sure. Hence, Theorem 1 in Mokkadem [51] says that the vector autoregressive process
(Wi)i∈Z is absolutely regular with geometrically decaying mixing coefficients as long as L
is bounded. By independence, the sigma algebra generated by (Wi)i∈Z and (Zi)i∈Z are in-
dependent. Then Theorem 5.1 Bradley [14] says that the mixing coefficient of (Wi, Zi)∈Z

are bounded by the sum of the mixing coefficients of (Wi)∈Z and (Zi)i∈Z. Since the latter
mixing coefficients are zero at any non-zero lags because of independence, geometric beta
mixing follows, and Condition 3 holds. �

Proof of Lemma 3. By assumption Xi =Wi. Andrews [1] and Bradley [13] show that
the AR(1) model as in the lemma is not strong mixing, hence is not absolutely regular
and Condition 3 fails. Consider each term in the sum in Condition 4 separately. First, by

independence, |E0ZiX
(k)
i |p = 0 for any i > 0. Second, using the infinite MA representation

of the AR(1), the fact that the error terms are i.i.d., and then the triangle inequality

|E0(1−E)|X(k)
i |2|p =

∣

∣

∣

∣

∣

∞
∑

s,r=i

As
kkA

r
kk(1−E)εi−s,kεi−r,k

∣

∣

∣

∣

∣

p

≤ 2

∞
∑

s,r=i

|As
kk||Ar

kk||εi−s,kεi−r,k|p .A2i
kk
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which is summable. Third, by the triangle inequality,

|E0(1−E)∆(Xi)X
(k)
i |p =

∣

∣

∣

∣

∣

E0(1−E)

(

g(X
(l)
i ; l≤K)−

K
∑

k=1

X
(l)
i bl

)

X
(k)
i

∣

∣

∣

∣

∣

p

≤ |E0(1−E)g(X
(l)
i ; l≤K)X

(k)
i |p +

∣

∣

∣

∣

∣

E0(1−E)X
(k)
i

K
∑

l=1

X
(l)
i bl

∣

∣

∣

∣

∣

p

=: I + II .

Consider each term separately. DefineX
(k)
i0 :=

∑i−1
s=0A

s
kkεi−s,k andX

(k)
i1 :=

∑∞
s=iA

s
kkεi−s,k,

and note that X
(k)
i =X

(k)
i0 +X

(k)
i1 . By simple algebraic manipulations and repeated use

of Minkowski inequality,

I ≤ |E0(1−E)g(X
(l)
i0 ; l≤K)X

(k)
i |p + |E0(1−E)(g(X

(l)
i ; l≤K)− g(X

(l)
i0 ; l≤K))X

(k)
i |p

≤ |(E0 −E)g(X
(l)
i0 ; l≤K)X

(k)
i0 |p + |(E0 −E)g(X

(l)
i0 ; l≤K)X

(k)
i1 |p

+ |(E0 −E)(g(X
(l)
i ; l≤K)− g(X

(l)
i0 ; l≤K))X

(k)
i0 |p.

The first term on the right-hand side of the second inequality is zero by construction when
taking expectations (E0 −E). To bound the second term, note that by the properties of
g, and Minkowski inequality,

|(E0 −E)g(X
(l)
i0 ; l≤K)X

(k)
i1 |p ≤

∣
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by the independence of X
(k)
i0 and X

(k)
i1 and the existence of p moments. The third term

was bounded in a similar way. Hence, I .
∑∞

s=i |As
kk|. |Ai

kk|. Finally,
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as the first term is exactly zero. Clearly, both I and II are summable and the lemma is
proved. �
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4.7. Proof of Example 4

For simplicity, write εi in place of εi,k. By independence of the εi’s and stationarity,

E0(1−E)|X(k)
i |2 = E0(1−E)

∞
∑

s,r=0

asarεi−sεi−r =
∑

s,r≥i

asar[(1−E)εi−sεi−r]

=
∑

s≥i

a2s(1−E)ε2i−s + 2
∑

r>s≥i

asarεi−sεi−r =: I + II .

For i > 0, define ās = i(1+ǫ)a2s and ā :=
∑

s≥i ās and note that ā depends on i but is finite

for any i because i(1+ǫ)a2s = i(1+ǫ)s−(1+ǫ) ≤ 1 for s≥ i (recall the definition of as). Then,
by the definition of ās and then by Jensen inequality,

E|I|p ≤ E

∑

s≥i

(

ās
ā

)

|i−(1+ǫ)ā(1−E)ε2i−s|
p

=
∑

s≥i

(

ās
ā

)

i−(1+ǫ)pāpE|(1−E)ε2i−s|
p

≤ i−(1+ǫ)pāpmax
s

E|(1−E)ε2s|
p

because
∑

s≥i(
ās

ā ) = 1 and the ās ≥ 0. The above display implies that |I|p . i−(1+ǫ). It
remains to bound II . For any random variable W such that E exp{|W |/τ} ≤ 4 for some
τ > 0, it is clear that

E|W/τ |p ≤ p!(E exp{|W |/τ} − 1)≤ p!× 3

using Taylor series expansion. This implies that (E|W |p)1/p ≤ 3pτ for such τ if it
exists. Hence, apply this inequality to bound E|II |p. Noting that E exp{τ−1|II |} ≤
E exp{τ−1II } + E exp{−τ−1II }, it is enough to bound E exp{τ−1II }. By Gaussianity,
independence of the εi’s, and the fact that exp{·} is non-negative, letting Ei be expec-
tation conditional on εi and its past,

E exp{τ−1II } =
∏

r>s≥i

E exp{τ−12asεi−sarεi−r}=
∏

r>s≥i

E exp{Ei−r(τ
−12asεi−sarεi−r)

2}

=
∏

r>s≥i

E exp{(τ−12asar)
2
ε2i−r}=

∏

r>s≥i

E exp

{

4ā2i−2(1+ǫ)τ−2 ās
ā

ār
ā
ε2i−r

}

,

where the last three steps use the properties of the moment generating function of a
Gaussian random variable and the definition of ās and ā, as used in the control of I.
Hence, setting τ = 4āi−(1+ǫ), and recalling that ās/ā≤ 1 by construction, the above is
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then bounded by

max
r≥i

E exp

{

ε2i−r

4

}

=

∫

R

ez
2/4 e

−z2/2

√
2π

dz =
√
2,

where the two equalities follow from the fact that ε2i−r is a standard normal random
variable, and then performing the integration. The above two display show that for
τ = 4āi−(1+ǫ), E exp{τ−1|II |} ≤ exp{τ−1II } + exp{−τ−1II } ≤ 2

√
2 < 4, which implies

|II |p . āi−(1+ǫ). The upper bounds for the Lp norms of I and II imply that |E0(1 −
E)|X(k)

i |2|p . i−(1+ǫ).
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[18] Bühlmann, P. and Yu, B. (2003). Boosting with the L2 loss: Regression and classification.
J. Amer. Statist. Assoc. 98 324–339. MR1995709

[19] Bunea, F., Tsybakov, A. and Wegkamp, M. (2007). Sparsity oracle inequalities for the
Lasso. Electron. J. Stat. 1 169–194. MR2312149

[20] Bunea, F., Tsybakov, A.B. and Wegkamp, M.H. (2007). Aggregation for Gaussian
regression. Ann. Statist. 35 1674–1697. MR2351101

[21] Burman, P., Chow, E. and Nolan, D. (1994). A cross-validatory method for dependent
data. Biometrika 81 351–358. MR1294896

[22] Burman, P. and Nolan, D. (1992). Data-dependent estimation of prediction functions.
J. Time Series Anal. 13 189–207. MR1168164

[23] Cai, T.T. and Wang, L. (2011). Orthogonal matching pursuit for sparse signal recovery
with noise. IEEE Trans. Inform. Theory 57 4680–4688. MR2840484

[24] Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is
much larger than n. Ann. Statist. 35 2313–2351. MR2382644

[25] Chen, X. and Shen, X. (1998). Sieve extremum estimates for weakly dependent data.
Econometrica 66 289–314. MR1612238

[26] Clarkson, K.L. (2010). Coresets, sparse greedy approximation, and the Frank–Wolfe
algorithm. ACM Trans. Algorithms 6 Art. 63, 30. MR2760426

[27] Daubechies, I., Defrise, M. and De Mol, C. (2004). An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57

1413–1457. MR2077704
[28] Dedecker, J. and Doukhan, P. (2003). A new covariance inequality and applications.

Stochastic Process. Appl. 106 63–80. MR1983043
[29] DeVore, R.A. and Temlyakov, V.N. (1996). Some remarks on greedy algorithms. Adv.

Comput. Math. 5 173–187. MR1399379
[30] Donoho, D.L. and Johnstone, I.M. (1998). Minimax estimation via wavelet shrinkage.

Ann. Statist. 26 879–921. MR1635414
[31] Doukhan, P. and Louhichi, S. (1999). A new weak dependence condition and applications

to moment inequalities. Stochastic Process. Appl. 84 313–342. MR1719345
[32] Doukhan, P.,Massart, P. andRio, E. (1995). Invariance principles for absolutely regular

empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 31 393–427. MR1324814
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Ann. Inst. H. Poincaré Probab. Statist. 26 219–260. MR1063750
[53] Nickl, R. and van de Geer, S. (2013). Confidence sets in sparse regression. Ann. Statist.

41 2852–2876. MR3161450
[54] Pati, Y.C., Rezaiifar, R. and Krishnaprasad, P.S. (1993). Orthogonal matching pur-

suit: Recursive function approximation with applications to wavelet decomposition. In
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers 1 40–44.
Pacific Grove, CA: IEEE.

[55] Peligrad, M., Utev, S. and Wu, W.B. (2007). A maximal Lp-inequality for stationary
sequences and its applications. Proc. Amer. Math. Soc. 135 541–550. MR2255301

http://www.ams.org/mathscinet-getitem?mr=2291503
http://www.stat.yale.edu/~arb4/publications_files/RiskGreedySelectionAndL1penalization.pdf\
http://www.stat.yale.edu/~arb4/publications_files/RiskGreedySelectionAndL1penalization.pdf\
http://www.ams.org/mathscinet-getitem?mr=2711791
http://www.ams.org/mathscinet-getitem?mr=1616041
http://jmlr.org/proceedings/papers/v28/jaggi13-supp.pdf\
http://jmlr.org/proceedings/papers/v28/jaggi13-supp.pdf\
http://www.ams.org/mathscinet-getitem?mr=1150368
http://www.ams.org/mathscinet-getitem?mr=1738484
http://www.ams.org/mathscinet-getitem?mr=1998902
http://www.ams.org/mathscinet-getitem?mr=3015038
http://www.ams.org/mathscinet-getitem?mr=2267246
http://www.ams.org/mathscinet-getitem?mr=0958507
http://www.ams.org/mathscinet-getitem?mr=1063750
http://www.ams.org/mathscinet-getitem?mr=3161450
http://www.ams.org/mathscinet-getitem?mr=2255301


52 A. Sancetta

[56] Pesaran, M.H., Pettenuzzo, D. and Timmermann, A. (2006). Forecasting time series

subject to multiple structural breaks. Rev. Econ. Stud. 73 1057–1084. MR2260756
[57] Pesaran, M.H. and Pick, A. (2011). Forecast combination across estimation windows. J.

Bus. Econom. Statist. 29 307–318. MR2808603
[58] Pollard, D. (2002). Maximal inequalities via bracketing with adaptive truncation. Ann.

Inst. H. Poincaré Probab. Statist. 38 1039–1052. MR1955351
[59] Rakhlin, A., Panchenko, D. andMukherjee, S. (2005). Risk bounds for mixture density

estimation. ESAIM Probab. Stat. 9 220–229. MR2148968
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