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Abstract

In this thesis we present the continuing work done examining a system in
which an Andreev interferometer is used to probe the state of a flux qubit.
In particular, we show that the back action of the interferometer on the
qubit is low enough that an energy gap can still be observed in the qubit,
and present the first experimental evidence of resonant excitation of a flux
qubit detected using an Andreev interferometer.

We begin by discussing the theory of flux qubits and Andreev interfer-
ometers individually. We then go on to examine what happens when with
these two types of structures are combined, with particular attention being
paid to the consequences for the coherence time of the qubit.

We then discuss the practical elements of the experiment, notably the
development of a tri-layer resists system that can be used to create high
quality mesoscopic structures.

We present the experimental results, which show the evidence for resonant
excitation of a qubit detected using an Andreev interferometer. The quality
of these resonances suggests that the system has a coherence time of less
than 1ns.

To conclude we examine some ways in which we believe the system can
be improved in order to allow more detailed spectroscopic and time resolved
measurements.
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Chapter 1

Introduction

The aim of this project was to probe the state of a mesoscopic quantum
system known as a flux qubit using a device called an Andreev interferometer.

Flux qubits are mesoscopic loops of superconducting material that behave
as an artificial two state system. Such a system is of great interest for two
reasons, one practical and one more fundamental. The practical reason is that
such a system can be used as a qubit, the building block of one of the ‘Holy
Grails’ of science, the quantum computer. The more fundamental reason
is that a flux qubit is a mesoscopic analogue of an atom. By probing the
flux qubit and seeing how it behaves we can gain a better understanding of
quantum mechanics and; therefore, the fundamental nature of matter itself.

There are several groups around the world investigating the properties of
flux qubits. What makes this project unique is the way in which the state
of the qubit is determined, or ‘read out’. Other groups use devices such as
SQUIDs or tank circuits to probe the state of the qubit[1][2]. In this project
another mesoscopic device, the Andreev interferometer, is used to achieve
similar results. While it is believed that this method has several advantages
over the other methods mentioned, it also presents its own unique set of
problems which must be overcome. Previous work by Dr. Kevin Marhshall[3]
and Dr. Kok Gnee Chua[4] have demonstrated the viability of this proposal
and in this project we present the first evidence for spectroscopy of a flux
qubit using Andreev inteferometry.

The structure of this dissertation is as follows: This chapter sets out the
main details of the project; gives some historical background; and explains
the motivation behind the work, particularly the advantages flux qubits have
over other qubit implementations and the novel use of an Andreev inter-
ferometer. Chapters 2 to 4 outline the theory describing the behaviour of
both flux qubits and Andreev interferometers. In chapter 5 the behaviour
of a combined interferometer and qubit system is examined. Chapters 6
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Figure 1.1: The mesoscopic structure examined in this structure is a com-
bined flux qubit and Andreev interferometer. (a) Shows a diagram of the
structure and (b) ahows a SEM image of the finished device. The qubit is
made from a loop of aluminium (shown in blue) interrupted by Josephson
junctions (shown in red). The Andreev interferometer is made of a silver
cross (shown in purple). The horizontal part of the cross is connected to two
superconducting wires which lead to the qubit.



and 7 are concerned with the practical details of the experiments, partic-
ularly the development of a novel tri-layer resist system which has allowed
for the creation of high quality mesoscopic structures. Chapter 8 presents
and discusses the results of the experiments that have been completed, while
Chapter 9 concludes and looks at the future prospects of this project.

1.1 Background

A qubit is a quantum bit, the building block of a quantum computer. A
quantum computer is a device which makes use of the unusual nature of
physics at quantum level in order to carry out calculations. Flux qubits are
one of the most promising implementations of such a system, making use of
the peculiar nature of superconducting materials in order to create a system
that behaves in a quantum way but is also easy to manipulate. Andreev
interferometry is a novel readout method for a flux qubit that promises many
advantages over other techniques[5].

1.1.1 History

The concept of a quantum computer arose out of the difficulty in simulat-
ing quantum systems using a classical computer. In 1982, Richard Feynman
observed that certain quantum mechanical effects could not be simulated effi-
ciently on a classical computer[6]. He proposed that the only way to produce
an effective model of a quantum system was to use another system that itself
behaved in a quantum way. This then led to speculation that if a machine
that made use of quantum effects could provide a more effective way of pro-
ducing models of physical systems, perhaps there were other tasks at which it
would have an advantage over a classical computer. Unfortunately, building
such a quantum computer proved difficult, and although it was suspected
there were tasks that such a computer would be especially suited for, no
one was able to provide a specific example. This suddenly changed in 1994
when Peter Shor showed that factorizing large numbers was a task quantum
computers could do exponentially quicker than classical computers[7]. The
extreme difficulty of factorizing large numbers is a keystone on which modern
cryptography is built and this revelation led to a renewed flurry of activity in
quantum computing, with computer theorists searching for other algorithms
that quantum computers could run, and experimental physicists researching
systems that could be used to implement a quantum computer.



1.1.2 Implementation

Like classical computers a quantum computer is comprised of a large number
of bits, in this case called quantum bits or qubits, which act as switches with
two states, 0 and 1. Unlike classical computers in which each bit must be in a
definite state, each qubit can be in a superposition of both the 0 and 1 states
simultaneously. This means that while a classical computer with n bits can
be in only one of 2" different combinations, a computer of n qubits can be in
2™ states simultaneously and can carry out operations on them in parallel.
Reading out the answer from the computer means observing the state of the
qubits and therefore collapsing the superposition. However, algorithms can
and have been written which allow for this and still permit the correct answer
to be collected from the system. This parallel processing of many different
states allows a quantum computer to do some tasks exponentially quicker
than a classical computer.

The delay in creating a fully functioning quantum computer has been
caused by the difficulty in finding a quantum system that works as an effective
qubit. David DiVincenzo devised a list of five criteria a system must meet if
it is to be used as a quantum computer|8]-

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a simple
fiducial state.

3. Long relevant decoherence times, much longer than the gate
operation time.

4. A universal set of quantum gates.

5. A qubit-specific measurement capability.

Candidates for qubits can be broken down into two categories. The
first are those based on atomic systems. These include qubits based on
nuclear magnetic resonance work[9][10], ion traps[11][12] and cavity QED
approaches[13][14]. These systems were initially seen as promising candidates
because they have few degrees of freedom and can be easily decoupled from
their environment, and so far the most advanced work towards a quantum
computer has been done on these types of systems. However, the properties
that make it easy to decouple them from their environment also make them
difficult to fabricate. It is estimated that to create an operational quantum
computer upwards of 10,000 qubits will be needed and it is thought that this
is extremely impractical with these types of systems[15].
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The second kind of qubits are solid state structures that have been ar-
tificially fabricated so that under certain conditions they exhibit quantum
properties. These structures are generally micrometer sized and can be con-
structed on a silicon substrate using lithography techniques well established
by the microchip industry. They are made from either superconducting or
semiconducting materials. Because they are micrometer sized, and yet still
display quantum phenomenon over large length scales, they are referred to
as mesoscopic structures.

1.2 Persistent Current Qubits

In this project we have worked with superconducting persistent current qubits,
otherwise known as flux qubits. They are constructed from loops of supercon-
ducting metal interrupted by weak links which are called Josephson junctions.
Flux through the loop causes a persistent current to flow. The state of the
qubit is defined by the direction of this persistent current. As the applied flux
approaches half a flux quanta, ®p = ®y/2, energy level repulsion occurs|16]
and as it changes from &5 < &y to &4 > P( the persistent current changes
direction. This phenomenon then occurs at each half integer multiple of a
flux quanta.

At applied flux around &5 = 0.5nP(, where n is an integer, the excited
state of the system becomes accessible. Two methods can be used to access
this excited state. Applying a pulse of EM radiation with energy equal to
the gap energy between the states will cause the system to undergo Rabi
oscillations. Controlling the length and duration of this pulse allows the
system to be put into a superposition of the two states. A similar effect can
be achieved by rapidly changing the magnetic field.

As mentioned above, the major advantage that mesoscopic systems such
as flux qubits have over atomic systems is that their fabrication makes them
scalable, so creating the large number needed for a quantum should not be
a significant problem, and they can be easily connected to the environment,
making it easier to address and read out the qubits. These advantages come
at a price, however and because flux qubits are more connected to their en-
vironment they are also more susceptible to environment noise, which causes
decoherence. The major challenge when working with these qubits; therefore,
becomes meeting the fourth of DiVincenzo’s criteria, achieving coherence
times long enough to make qubit operations possible. There are two major
sources of noise that need to be considered. The first is thermal noise, which
must be lower than the energy gap between the two energy states of the qubit
to avoid thermal activation. This was achieved by placing the sample in a
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Figure 1.2: The energy levels for the ground state (dark line) and the first
excited state of the qubit versus applied flux. The double well potentials are
shown schematically above. The lower graph shows the circulating current
in the qubit for both states as a function of applied flux. The units of flux
are given in terms of the flux quantum. Image taken from[16].



dilution refrigerator and cooling it to temperatures of less than 20mK. The
second is electron noise from the measurement equipment attached to the
equipment and environment. In this project the aim has been to reduce this
through careful design of the measurement system and through the addition
of filtering and shielding around the qubit.

1.3 A Unique Qubit Readout

Persistent current qubits are being investigated by several other experimental
groups around the world, and the qubit used in this project has been designed
to be comparable to theirs. However, what makes this work unique is the
readout system. While other groups have relied on SQUIDs[17], or tank
circuits[18], to read out the state of the qubit, an Andreev interferometer
has been used.

An Andreev interferometer is a piece of normal metal connected to two
superconducting mirrors (in this case two wires which are connected to
the qubit). The phenomenon of Andreev reflection from the superconduc-
tor/normal metal interface causes the resistance of the wire to be changed
as a function of the difference in phase between the two superconductors.
Because the wires are connected directly to the qubit, the phase difference
across them is linked to the phase across the qubit, and by measuring the
resistance of the wire the state of the qubit can be inferred.

Previous works have successfully carried out spectroscopy on persistent
current qubits[17]. However, they have relied on SQUIDS and tank circuits
to probe the state of the qubit by measuring the change in flux. This method
strongly perturbed the qubit and measurement systems and suffers from a low
resolution. With an Andreev interferometer probing the phase of the qubit
directly, it is possible to carry out continuous measurements with relatively
little back action of the qubit.

1.4 Work Completed For This Project

e Developed new high resolution process creating flux qubits, with a tri-
layer germanium mask allowing for well defined Josephson junctions.

e (Calculated relaxation and dephasing times for a flux qubit connected
to an Andreev interferometer.

e Created a measurement setup that helps to maximize coherence times
of a qubit.

10



e Observed the first resonant excitation of a flux qubit using an Andreev
interferometer.
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Chapter 2

Superconductivity and
Josephson Junctions

2.1 Introduction

This chapter introduces the phenomenon of superconductivity and discusses
two important effects arising from this, flux quantization and the Josephson
effect, both of which are exploited in order to create flux qubits. A more
detailed review of the behaviour of Josephson junctions can be found in [19]
and [20].

Superconductivity is a property observed in certain materials at low tem-
perature. It is characterized by the disappearance of electrical resistance in
the material and by the exclusion of magnetic fields from within the bulk of
the material, which is known as the Meissner effect.

A microscopic theory of superconductivity has been given by Bardeen,
Cooper and Schrieffer[21]. They showed that in a superconducting material
at low temperatures, it becomes energetically favourable for electrons to form
pairs with equal and opposite spin and momentum. These electron pairs, also
called Cooper pairs, are held together by an attractive force transmitted by
phonons in the lattice. Because this force is attractive, the energy of the
Cooper pairs is lowered and they form an energy state below that of the
unpaired electrons at the Fermi energy. The Cooper pairs have a total spin
of zero and so are no longer bound by the Pauli exclusion principle. They can
all occupy the same energy state and can be described by a single coherent
wave function

|W(r,t)|exp(io(r,t)) (2.1)

Superconductors, therefore are systems containing tens of thousands of
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electron pairs that can be described by a single macroscopic wave function.
This means that they display quantum interference behaviour similar to that
observed with atoms at a microscopic scale, on a macroscopic scale. This
leads to phenomenon which are important to this project, flux quantization
and the Josephson effect, which are discussed in more detail below.

2.2 Flux quantization

Flux quantization is the phenomenon by which the flux threading a loop of
superconductor is quantized in units of

h
by = — 2.2
07 2 (22)
This arises from the condition that at any point the wave function must
be single valued[19]. Consider a loop of superconducting metal. The phase

difference between points X and Y in a piece of superconductor is equal to
Y -~

(@d)xy = 0u— 0, =27 [ Tl 2.3)

where A is the wavelength, X is a unit vector in the direction of wave
propagation and 1 is an element of a line joining X and Y. For simplicity’s
sake the wave has been assumed to be one dimensional in this case.

The wavelength of the electron pairs is related to the momentum by

A=h/P (2.4)

and the momentum of the pair is made up of contributions from the
current flow and magnetic field such that

P =2mv + 2eA (2.5)

where curlA = B. v is the velocity of the pairs and is related to the
supercurrent density j, by

= (1/2)ns-2e - v (2.6)

where 1/2n; is the density of Cooper pairs.
The phase difference described in 2.3 can, therefore be written as

4 4
(Ad)xy = hzm "I, d1+£/ A-dl (2.7)
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If we now consider a line that joins points X, Y and Z to form a closed
path XYZX then the change in phase around this loop is equal to

4mm 4dme
A = Jg-dl A -dl 2.8
Bohyr =30 G Is- a1+ 0 4 23

Applying Stokes theorem this then becomes

(Ag)x 47”” ]{ Js - dl+@ / / B dS (2.9)

where S is the area bounded by the loop. Since this wavefunction must be
single valued, at any point the total change in flux must be equal to 2mn
where n is integer. From this we obtain

m h
Jg - dl B.dS=n— 2.1
nseQ]{ o + //s n26 (2.10)

The left hand side of this equation is known as the fluxoid and is made up
of the line integral of the current density around the loop and the magnetic
flux threading the loop. 2.10 shows that the fluxoid must be a multiple of
the flux quantum ®(. In most cases the first term in the fluxoid equation is
very small and so it is proper to say that the flux contained can only exist
in multiples of ®.

2.3 Fundamental Josephson Equations

A Josephson junction is a weak link in a superconducting wire. This weak
link can take the form of a layer of oxide (referred to as a SIS junction), a
piece of normal metal (referred to as a SNS junction), a constriction in the
wire or a point contact.

The SIS Josephson junction is the type most commonly used in construct-
ing qubits. Because of their quantum nature the Cooper pairs can tunnel
through the insulating layer and a supercurrent can flow through the junc-
tion. The magnitude of this current is dependent on the phase difference
between the two superconductors. Two fundamental equations describe the
behaviour of the Josephson junction. The first is

Is =1.sin¢ (2.11)

where ¢ = ¢; — ¢o, the phase difference across the junction and I, is known
as the critical current of the junction. This shows that the current flowing

14



through a Josephson junction is an oscillating function of the phase difference
between the two superconductors.

The second fundamental Josephson equation is

. 2e 2T
—y=="y 2.12

This is known as the Josephson voltage-phase relationship and shows that a
changing phase across the junction results in a constant voltage.

Re-arranging 2.3 gives

¢ = ¢, = arcsin Ig/1. + 2mn (2.13)

where —I, < Ig < I, and n is an integer. Applying this to 2.12 shows
that when a steady current which is less than the junction’s critical current
is passed through the junction there is no voltage drop. In this case the
junction is said to be in the § state where S stands for either superconducting
or stationary.

If the current passed through the junction is greater than I. then the
junction switches to the resistive or R state. In this state the junction has
a resistance R,, there is a voltage drop across the junction, and the total
current is made up of both superconducting and normal components

[=1Is+1, (2.14)

From 2.12 a non zero voltage, V', across junction leads to phase growing
with time

¢ = wyt + const (2.15)

Using 2.3 this leads to a supercurrent oscillating with frequency

wy==V =2V (2.16)

2.4 The RCSJ Model of a Josephson Junc-
tion

The classical behaviour of a Josephson junction can be represented by what is
often called the Resistively Capacitive Shunted (RCSJ) Model. This model,
shown in Figure 2.1 consists of a non-linear superconducting component
shunted by a capacitor and resistor. The resistor represents the resistance of
the junction when it is in its normal state, R,, and the capacitance of the

15
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Figure 2.1: The RCSJ model of a Josesphson junction. Junction is modeled
as a phase driven supercurrent shunted by a resistance R and capacitance C'.

junction, C, which can be calculated from its geometry. The total current
through the junction is then
Vv av
I = Isi —+C— 2.17
sing + 7 + pn (2.17)
Substituting from 2.12 then gives
1 &g do D d%¢

I = I sing———+C

2.1
R 2w dt 21 dit? (2.18)

The superconducting element of the circuit has a non-linear inductance.
Consider a junction undergoing an arbitrary process ¢(t) and small variation
¢. Inserting this into 2.3 and 2.12 and expanding sin(¢(t) + ¢) with a Taylor
expansion in q3 gives

5 1 [~
Is = —/th (2.19)
Lg

L' =L cos¢ (2.20)
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This shows that the junction has a non-linear inductance dependant on
the phase across the junction which can take on negative values.

Le = (2.21)

2.5 Josephson Energy and Charging Energy

There are two attributes used to characterize Josephson junctions, the Joseph-
son energy and the charging energy.

The Josephson energy is related to the energy stored in a Josephson
junction when a supercurrent is passed through it. When it is in the S state,
the voltage drop across the junction is zero and so no energy is dissipated
from the junction. The work done on the junction by an external system can
be written as

to
Wy = / IVt (2.22)

i1
Applying equations 2.3 and 2.12 gives us the work done in terms of the
Josephson phase.

Nl
2

The work done can be thought of as the difference between 2 potential
energies

2 ‘ R,
Ws sin ¢ = 2—6(005 ¢1 — COS ¢a) (2.23)

Ws = Usps — Usy (2.24)

We can, therefore, define a junction potential energy
Us(¢) = E;(1 — cos ¢) + const (2.25)
where E; is the Josephson energy.

hl
E, =—° 2.26
J % ( )
The charging energy of a Josephson junction is the energy needed for one
electron to tunnel across the junction. It is equal to

Ec = (2)%/20 (2.27)

The ratio of Josephson energy to charging energy is an important pa-
rameter for the construction of qubits. The two values associated with each

17



energy, the phase ¢ and charge (), are conjugate so that when one is well
defined there is a large uncertainty in the other. For E; >> FE. ¢ is well
defined and there are large quantum fluctuations in () and so the phase is
used to measure the quantum state of the system. Such systems are known
as phase or flux qubits. When E; >> E¢ the reverse is true and () can be
measured to determine the state. These systems are known as charge qubits.

The value of E;/E¢ is determined by the geometric properties of the
junction and the size of the oxide barrier and can be engineered during the
fabrication process.

Figure 2.2 shows the IV curve of a typical Josephson junction. The im-
portant parameters of the junction can be calculated from this curve. The
slope of the linear sections of the curve is equal to R,,, the resistance of the
junction in its normal state. The transition between the linear and zero volt-
age sections of the curve gives the critical current of the junction, I., which
can be used to calculate E;. Finally, by measuring the separation between
the two linear sections of the curves intersection with the x-axis, the charging
energy Eo can be calculated.

2.6 Quantum Behaviour of Josephson Junc-
tions

The construction of qubits relies on the fact that Josephson junctions exhibit
quantum behaviour. The simplest way to describe some of this quantum be-
havior is to model the Josephson junction as a particle moving in a potential
energy, U. To find U, we can use a process analogous to that of finding the
Gibbs energy in a thermodynamic system. In any system acting under a
force, I, the total energy can be calculated by

G=E-Fz (2.28)

where F is the intrinsic energy of the system and x is a generalized co-
ordinate corresponding to the Force F', and is chosen in such a way that
the product Fz = P, where P is the instantaneous power flowing into the
system. The force in the system under discussion here is current, F' = I, and
SO

P=1V (2.29)
Using 2.12 this means that
h
x:/thzz—f—I—C' (2.30)
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Figure 2.2: Ideal IV curve of a Josephson junction. The solid red lines show
the resistive state of the junction and the blue lines the S state. The switch
between these two states occurs at the critical current, which can then be
used to calculate the Josephson energy(2.26). By extrapolating where the
resistive part of the curve would intercept the x-axis, the charging energy
can be measured(2.27).
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Figure 2.3: Potential energy of Josephson junction for different values of
i=1/I,.

where C is a constant.
The total energy of the system is thus equal to

h
U(6) = G = U(0) ~ 12 (2.31)
Taking the U to be that which was calculated in 2.25
ho .
U((b):Ec(l—cosqb)—i—lz—e—I—C':Ec(l—cosgb—qu)—l—C (2.32)

This takes the form as a washboard potential (see Figure 2.3). This is a
series of potential wells tilted by the ratio of the current through the junction
to the critical current I..

The height of the barrier separating the potential wells, Uy is equal to

2B, [(1 —i*)"? —i(arccos1)] (2.33)

where ¢ = [/I.. When ¢ > 1 then there is no barrier between the wells
and the particle rolls down the slope, leading to a changing phase. From 2.12
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this leads to a constant voltage across the junction. When ¢ << 1 then the
barrier height that the particle is trapped within one well and the junction
is in the S state.

When trapped within the well the particle oscillates with a frequency
equal to

wo = wp(1 — %)/ (2.34)

Irradiating the junction with microwaves close to this frequency can cause
resonant activation of the junction, allowing the particle to escape over the
top of the barrier and causing the junction to switch to a voltage state[22].

However, because the Josephson junction is also a quantum system there
is also a possibility for the particle to tunnel through the barrier and escape
the well. Further experiment showed that the energy levels inside each well
were quantized[23][24], and that by the application of the microwaves the
junction could be excited into a higher energy state, increasing the proba-
bility of tunnelling. Because the shape of the well is not a perfect harmonic
oscillator, the energy levels are not equidistant and spectroscopy could be
carried out on the junctions.

This quantization of energy levels of Josephson junctions is exploited to
create flux qubits, as discussed in the next chapter.

21



Chapter 3

Flux Qubits - A Mesoscopic
Two State System

3.1 Flux Qubits

The macroscopic quantum nature of Josephson junctions makes them ideal
candidates for qubits[25]. This chapter discusses the physics pertinent to one
such qubit, the flux qubit, and examines the theory necessary to describe the
behaviour of the ideal two state system a qubit is meant to replicate. A more
detailed review of the behaviour of both flux and charge qubits can be found
in [26]. There are two important variables of the Josephson junctions, the
phase ¢ and the charge 2ne where n is the number of Copper pairs in the
superconductor.
These quantities are conjugate such that

[n’ ¢] =1h (31)

So that if n is well defined then there is a large uncertainty in ¢ and vice
versa. The accuracy with which n and ¢ can be determined is controlled by
the ratio of E. to £j. In the case where E. >> I then it is the charge that
is well defined and so is used to designate the state of the qubit. Such devices
are known as charge qubits[27].

In the opposite case E; >> FE., the junction phase and the junction
current [, are well defined and so are used as the control variable. Such
qubits are known as flux or persistent current qubits. This is the type of
qubit used in this project and the behaviour of such a qubit is described in
this chapter.
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7

Figure 3.1: A simple RF squid consisting of a loop of superconductor (shown
in gray) interrupted by a Josephson junction (shown in red). External flux
®, generates a current I around the loop. For a given flux the magnitude
and direction of this current is controlled by the loop geometry and junction
parameters £; and E,.

3.1.1 A Simple Flux Qubit - The RF Squid

The simplest implementation of a flux qubit is a RF squid, a loop of super-
conductor interrupted by a Josephson energy with capacitance C' and critical
current /.. (see Figure 3.1). This method was first experimentally realized by
[28].

Using 2.3 and 2.12 it can be shown that the phase drop across the junction
¢ is related to the flux threading the loop ®

)
= 21— 3.2
6= (32)
® is given by
b=0, - LI (3.3)

where @, is the externally applied flux, L is the inductance of the loop
and [ is the loop current.
Therefore, 3.2 can be rewritten as

b = g — Ai (34)
where ®
=2r—=< .
Oe T % (3.5)
LI,
A=2 3.6
" (56)
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When junction is in the S state
I =1.sin¢ (3.7)
Inserting this into equation 3.5 gives

de = ¢ + Asin ¢ (3.8)

Figure 3.2 shows the variation of ¢ with ¢.. For A = 0 there is a linear
dependence. This becomes increasingly non-linear with increasing A until at
A =1, ¢ becomes multivalued.

In order to analyze the stability of each of these states it is useful to again
consider the potential energy of the system. This differs from that given for
the single current biased junction in 2.32 by the introduction of an inductive

term
B LI?

Up == (3.9)

This gives a final potential

2
U=Ec|1l—cos¢p+ -9 (3.10)

2\
which is shown in Figure 3.3. At A < 1 there is only one minimum in
this potential, corresponding to the S state of the system. At A > 1 we have
a potential formed from the superposition of a quadratic function and an
oscillating function, leading to a number of potential wells. These wells have

a minimum that satisfy the condition

d*U .
k= i E.[cosp+ AU >0 (3.11)
or 0o
A2
o >0 (3.12)

This means that in Figure 3.2 sections of ¢(¢.) with positive slopes are
stable while sections with negative slopes are unstable. This leads to the
behaviour shown, with sudden jumps in ¢ at

¢F =2mn 4+ (N* — 1)Y2 + arcsin(A7!) — 7/2 (3.13)

This behaviour can be easily visualized by modelling the system as a
particle moving in the potential given in 3.10, as shown in Figure 3.4. At ¢, =
0 the particle is trapped in the lowest potential well. Each well represents
a different current direction, and equivalently a flux direction through the
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Figure 3.2: Phase ¢ around a RF squid as a function of external phase ¢..
(a) Shows how the function changes for values of A between 0 and 2. As A
increases the function becomes increasingly linear, and becomes multivalued
at A > 1. (b) Shows the phase jumps in ¢. The sections of the curve with
negative slopes are unstable and so phase jumps occur at A = ¢=.
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Figure 3.3: The potential energy of the RF squid U as a function of the phase
¢. (a) Shows the change in potential for increasing values of A. As lambda
increases the potential becomes a series of potential wells, representing alter-
nating current directions. (b) Shows the energy of the system for A = 5 and
¢ = 0.5Py. Here the system has two potential wells. When the particle is
trapped in the left well the current flows clockwise, and when the particle is
trapped in the right well the current flows anti-clockwise.
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squid, so that when the particle is trapped in the left well the current flows
clockwise around the squid and the total flux threading the squid points ‘up’,
and when the particle is in the right well the current flows anti-clockwise and
the flux points ‘down’. As ¢, is increased the oscillating part of the potential
is shifted relative to the quadratic part. This leads to the well the particle is
trapped in being raised to higher energies and the barrier between this well
and the next well being lowered. At ¢. = ¢ the barrier is reduced to zero
and the particle can escape to the lower well, leading to a sudden jump in the
phase and change in the current direction. This process then repeats itself
as ¢, continues to increase.

3.1.2 Macroscopic Quantum Effects

The above section describes the classical behaviour of a RF squid. In real-
ity, macroscopic quantum effects can lead to important deviations from this
behaviour. In the classical system at 7" = 0 the particle can only escape
from the well when ¢, = ¢=. However, quantum mechanics allows for the
possibility of the particle tunnelling through the barrier. This leads to the
system being the superposition of two basis states.

() =af 1) £5] 1) (3.14)

The | T) represents the flux through the loop being in the ‘up’ direction
(and the current around the loop flowing in the clockwise direction) and the
| |) state represents the opposite case with the flux pointing in the ‘down’
direction and the current flowing anti-clockwise around the loop.

When the applied flux is equal to &5 = ®y/2, known as the degeneracy
point, the system is symmetrical and due to tunnelling the eigenfunctions of
the system are the symmetrical and anti-symmetrical superposition of the
basis states, with « = =1/ V2. This leads to the system having a ground
and excited state, with the wavefunction of the system in the ground state

being equal to
1

0)=—(1—=11) (3.15)

Sl

2
and in the excited state being

1=

V2

The energy gap between the two states at the degeneracy point is A and
away from the degeneracy point is

D+ (3.16)

v=(A*+¢é) (3.17)
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Figure 3.4: Potential energy of a single junction RF squid for different values
of .. (a) &, = 0, particle is trapped in the lower well. (b) &, = ®y/2,
wells are equal. (c) &, = Py, particle is trapped in the upper well. (d)
d, = .6.67P¢/27, particle escapes from the upper well to the lower well,
causing sudden change in phase and current.



where

¢ =2I,(Pp — By/2) (3.18)

3.1.3 The Three Junction Flux Qubit

A working qubit requires A > 1. For a single junction qubit this requires a
large loop size, making the qubit more susceptible to flux noise, or a large
critical current, meaning that the qubit is more susceptible to thermal exci-
tation.

This problem is overcome in the three junction persistent qubit developed
by Mooji and Orlando[29][30].

This qubit consists of a superconducting loop interrupted by three Joseph-
son junctions with Josephson energies Ej;, Ej» and FEj;3, with phase drops
across each junction ¢, ¢o and ¢3.

The junctions are designed in such a way that

Ejl = E]2 = OéEj?) (319)

The critical inductance of the junctions is much greater than the geomet-
ric inductance of the loop, L;/Ls > 1. Therefore, the phase around the loop
can be considered as created by the external field only and can be written as

1+ P2+ @3 = —27T% (3.20)
0

Combining this with 2.25 the total energy of the system can then be
written as

)
EE =24 a—cos¢p; —cospg — occos(27rae + ¢1 — ¢2) (3.21)
j 0

J

Figure 3.5 shows a contour plot of U(¢y, ¢2). This potential consists of a
repeating pattern of cells, with each cell containing a double well potential
that behaves in an analogous way to that discussed for the single junction
qubit. By engineering the value of o during the qubit construction the shape
of the potential, and thus the behaviour of the qubit, can be controlled. For
a value of @ = 0.8 tunnelling the cells between the cells is prohibited but

tunnelling between the wells within each cell is at values of flux close to
O, /Py =0.5.

3.2 Describing Qubit Behaviour

A flux qubit is a two state system. In order to understand how a flux qubit
will behave we will examine the mechanics of an ideal two state system
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Figure 3.5: Potential Energy of the three junction flux qubit plotted as a
function of ¢ and ¢,. The potential consists of a set of repeating cells. Each
cell contains a double well potential. Tunnelling between the wells within
each cell is possible at ®, = ®(/2 but tunnelling between wells is prohibited.

under the influence of a perturbation with frequency wgrpr which is close to
the energy separation in our system wy = (E; — Ey)/h.

3.2.1 The Bloch Sphere

The Bloch sphere is a geometric representation of a two state system, which
is useful for visualizing the behaviour of the qubit. The state of the system
is represented by a vector, and the position of the end of the vector on a
sphere represents the probability of finding the system in either state and
gives information about the phase of the system.

An ideal qubit is a two state system[31]. Its wavefunction can be written
as a superposition of the ground |¢g) and excited |p1) states.

W) = aleo) + Bler) (3.22)

where |a|? and |3|* are the probabilities of finding the system in the
ground or excited state after measurement, such that

la| + 6] =1 (3.23)
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The Hamiltonian of the system can be represented by the spin model

H= —g(eaz + Aoy,) (3.24)

where € is the energy bias as given in equation 3.18.

The wavefunction of a two state system can be represented by a vector,
and the surface that this vector can be positioned on is known as the Bloch
sphere, as shown in Figure 3.6. The angle between vector and the z-axis
represents the amplitude of the eigenfunctions, with v = 1 when the vector
is pointing straight up and 3 = 1 when the vector is pointing straight down.
The angle the projection of the vector on the xy plane makes with the y-axis
gives the phase difference between the amplitudes o and 3.

|U) = e (cos g|900> + ¢ sin g|<,01>) (3.25)

e” can be ignored so

0 : 6
|¥) = cos 5\(,00) + €' sin 5]@1) (3.26)

3.2.2 Rabi Oscillations

A system driven by AC field with frequency equal to the energy separa-
tion between the two levels undergoes cycles of excitation and stimulated
emission. The probability of finding the system in the excited state oscil-
lates. This corresponds to the vector rotating about the z-axis on the Bloch
sphere, as shown in Figure 3.7.

To derive results we shall use the method given in [32]. As described
above, in the absence of any perturbation, the qubit can be described as a
two level system with well defined basis eigenfunctions and eigenvalues such
that

Holpo) = Eolpo)Hole1) = Eiler) (3.27)
The matrix Hamiltonian has the form
[ Ey O
Hy = ( 0 B ) (3.28)

Now we introduce a perturbation to the system at the resonant frequency
so that the new Hamiltonian becomes
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| o))

Figure 3.6: The Bloch sphere representation of a two state system. The
qubit is represented by the vector shown in red. The vector can be in any
position on the surface of the sphere. The angle 6 the vector makes with the
x-y plane represents the probability of finding the qubit in either of the two
states. The angle ¢ that the vector makes with the x-axis represents that
phase of the system.

32



K2,

Figure 3.7: A resonant RF field causes a rotation of the state of the qubit
about the z-axis of the Bloch sphere. This corresponds to the probability of
finding the qubit in the excited oscillating between 1 and 0.
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H=Hy+W (3.29)

with eigenfunctions and values
H\V, =E/ |V )H|V_=FE_|V_) (3.30)

With coupling matrix

=i ) 550
Wy = Wi, (3.32)

Woo =W =0 (3.33)

E, = Ey+ WyFE, = Ey + Wy, (3.34)

By diagonalizing the Hamiltonian using the method given in [32], we obtain
the eigenvalues

1
Ey = §(E0+E1) + /(Eo + Ey)® + 4|Wo, |2 (3.35)

and the eigenfunctions

(W, ) = cos (g) e 1972 pg) + sin (g) "% 1) (3.36)
0\ 1002 (0N s
|W_) = cos )¢ | o) + sin )¢ lo1) (3.37)

0 and ¢ are the angles on the Bloch sphere described above and are given
by

2|Wo
tanf = .
and = (3.38)
W01 = €i¢|W10| (339)

The evolution of the system with time can be found using the time de-
pendent Schrodinger equation

d
zha|\ll(t)> = H|WU(t)) (3.40)
Applying this gives
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W) = ae”PHMW L) 4 Gem W) (3.41)

By assuming that at t=0, |¥(0)) = |po), and rearranging 3.36 to give us
©o as a function of ¥_ and ¥,

9(0) = fou) = ¢ |cos (3 ) o s (5 ) )] (3.42)

we can then write

U(t)) = /2 {e—iE”/ﬁcos (g) 1T, ) — e E-t/Ngin (g) |\11_)} (3.43)

The probability of finding the system in the excited state after a time ¢
is Pi(t) = [{1|¥(t))|*. Using 3.43 we can write

fortoe) = s () cos (§ ) [ m0)

2
Pi(t) = (¢ (1))? (3.45)
= %sinQQ l1 — cos (%)} (3.46)
= sin*@sin? (&Q;hE‘) (3.47)

Substituting 3.35 and 3.38 gives

_ 4|W01|
4 Woi|? + (Ey —

En’ {\/4\14/01; (B = E1)2%] (3.48)

Pi(t)

This shows that the probability of finding the system in the excited state
oscillates with a frequency

1
WR = \/4‘W01|2 + (Eo — El)Qﬁ (349)

For Wy, >> E; — Ey the amplitude of these oscillations is close to one.
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3.2.3 Detuned Resonances

We have so far only looked at the case where the frequency of the driving field
is equal to the energy separation between the two levels wgr = F1 — Ey/h.
We will now examine the case where there is a difference  between wrF and
the energy separation

Ey — Eqy
-~k
With this detuning taken into account 3.48 becomes

Woil? t
Py(t) = _Wol” e [\/\WMP + 5254 (3.51)

o [Worl? + 02

5 — wpF (3.50)

Figure 3.8 shows the effect of detuning on Rabi oscillations, as ¢ increases
the amplitude of the oscillations decreases and the frequency increases.

3.2.4 Decoherence

The qubit cannot remain coherent in its excited state indefinitely. It will
either relax back to the ground state by emitting a photon into the environ-
ment, or lose phase coherence while in the excited state. These two processes
happen at rates I'y and I'y, respectively. We can calculate the effect this will
have on the Rabi oscillations using the method given in [33]. First we define
the total off-diagonal decay rate as the sum of the other decay rates

I =Ty + 20, (3.52)

To take account of the finite lifetime of each state we add an imaginary
term to the energy such that

/ r
E =FE,— zh§ (3.53)
We can now rewrite equation 3.41 as
W (t)) = oge_iE+t/he_igt/h|\I/+> +56—iE,t/h€—igt/h‘\I]_> (3.54)

Using this method the probability of finding the system in the excited
state after a time ¢ becomes
_ W
[Worl? — (3T)?

Py(t) e Tsin? [ |Woi| — (ELF)Q ! ] (3.55)

277 2h
Figure 3.9 shows Rabi oscillations for different values of I'. At low rates

of decoherence oscillations are damped, while for high rates no oscillations
are seen before the system loses coherence.
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Figure 3.8: (a) Shows Py(t) as a function of detuning factor . (b) Shows
the Rabi oscillations at different values of & between 0 and 4Wy,. As delta
increases the frequency increases and the amplitude decreases.
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Figure 3.9: Shows P(t) for different values of the decoherence rate I'. For
[' = 0 the Rabi oscillations are sinusoidal. For I' > 0 the oscillations decay
exponentially.

3.3 Summary

In this chapter we have shown how a superconducting loop and Josephson
junctions can be used to construct a two state system. We have also ex-
amined the theory necessary to describe the behaviour of such a system
under the influence of a resonant perturbation. In the next chapter the
novel readout system used in this project, the Andreev interferometer will
be introduced. Then in chapter 5 we will examine what happens when we
combine a qubit with an Andreev interferometer, using the physics described
in the preceding two chapters to build a model describing the behaviour of
the Qubit/Interferometer system.
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Chapter 4

The Proximity Effect and
Andreev Interferometers

This chapter considers what happens when a superconductor is placed in
contact with a normal metal. Close to the interface between the metals, the
properties of both are changed. Superconductivity ‘leaks’ into the normal
metal allowing it to carry a finite supercurrent. Electrons can move from
the normal metal into the superconductor and remain uncoupled for a short
distance, decreasing the density of Cooper pairs close to the interface. These
changes are known collectively as the proximity effect. The proximity effect
is responsible for the behaviour of Josephson junctions as discussed in the
previous chapters, and the longer distance consequences of it are exploited
in this project in order to create an Andreev interferometer.

4.1 S/N Interface

Figure 4.1 shows a superconducting to normal metal (S/N) interface. As
mentioned above, the proximity of the superconductor to the normal metal
changes its’ properties. Cooper pairs can move from the superconductor to
the normal metal and remain coherent up to a certain distance from the
interface. Conversely, quasi particles can move from the normal metal into
the superconductor.

Ginzburg Landau theory describes this in terms of the superconducting
condensate wave function[34]. The square modulus of this wave function de-
scribes the density of Cooper pairs within the superconductor. At a distance
& away from the interface this wave function begins to decay as e~*/¢ where
x is the distance from the interface and &, is the superconducting coherence
length.
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Inside the normal metal the wave function is still finite and decays as
e~%/&N where &y is referred to as the normal coherence length. This can
be interpreted as there being a finite density of Cooper pairs in the normal
metal close to the interface.

When the normal metal has an elastic mean free path, [, much shorter
than the dimensions of the metal then it is said to be in the ‘diffusive’ or
‘dirty’ limit and &y is given by

nD
v = \ 2nkpT (4.1)

where kg is the Boltzman constant. D is the diffusion coefficient of the
metal

Ufl
D= 4.2

where v is the Fermi velocity.
In the opposite case, when [ is much greater than the dimensions of the
metal then it is said to be in the ‘clean limit’, and &y is given by

FLUF

v = OrkgT

(4.3)

4.2 SNS Junctions

Now consider two superconductors separated by a length of normal metals,
i.e. a SNS junction, as shown in Figure 4.2. If the length of the normal
metal is shorter than 2¢y then there will be significant overlap between the
encroaching wave functions of the two superconductors. This means that a
Cooper pair can remain coherent along the length of the normal metal and
so a supercurrent can flow through it. The maximum critical current the
normal metal can carry, in other words the critical current /., will be less
than that of the two superconducting electrodes because it will be limited
by the bottle next in the wave function at the centre of the metal. This
described is a SNS Josephson junction and will behave in the way described
by equations 2.3 and 2.12 as well as have all the other properties given in
chapter 2.

Work by de Gennes showed that the critical current in a SNS junction as
a function of the junctions Length L has the relationship (L) oc e 2/é¥[35].
From this, it follows that the critical current of the junction as a function of
temperature should have the relationship I¢(7T') oc e~ /70,
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Figure 4.1: Behaviour of a superconducting wavefunction at the interface
between a normal metal and a superconductor. The wave function begins to
decay exponentially at a distance &, from the interface. It continues to decay
inside the normal metal allowing a finite density of Cooper pairs within the
metal.
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Figure 4.2: Behaviour of a superconducting wavefunction in a SNS junction.
®, and @, are the wave functions of the two superconductors. The overlap
between them in the normal metal allows a Cooper pair to remain coherent
across its’ length, meaning that a finite supercurrent can flow through the

junction.
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More recent work by Dubos et al has shown behaviour in junctions with
L > ¢y that deviates from this relationship[36]. A more rigorous theoretical
analysis showed that in this case the critical current is given by

32 L
eRylp = ———Erh —eL/LT] 4.4
vie 3422 g LN (4.4)

From this it follows that the critical current varies with temperature as
IC o TS/QG_L/gN

4.3 Tuning the Supercurrent in a SNS Junc-
tion

In 1997, Morporgo et al showed that it is possible to influence the super-
current through a SNS junction by injecting hot electrons into the normal
metal[37]. The geometry they used for this experiment, shown in Figure 4.3,
is similar to the geometry we use. It consisted of a Nb-Au-Nb SNS junction
with vertical current lines that could be used to pass a current through the
junction perpendicular to the direction of the supercurrent. They found that
this current reduced and eventually completely suppressed the supercurrent
in the junction.

The supercurrent through junctions has two contributions, I, from the
bound states whose energy relative to the Fermi energy Er in the electrodes
is less than A the superconducting energy gap, and I.,,; the contribution of
the continuum of states at a larger energy.

[S((b) = Ibs((b) + [cont((b) (45)

The contribution of the bound states can be written as
Ly(¢) = Y _I[Ef(d)lpy + I[E, (6)lp, (4.6)

Where Ej; and Ey are the energy of the nth bound state carrying current

in the positive and negative direction respectively, [ (E:[ ) ) is the contribu-
tion of these states to the supercurrent and PT(-)* are their occupation
probabilities.

Similarly, the contribution of the continuum can be written as

Tena(6) = ( / i +f OO) 1(B, &)p(E, 6)dE (47)
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Where I(F, ¢) is the net contribution of the states with energy between
E, and FE + dE and P(FE,¢) is the occupation probability.

Applying a voltage through the control electrodes changes the occupation
of electronic states and so suppresses the supercurrent, as shown in Figure
4.3 (c).

Further experiments by Baselmans et al [38] showed that careful applica-
tion of a control voltage could in fact change the Josephson current relation-
ship I = I¢sin(®) to I = Icsin(® 4 7) (see Figure 4.4).

4.4 Andreev Reflection

The discovery of the proximity effect presented a problem for theorists. The
problem was this: how is it possible for an electron from the normal metal
to move into a superconductor? At low temperatures the superconducting
gap 0 is much greater than kgT', and so there are no available energy states
in the superconductor (see Figure 4.5). An elegant solution to this problem
was provided in 1964 by A.F. Andreev[39]. He proposed a process by which
an electron incident on the interface is reflected with its velocity, momentum
and charge reversed. This means that an electron incident on the interface
would be reflected, becoming a hole and traveling path along its incoming
path (see Figure 4.6). At the same time, two quasi particles are injected into
the superconductor where they survive for a short distance before combining
to form a Cooper pair.

Andreev reflection is only perfect if the incoming particle is at the Fermi
surface. For an incoming electron with energy, ex+6 and kr+0k the reflected
hole will have energy er — ¢ and kp — 0k.

An important feature of Andreev reflection is that the reflected particle
inherits phase information. An electron will gain a change of +¢, and a hole
—¢s, where ¢, is the phase of the superconductor. The reflected particle can
be thought of as a time reversed version of the incoming particle and they
will remain correlated for a distance Ly,

hD
This is the phase breaking or phase memory length of the system.
This means that for SNS systems such as that shown in Figure 4.2 an
energy FErp, known as the Thouless energy, can be defined such that

hD

B = 22
Th L?V

(4.9)
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Figure 4.3: (a) and (b) SNS structures measured by Morpurgo et al [37].
These consist of an Au cross with Nb electrodes attached to the horizontal
section to form a SNS junction. A current [, was used to change the
properties of this junction. (c¢) IV curves for the SNS junction for different
values of I.,;. Increasing I, decreases the critical current of the junction
and very high values of I, suppress the supercurrent completely.
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Figure 4.4: (a) Schematic representation of a sample measured by Baselmans
et al[38]. (b) Results of experiment showing dependence of critical current
on control voltage. For high V., supercurrent changes direction showing
junction behaviour changing from I = I.sin(¢) to I = I.sin(¢ + 7).

46



2

Figure 4.5: Diagram showing the energy levels at a SN interface. An electron
kgT above the Fermi energy in the normal metal N cannot move into the
superconductor S because, as a consequence of the superconducting energy
gap, there are no free energy levels.
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Figure 4.6: Diagram showing Andreev reflection. An incoming electron inci-
dent on a SN boundary has its charge and momentum reversed, becoming a
hole which travels back along the incoming electrons path. Two quasi parti-
cles move into the superconductor where they survive for a short time joining
to become a Cooper pair.
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where Ly is the length of the normal section. This is the energy under which
electron hole pairs will remain correlated across the whole system.

The interaction between the incoming and reflected particles leads to con-
structive or destructive interference effects and changes the electron density
of the normal metal, leading to a change in the resistance. When the two are
in phase, constructive interference takes place and there is maximum corre-
lation between the electron and hole. This correlation leads to an energy gap
in the metal similar to that observed in a superconductor. The size of the
gap is equal to E7, and as described above it is phase dependant, reaching
a maximum when the phase difference ¢ between the two superconductors is
¢ = n27 and disappearing when ¢ = nm, where n is an integer. This was first
observed experimentally by Gu’eron et al in 1996[40]. Further experimental
work by Ostrovsky showed that this gap was not perfect, with there being,
in fact, a finite number of energy states below Er,[41]. This type of energy
gap is referred to as a soft gap.

The existence of an energy gap leads to a phase of the resistance of the
normal metal. When ¢ = n27 constructive interference takes place leading to
a reduction in the resistance. When ¢ = nm destructive interference destroys
the correlations and the resistance is unchanged.

This effect is exploited in order to create an Andreev interferometer. This
is a SNS junction with Ly greater than £y but shorter than L4. This means
that there will be no significant supercurrent through the junction but that
an electron with energy less than E7y, reflected from one N/S interface will
retain its phase information until it reaches the other. Interference between
these electrons will occur based on the phase difference between the two
superconducting electrodes, ¢ = ¢3 — ¢1. The resistance of the normal metal,
R, is then given as

R =Ry — (14 cos¢) (4.10)

where Ry is the normal resistance of the metal and v is an amplitude factor
controlled by the properties of the system such as the diffusivity of the normal
metal, the numbers of impurities and the quality of the S/N interface.

The first experimental evidence of interference effects in a SNS struc-
ture was provided by Petrashov et al in 1993[42]. In this experiment the
magneto-resistance of mesoscopic metal rings was measured. Three differ-
ent configurations were used, as shown in Figure 4.7. In the structures
with superconducting islands placed on the current leads (Figure 4.7 (b))
the Aharonov-Bohm oscillations were observed to be 100 times greater than
on those without superconductors. On those with superconducting islands
placed perpendicular to the current flow (Figure 4.7 (c)) oscillations with pe-
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riod h/2e were observed. This experiment showed that the superconductor
clearly had some affect on the magneto-resistance of the sample. The results
were limited by the inability to control the phase difference between the two
superconductors, meaning the interference occurring was arbitrary.

This situation was improved upon in 1994 in the next experiment by
Petrashov et al[43]. In this experiment a mesoscopic ring of normal metal,
similar to that used in [42], was connected to a loop of superconductor, as
shown in Figure 4.8. By controlling the flux through the loop of supercon-
ductor they were able to show that the resistance of the ring oscillated as
a function of the phase difference across. They were able to show a similar
result when a current was passed through the loop.

Work by Vegvar et al showed similar results[44]. They conducted an ex-
periment in which a Nb-Au-Nb SNS junction was shunted by a series of SIS
Josephson junctions, as shown in Figure 4.9. The resistance of the normal
section was measured while the phase difference between the two supercon-
ducting electrodes were controlled by passing a current through the Joseph-
son junctions. This experiment showed a clear dependence of the resistance
on ¢, with a period of 27.

An experiment by Petrashov et al in 1995 expanded on these results. In
this experiment a cross of Ag or Sb connected to a superconducting loop of
Al as shown in Figure 4.10. The resistance of the vertical section of the cross
was measured, while the horizontal part formed a SNS junction with the Al.
The phase across the junction could be controlled by using a magnetic field to
generate flux through the loop, or by passing a current through the loop using
two attached superconducting leads. In the ideal case the phase difference
due to the magnetic flux ®.,; and control current I.,; can be expressed as

2 ¢€$ ]CT
o = 27 (Beat & Letr) (4.11)
Do

The results produced are shown in Figure 4.11 and were similar to those
seen by Vegvar, with oscillations in A¢ of period 27. For samples with a
Sb cross these oscillations were sinusoidal, but those for the Ag cross were
significantly different, with cusp-like peaks. An explanation for this was
provided by B. J. Van Wees et al. They suggested that for the Ag sample the
length of the cross was comparable to &, so that there could be a significant
supercurrent through the SNS section. An applied flux would then generate
a large screening current around the loop and the total flux would then be
given by

LI, .
(I)t = q)ext — ?OSIH <

27r<1>ext)

5, (4.12)

50



s~ 10

ARR (10

AR/R (1079

-20 20 60 100 140 180
B (Gauss)

Figure 4.7: Results of experiments by Petrashov et al[42] measuring the
magnetoresistance of mesoscopic silver rings. (a) Rings without supercon-
ducting mirrors showed the expected h/2e Aharonov-Bohm oscillations. (b)
Rings with superconducting mirrors on the current leads showed 100 times
enhanced h/2e oscillations. (c) Rings with superconducting mirrors perpen-
dicular to the current direction showed h/4e oscillations.
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Figure 4.8: (a) Schematic of the sample measured by Petrashov et al in
[43]. In this experiment a mesoscopic ring of silver was connected to a loop
of aluminium and cooled to 20mK. By controlling the flux through the su-
perconducting loop, they were able to show that the resistance of the ring
oscillated as a function of the phase drop across it, as shown in (b).
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Figure 4.9: Sample measured by Vegvar et al[44]. A Nb-Au-Nb SNS junction
is shunted by a series of SIS Josephson junctions. The phase difference across
the SNS is controlled using a current passed through the junction. The
resistance of the Au section is probed using a four point measurement. The
results of this experiment showed oscillations in the conductance of period
2.
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Figure 4.10: The sample measured by Petrashov et al[45]. A mesoscopic cross
of Ag or Sb. Attached to this cross at C and D is an Al loop. The resistance
of the cross between A and B is probed using a four point measurment. The
phase difference between C and D can be controlled by changing the flux
through the loop and by passing current through the loop using the attached
control leads.
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Figure 4.11: Experimental results of Petrashov et al[45]. Samples with both
Ag and Sb crosses showed the resistance of the cross oscillating with phase.
The oscillations were much larger in the Ag sample, but their shape deviated
substantially from the sinusoidal line shape expected. This behaviour was
later explained by Nazarov and Stoof[46].

95



2) Dr/P b) D;/® ) D;/®o

,/®, /Dy P/

B/ Be/Dy Be/Po

Figure 4.12: Dependence of internal flux ®; and change in resistance AR on
external flux @ for a) @ = 0.1/27Py, b)a = 0.8/27P and ¢) a = 0.8/27D,.
For (a) ®; dependence and so resistance oscillations are approximately linear.
For (b) ®; dependence becomes strongly non-linear and resistance oscillations
show cusp-like behaviour. For (c¢) both ®; and AR become double valued
for certain values of ®p.

Where L is the inductance of the loop. The response of the system de-
pends on the parameter o, where o« = LI.®q. As « increases the dependence
of &, on ®.,; becomes increasingly non-linear, resulting in the change in the
resistance AR deviating from a sinusoidal line shape. For a > 1/2mw, &,
becomes degenerate leading to jumps in AR and hysteretic behaviour or 0 R,
as shown in Figure 4.12.

The temperature dependence of the resistance change at ¢ = 0 was stud-
ied and the results are shown in Figure 4.11. These results were put within
a theoretical framework by Nazarov and Stoof[46]. They showed that results
could be interpreted in terms of the Keldysh Greens function technique [4]
and made some further predictions about the behaviour of the system at low
temperatures. Until this point, it had been theorized that at zero, or very
low temperatures, the penetration of superconductivity into a normal metal
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should have no affect on its properties, yet the results of Petrashov showed
large amplitude oscillations in this regime. Nazarov and Stoof showed that
by considering the affect of superconductivity on the quasi particle diffusion
coefficient D, the theory in fact predicts oscillations at low temperatures,
which reach a maximum amplitude when the diffusion coefficient reaches a
maximum at energy
. hD

i.e. at the Thouless energy. This means that the maximum amplitude of

oscillations would be reached at a temperature T

kD
 kpL?

Below this temperature the amplitude of the oscillations decreases again
before reaching zero at zero T'. These predictions were confirmed in a further
experiment by Petrashov et al[47].

Courtious et al[36] carried out further experiments on long SNS junc-
tions. Their results mostly reiterated previous experiments, but in more
detail showing a clear transistion between shorter junctions with L < &y and
junctions with {4 < L < Lg. Takayanagi et al then provided a thorough
theoretical treatment of these and the other results[48].

T*

(4.14)

4.5 Summary

In this chapter the physics of long SNS Josephson junctions have been dis-
cussed. In particular, we have described how Andreev reflection allows for the
passage of an electron from a normal metal into a superconductor. We have
described the experiments showing how this phenomenon can be exploited
in order to create Andreev interferometers, devices where the resistance of
a piece of normal metal is controlled by the phase difference between two
superconducting mirrors. In the next chapter we shall show how an Andreev
interferometer can be used as a readout method for a flux qubit and what
the consequences of using such a method are.
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Chapter 5

Readout Methods for Flux
Qubits

In the previous chapter the physics of flux qubits and Andreev interferometers
have been introduced. This chapter shall examine what happens when these
two devices are combined to create a system where the state of a macroscopic
quantum system can be controlled and readout. We shall use the physics we
have already discussed to create a model of the behaviour we expect to see
and discuss the consequences of using such a system on the qubit coherence
times. We shall also examine the other methods that have been employed to
readout a flux qubit and discuss the advantages and disadvantages of these
methods when compared to a flux qubit.

The models used in this chapter were developed by me, based on the work
of Dr. Kok Gnee Chual[4] and Dr. Kevin Marshall[3].

5.1 Modelling the Behaviour of a Qubit and
Interferometer

In this chapter a model of the behaviour of the system will be devised. A
simple diagram of a qubit/interferometer system is shown in Figure 5.1. The
measurable variable will be the change in resistance of the vertical section of
the cross, AR,,, where

R =Ry —~(1+ AR) (5.1)

This variable will change as a function of the external flux, .. The
parameters controlling how the system behaves are the ratio of the qubit
loop area to the measurement loop area, f, the ratio of the Josephson energy
and charging energy in the qubit junctions, £;/E,, and the energy splitting
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Figure 5.1: A simple schematic of the Andreev interferometer qubit combi-
nation system. The qubit is formed of an aluminium loop shown in blue,
interrupted by three Josephson junctions, represented as red crosses. Alu-
minium wires lead from the qubit to the silver Andreev interferometer, shown
in purple. The phase difference across the qubit mediates the resistance of
the cross, which probed using a simple four point measurement.
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of the qubit, A.
If we take a generic energy spectrum for the qubit

£y (@,) = 0D > ol 2 0) \/ e N

where 2A is the energy gap at ®q/2. If E; >> E¢ then we can use the
2 junction energy ¢ = E;[1 — COS?T%;]. This energy spectrum plotted as a

function of @, is shown in Figure 5.2 (a).
The phase drop across the qubit is then

¢t:snf1(%i) (5.3)
— sin~! iaEi> 5.4
¢4 = sin (Icq 9. (5.4)

where I, is the current flowing around the qubit and I, is the critical current
of the qubit. Using equation 2.26 I, can be approximated as

2€Ej
h

The phase of the qubit as a function of ®, is shown in Figure 5.2 (b).
We must now consider how the qubit interacts with the interferometer. As
discussed in the previous chapter, if the resistance of the interferometer is
long enough so that the supercurrent through it is small, the resistance of the
interferometer is a function of the phase difference between the two supercon-
ducting mirrors. In this case, the phase drop is made up of two components,
the phase drop from the qubit loop and the phase drop from the measurement
loop, so that the resistance change is equal to

Iq= (5.5)

AR = COS(¢q + Qbandreev) (56)
AR = cos (¢q + 27rf%> (5.7)
Q)

The change in resistance plotted as a function ®g is shown in Figure 5.2
(c).
The ratio of the superconducting loops must be chosen so that the differ-
ence between the resistance measurements between the ground and excited
states is maximized near the ®, = ®y/2. As Figure 5.4 shows, this is the
case when

f=n+05 (5.8)

where n is an integer.
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Figure 5.2: a) The energy spectrum, Ey, b) Qubit phase, ¢,, and c) change
in resistance AR plotted as a function of ®.. In each case the ground state
of the system is shown as a solid line, while the excited state is shown as a
dotted line.
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Figure 5.3: AR for the ground state (shown as a solid line) and the excited
state (shown as a dashed line) plotted as function of ®. for different ratios
of qubit area to Andreev loop area. In (a) f =1, (b) f =1.25, (¢) f =15
and (d) f = 1.75. The difference between the ground and excited states is
maximized close to the degeneracy point at f = 1.5.
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Figure 5.4: AR plotted as a function of &, for values of A between 1GHz
and 5GHz.

5.2 Other Readout Methods

This section describes two other methods, DC superconducting quantum in-
terference devices (SQUIDs) and tank circuits, that have been used to read-
out the state of a flux qubit. It describes the advantages and disadvantages
these methods have in comparison to a flux qubit, and details the achieve-
ments of other groups who are using these methods.

5.2.1 DC Squid Readout Method

One method employed by other groups to read out flux qubits is the DC
SQUID. A DC SQUID is a superconducting loop interrupted by two un-
der damped Josephson junctions which acts as a magnetometer. This DC
SQUID is inductively coupled to the qubit. This coupling is chosen to give
a measurable signal while minimizing the environmental impedance to seen
by qubit to lengthen coherence times. The critical current of the SQUID is a
function of the flux threading it. By taking repeated IC curves and recording
current at which SQUID switches to a voltage state, I, the state of qubit
can be inferred.

This process cannot be done as a single shot measurement. The switching
current I, is not constant, even at fixed flux, due to thermally assisted
tunnelling. This means that many readings must be taken at each flux and
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Figure 5.5: SEM image of the SQUID and qubit used by Mooji et al. The
SQUID (on the left) has two large Josephson junctions. The qubit (on the

right) is made of a loop containing three smaller junctions. Image taken from
[17].

an average [, calculated.

Professor Mooij and his colleagues working at Delft University have em-
ployed this technique with considerable success[17][49]. As shown in Figure
5.5, using a DC SQUID readout coupled to a 3 junction persistent current
qubit of the type described in chapter 3, they first mapped out the ground
state of the qubit by measuring I, at different values of external flux the ¢
and observing a sudden change around ®g = ®,/2. They then carried out
spectroscopy by applying a 1us microwave pulse before each readout. When
the frequency of this pulse was equal to the energy level separation at a given
flux a peak, or dip, in I, was observed. By varying the frequency of the
applied radiation and observing the position of these peaks it was possible
to map out the energy spectrum for the first two levels of the qubit.

Next measurements in time domain were made. At a fixed flux, a mi-
crowave pulse of frequency equal to the energy gap was applied. The length
of the pulse determined the probability that the system would be found in
the ground or excited state. By varying the length of the pulse it was possible
to observe the system under going Rabi oscillations, as shown in Figure 5.6.
The frequency of these oscillations were found to be linearly proportional
to the amplitude of microwave pulse. As expected, the oscillations took the
form of a damped sinusoidal wave. At large pulse times maximum decay

64



T i i -
]
A

T T i
a D 20 3[}' 40 5{1 G0 FCI EG 90 1[JI] D".I Da 1.0 1.5 20
Pulse length (ns) TOA (A}

Figure 5.6: Rabi oscillations observed by Mooij et al. The qubit was exposed
to a pulse and at a time ¢ afterwards the DC SQUID was pulsed and the
switching current measured. By plotting the probability of switching as a
function of t, it was possible to observe the qubit oscillating between the
ground and excited states. The frequency of these oscillations were shown to
be a linear function of the RF power. Image taken from [17].

time was T,q; =~ 150ns was observed.

A 7 pulse method was then used to relaxation times. A 7 pulse was
applied so that the qubit was fully in the excited state and then time before
readout varied. Using the method the relaxation time found to be T,ee =
900mns.

Mooji then went on to measure two coupled flux qubits[50]. The SEM
image of the sample measured is shown in Figure 5.7. Two flux qubits were
fabricated so that one side was common to both of them and they were
inductively coupled. By carrying out spectroscopy on the system as described
above, they were able to show that the coupled qubits formed a quantum
mechanical four state system. They then went on to show that this work can
be extended to create a C-NOT logic gate using a two coupled flux qubits[51].
C-Not logic gates are the building blocks of a quantum computer.

5.2.2 Tank Circuit Readout Method

Another method of reading out flux qubits has been devised by Prof. II'ichev
working at Universitat Erlangen-Nrnberg. In this method, a tank circuit with
inductance Ly and quality factor ) coupled to qubit by mutual inductance
M. The tank circuit is driven by DC bias current I;. and AC current Irp.

65



microwave
coupler

Figure 5.7: The two couple qubits measured by Mooij et al. The two qubits
each are 5um wide, have three Josephson junctions, and share one common
side. They are surrounded by a large DC SQUID. Image taken from [50].

The flux through qubit is &, = ®4.+ Prr. The amplitude of P rp is small
so that &, = ®,.. By measuring the effective impedance of the circuit as a
function of ®., the properties of qubit can be determined. The imaginary
part of the total impedance can be expressed as a phase angle between driving
current ,5 and tank voltage

2 Bi'(P)
tana = k Qm (5.9)
where i(¢) = I(¢)/I., the normalised supercurrent. i'(®) is the deriva-
tive of this with respect to the magnetic flux, ® = &, — Fi(®), through it.
The term 3 = 2nLI./®y. « and k*Q are measurable and the rest of the
terms are known so that by measuring the « the supercurrent i(®.) can be
reconstructed.

In their first experiment, Ilichev et al tested a circuit with large Josephson
junctions so that inter well tunnelling was suppressed and the system behaved
classically. As expected, hysteresis was observed, as shown in Figure 5.8.

A tank circuit was then used for the continuous measurements of Rabi
oscillations in qubit with smaller junctions[2]. Rabi oscillations lead to a
rapid change in the magnetic moment of the qubit as the qubit flips between
the ground and excited state. If the frequency of oscillations is close to the
resonance frequency of the tank a response can be observed in the spec-

66



Figure 5.8: (a) The tank circuit readout design used by Il'ichev et al. In this
design a 3 Josesphson junction is coupled to a high quality tank circuit. The
behaviour of the qubit is probed by observing changes in impedance of the
tank circuit. Results obtained from a qubit with large Josephson junctions.
The system can be seen behaving classically with two metastable states.
Image taken from [52].
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tral density of tank voltage, as shown in Figure 5.9. As expected, a linear
dependence of the Rabi frequency on microwave amplitude was observed.
This method was then used to investigate two coupled flux qubits[53],
with the two qubits again read out by a large high quality tank circuit. In
this experiment the qubits were coupled by a single shared large Josephson
junction. This avoided the problem of a small inductive coupling between
the two qubits because of their small areas, and allowed the magnitude of the
coupling to be controlled by engineering the size of the Josephson junction.

5.2.3 Non-Linear Oscillator Readout Method

The most successful measurements on a flux qubit to date have been made
using non-linear oscillators[54][55][56][57][58]. In previous SQUID measure-
ments the qubit is strongly disturbed when the SQUID switches to a voltage
state. Dispersive readouts such as those discussed in the section above over
come this problem by coupling the qubit to a linear oscillator and observing
the change in the resonant frequency. However, in these systems the time
needed to properly measure the impedance are close to the relaxation time
of the qubit, limiting their effectiveness.

In a non-linear oscillator readout, the qubit is coupled to an oscillator
formed from a DC SQUID and a capacitance. The hysteretic behaviour of
the SQUID means that the qubit state can be probed for a very short time
and then the impedance of the system measured over a much longer time,
allowing for high contrast measurements, as shown in Figure 5.10.

5.2.4 Comparison of Other Readouts to Andreev In-
terferometer

As described above, projects that investigate the properties of flux using
other readout methods are already quite advanced, now mostly focusing on
coupling two or more qubits. However, it is believed that the Andreev in-
terferometer would have some advantages over these methods. They both
involve taking a large number of measurements and using statistical methods
to infer the state of the qubit from these results. The Andreev interferometer
promises to allow continuous monitoring of the state of the qubit, making
spectroscopy quicker and simpler. The design used in this project also allows
for each qubit to have it own individual readout, as opposed to a SQUID
or tank circuit which must surround and be coupled to a large number of
qubits.

There are some disadvantages to using an Andreev interferometer. The
direct connection of a normal metal wire to the flux qubit leads to low envi-
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Figure 5.9: (a) Shows a SEM image of the qubit and superconducting coil
used by Il'ichev et al. (b) Shows the continuous observation of Rabi oscilla-
tions made by Ilichev in this experiment. The coupling of the qubit to the
tank lead to a change in the resonant frequency of the tank circuit when the
qubit underwent resonant excitation. The magnitude of this change was de-
pendent on the RF power, showing that the frequency of the Rabi oscillations
were dependent on RF power. Images taken from [2].
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Figure 5.10: (a) Measurement scheme used in non-linear oscillator experi-
ments of [57]. First the qubit is excited by a short pulse of RF. Then a
pulse of voltage is applied to the oscillator, coupling it to the qubit to probe
the state of the qubit. The voltage applied to the oscillator is then low-
ered, latching it and allowing its state to be readout with a high degree of
accuracy. (b) Switching probability of the oscillator as a function of the am-
plitude of he voltage probe. This shows that by controlling the voltage, a
high level of contrast between the ground and excited states can be obtained.
(c) Switching probability as a function of RF pulse length. This shows the
qubit undergoing exponentially damped Rabi oscillations. Images taken from

[57).
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ronmental impedance, short relaxation and therefore short coherence times.
In other methods environmental impedance can be increased by engineering
the coupling of the readout to the qubit. Johnson—Nyquist noise from the
normal wire could also affect the coherence of the qubit, leading to shortened
dephasing times.
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Chapter 6

Decoherence

One of the major challenges when working with solid state qubits is overcom-
ing the short coherence times of the systems caused by their many degrees
of freedom[59]. In this section we will discuss the sources of noise in a flux
qubit system and attempt to estimate the decoherence rates associated with
them.

The sources of the noise in the system can be split into two groups.
The first is circuit noise coming from the electronic circuits which we have
deliberately coupled to the qubit in order to manipulate it and read it out.
The nature of this noise is well understood and our analysis will, therefore,
concentrate on describing how it effects our particular qubit with its novel
Andreev inteferometer readout.

The second type of noise is macroscopic and microscopic. Microscopic
noise includes charge fluctuations[60] and barrier defect fluctuations|[61][62].
Macroscopic noise consists of a 1/ f flux noise[61]. The origins and characters
of these noise sources are less understood and more difficult to characterise.

6.1 Dephasing and Relaxation

In chapter 3 we showed that the dynamics of the qubit could be described
by a vector which ended on the Bloch sphere. This vector rotates about
the z-axis at the Larmor frequency while resonant excitation of the qubit
causes a rotation about the x-y plane. Modulation of the Larmor frequency
leads to an uncertainty in the qubit phase ¢, referred to as pure dephasing.
By absorbing or emitting a photon into the environment, the qubit can be
excited to or relaxed from the ground state, leading to a change in 6.

Using the Bloch-Redfield approximation we can relate the noise power
spectral density to the transverse (¢) and longitudinal (#) degrees of freedom
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of the qubit. The average longitudinal energy relation rate is written as I';.
This is related to the noise power spectral density by S5, (v). Using Fermi’s
golden rule we can write

[ =T"'=T,+T., (6.1)

Since the qubit is operated at temperatures where kT << hv the exci-
tation rate is negligible and we can write

=T, =785, (v) (6.3)
The average transverse dephaing rate, I'y is written as
1
Iy =T+ §F1 (6.4)

Here I'y is the pure dephasing which can be written as

Ty =1 0 7S, (f) (6.5)

In this dissertation we will use the descriptions of the relaxation and
dephasing times derived by Grifoni et al.[63], which are shown below

Uy 2J(u/h)coth Y (6.6)
2\ 2kpT '
r €\ 2 kT
ot tr (€ rBZ
Ty=75' =2+ (V) a2 (6.7)
, J(w)
= lim,,_g—=2 .
1 0J(w)
Yot dw (6.9)

where € = 21,(®, — 1/2®¢) and v = vVA? 4+ 12 and J(w) is environmental
spectral density.

As equations 6.7 and 6.8 show, relaxation is caused by environmental
noise at the resonant frequency of the system while dephasing is caused by
environmental noise at low frequencies.
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6.2 Sources of Circuit Noise in Qubit/Interferometer
System

There are four main sources of circuit noise in our system. These are-

1. Johnson-Nyquist noise in the Andreev interferometer and measurement
leads.

2. Johnson-Nyquist noise from the antenna.
3. Johnson-Nyquist noise from the magnet.

4. Noise from the measurement electronics.

Using the methods developed by Van der Wal[64], I can calculate a relax-
ation and dephasing rate for each of these sources. To do this it is necessary
to know how a change in the current, 61, of any of these elements is linked
to the qubit energy splitting €. Imagine an element which is coupled to the
qubit by mutual inductance M. A change in current in this element will then
result in a change in flux through the qubit &,

50, = MsI (6.10)

Using 3.18 we can then write

Se = 216, (6.11)
= 2I,M61 (6.12)

6.2.1 Relaxation and Dephasing Due to Andreev In-
terferometer

Noise from interferometer

Figure 6.1 shows a schematic representation of the Qubit and Andreev Inter-
ferometer. In this representation the qubit is modelled as a single Josephson
junction with critical current I, and the interferometer is modelled as a
Josephson junction with critical current I., shunted by resistance R, and
capacitance C. The three elements that make up the Andreev interferometer
combine to form total impedance Z(w). The Johnson-Nyquist noise across
this impedance results in a current §/, flowing through the qubit, leading
to fluctuations in the qubit energy and decoherence. This Johnson-Nyquist
noise has a power spectrum described by
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Figure 6.1: Schematic representation of the qubit and Andreev interferom-
eter. The qubit is represented as a single Josephson junction with critical
current I.,. The Andreev interferometer is represented by a Josephson junc-
tion, resistor and capacitance connected in parallel.

(0V V), = hwRe(Z(w))coth (QZ:T) (6.13)

Using 2.3, the current through the qubit can be written as

I, = I ;siny, (6.14)
- Ichin(gbeIt + M1¢int) - [cq (Sin¢extCOSM1¢int - Cos¢extSiDM1¢int)
(6.15)

where ¢..; is the phase drop across the junctions due to the voltage fluc-
tuations in Z(w), @i, is the phase drop across both junctions due to the
magnetic flux threading the loop. Here M is defined as

I
_— 6.16
[cq + [ca ( )

meaning that the ¢;,, is related to the flux through the loop by

1:

Gint = 2 M1 P (6.17)

75



To describe the voltage fluctuations we can write

al,
dt

- - d EXT
= iwly = Iq (COSPeyyCOSM1 Pt — SING 1y SINM) Dy ) % (6.18)
where ¢, is the time average of ¢..;. Since this should equal zero we

can rewrite 6.18. Substituting using the Josephson voltage relationship 2.3

6 exr
iwl, = Icqcole@m% (6.19)
1
= (}Tlcqcos(Mlgbmt)V (6.20)
0

We can now link this to the qubit energy using 6.11

1
ol = E chOS(Mld)int)dV (621)

1
e = QIpMm[chOS(M1¢int)5v (622)

We can, therefore, write the power spectrum of the qubit energy fluctu-
ations as

(Gede), — (%’f ) Lq2cos®(Miing) (V6V}, (6.23)
0

20,M hw
= hw ( CIDZ;w ) I.q*cos® (M ¢int)Re(Z (w))coth (szT) (6.24)

resulting in a spectral density

ARM?Lg?

J(w) = e cos® (M) piiRe(Z(w)) (6.25)

Impedance of Interferometer

The impedance of the interferometer is formed from an inductance in parallel
with a resistance and a capacitance. This leads to a total inductance

Z(w) = ( L, £ + %) h (6.26)

wl, oC
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here L is the inductance of the interferometer which can be written as

h

I = 6.27
2el,cos(Mag;nt) ( )
where
I
My=—"=_ 6.28
2T Lat I (6.28)

This combination can be treated as a LC oscillator with resonant fre-

quency
wre = 1/v/LaC (6.29)

For w << wre this simplifies to

272
w L

7 ~ 6.30
()~ (6.30)
and for w >> wrc this simplifies to
Z(w) ~ L (6.31)
YT 2CPR ‘

Relaxation and Dephasing Rates

Using the inductances from the above section with 6.7 and 6.8 we can now
calculate the relaxation and dephasing rates due to noise from the interfer-
ometer.

A/R\ A2 M1 1 hiw
Lpo = L | Mint——== | coth | —= 6.32
(wres ) (D(%hu)res cos ( ¢ tw2C2R> <0 (QkBT) ( )

r € \28TI2M? L? kgT
Dy = —22 (-) P12 cos?(M) i) — B 6.33
o= ") “heg Taos Mow) (6.:33)
Therefore, the dephasing rate can be written as
. 287 I2M? [ 1..\? cos®(Mydin) 1 kgT
oo = Lo ()7 AT (o) cos (M0 L (6.34)
2 hw h I..) cos?(Msgins) R h
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Figure 6.2: Schematic representation of the qubit and antenna.

6.2.2 Relaxation and Dephasing Due to Microwave An-
tenna

Another source of decoherence in the system is the superconducting antenna
used to excite the qubit. The relaxation and dephasing rates due to the
antenna can be calculated using a similar method to that used in the previous
section. Asshown in Figure 6.2, this is formed by an inductance of inductance
L, shunted by resistance R coupled to qubit by mutual inductance M, .
The shunting resistance R is assumed to be the 502 impedance of the coaxial
cable.
The current noise in the antenna is related to the voltage noise by

1

0y = - 4] :
L V (6.35)
from 6.10 and 6.11 this gives
oe =21,M oV 6.36
€ p ZCU i ( )

Substituting from 6.13

(dede), = i—h (IJSM”“’)Z Re(Z(w))coth < i

T 5 kBT> (6.37)
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(0ede)

o i () o

The real part of the impedance of the system is equal to

WLy B
ReZ(w) = Ry + w? L2
w22

me

~
~

Combining with 6.38

and
2 2
o= (M 1)
Th R

So the relaxation rate due to noise from the antenna is equal to

A2 M2 T2 hw

mwp h

T, =2 ¢
Bo R CUYoRsT

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

and, assuming the qubit is operated near ¢ = v, the dephasing rate is

T AM2 ]2
T T rmw mw-p L
¢ 9 hR P

6.2.3 Relaxation and Dephasing Due to Solenoid

for Our System
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(6.44)

The noise from the superconducting solenoid can be calculated using the
same method as the microwave antenna. In this case we have a solenoid of
inductance Ly, coupled to qubit by mutual inductance M,,. The solenoid
is in parallel with two resistances, R, the measurement leads and source,
and Rgnunt, the shunting resistance. Since Rgpune << Ry total resistance
RT ~ Rshunt'

6.2.4 Estimates of Relaxation and Dephasing Times

The relaxation rate and dephasing rate of the qubit due to its interaction
with the Andreev interferometer can be written as



sol

Figure 6.3: Schematic representation of the qubit and solenoid.

A/RN ALM?1.q? 1 hw
[ = L 2(M¢int) ——s—coth 4
o (w) Wiy, O Wine) agpee (%BT) (645)

[ca

(6.46)

Tra e \28TI2M? [ I,,\* cos®(Myins) 1 kT
=T+ ) R ;

2 Tw h cos?(Madimy) R R

where I, and I, are the critical currents of the qubit and interferometer
respectively, R is the normal resistance of the interferometer, and C' is the
capacitance shunting the interferometer. ¢;,; is the phase drop across the
qubit and interferometer due to the flux threading the loop. This can be
written as ¢y = 27 f®,/Po. Where @, is the flux through the qubit (ap-
proximately 0.5® for qubit operations) and f is the ratio of the area of the
loop to the qubit area.

The relaxation and dephasing due to the qubit interaction with the solenoid
and antenna can both be described by the same formulas, given below-

AT ML I hw

r,=2 TP coth 4
B Ropw O 2kpT (6.47)
r,— L + My kT (6.48)
- R P '



Parameters | M r.'|r,t
I,=1pA
I, =0.1pA

Inteferometer | R = 102 10pH | 200us | 0.2ns
C = 10nF
T = 20mK
R =500

Antenna T =20mK | 1pH 300ns | 30ns
R=1Q

Solenoid T =42K 0.1pH | 5ns 10ns

Table 6.1: Estimated contributions to the relxation and dephasing time of
the qubit from the interferometer, antenna and solenoid.

The table below gives the estimated relaxation and dephasing times for
each of these elements.

The values of M,,,, and M,, were measured experimentally by observing
the change in resistance of the interferometer. The estimates of I.q and I.a
were based on the work of [4] [65]. The value of M, is more difficult to
estimate. For these calculations a ‘worst case scenario’ has been assumed,
where the coupling of the Andreev interferometer to the qubit is 100 times
greater than that of the solenoid.

6.3 Modelling Spectroscopy

Using the model described in the previous chapters I can show how the
resistance oscillations as a function of flux will change when we apply a RF
field to resonantly excite the qubit. To do this I have used the Lorentizian
line shape of resonance peaks described by

Wrabi

Wrabi + (wq — UJRF)I;—f + \/Frr(z)

where w, is defined as

E. — E—
h

Since the system only has two states and must at all times be in one of
them, we can write

(6.50)

we®e =

P.=1-P, (6.51)
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Using this fact a new current, I, can be calculated which is the current
flowing around the qubit under the influence of a perturbation

[T:P+]++P_I_ (652)

Using the method described in section 5.1 we can write

ARy = Cos {sin1 (f—T> + QWf%:| (6.53)
0

cq

For our modelling we have chosen a constant decoherence rate I' =
\/I'+I'y. The above section shows that the decoherence due to circuit noise is
a function of the qubit current and therefore the flux, so assuming a constant
decohorence rate is an approximation. However, there will be a constant
term in the decoherence rate due to the charge noise and we believe that
this approximation should give us a good estimate of the upper limit of the
coherence times.

Figure 6.4 shows that at low decoherence rates the qubit resonance takes
the form of a sharp peak in the resistance. Figure 6.5 shows that as the
decoherence rate is increased, the quality factor of the resonance is reduced
until it is no longer a clear peak, but instead a more subtle change in the
line shape. Figures 6.6, 6.7, 6.8 and 6.9 show examples of how the resonant
behaviour changes as a function of RF frequency and amplitude, for both
high and low decoherence rates.

The proceeding section suggests that influence of the Andreev interfer-
ometer on the qubit will lead to large decoherence rates, and so it is this type
of resonance behaviour that will be observed experimentally. It is, therefore
important to examine how these high decoherence rates peaks will behave as
we vary the RF signal. Figures 6.10 and 6.11 show the behaviour of the posi-
tion and amplitude of the peaks as a function of RF frequency and amplitude
respectively. The model predicts that the position and amplitude of the peak
will change with both RF frequency and amplitude. These predictions are
borne out by the experimentally obtained results described in chapter 9.
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Figure 6.4: This Figure shows how the model predicts the system behaviour

under the influence of a resonant RF field. There are two resonant peaks,
either side of the degenerecy point.
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Figure 6.5: The above Figure shows how the shape of the resonances change
with an increasing decoherence rate. (a) Shows the change in resistance as
a function of flux. (b) Shows this curve subtracted from the ground state
curve. As decoherence increases, the quality factor of the resonance peak is
decreased and they change from sharp peaks to broader changes in the shape
of the resistance curve.
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Figure 6.6: AR plotted as a function of ®. for values of wgr between 1GHz
and 15GHz for high @ resonances. (a) Shows the change in resistance as a
function of flux. (b) Shows this curve subtracted from the ground state curve.
As wgrp increases the resonances move away from the degeneracy point.
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Figure 6.7: AR plotted as a function of @, for values of wgr between 1GHz
and 15GHz for low Q resonances. (a) Shows the change in resistance as a
function of flux. (b) Shows this curve subtracted from the ground state curve.
As wgrp increases the resonances move away from the degeneracy point.
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Figure 6.8: AR plotted as a function of ®, for values of w,q; between 0
and 1.5 % 1079 for high Q resonances. (a) Shows the change in resistance as
a function of flux. (b) Shows this curve subtracted from the ground state
curve. As w,qp; increases the resonances increase in width.
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Figure 6.9: AR plotted as a function of ®, for values of w,.,; between 0
and 1.5 % 1079 for low Q resonances. (a) Shows the change in resistance as
a function of flux. (b) Shows this curve subtracted from the ground state
curve. As w,qp; Increases the resonances increase in width.
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Figure 6.10: The above Figure shows how the model predicts the position of
resonances at high RF amplitudes and low coherence times will change as a
function of RF frequency. The dotted line shows the energy spectrum of the
qubit with E;/E. = 200 and A = 3GHz. The solid lines show the position of
the resonance peak as a function of RF power for coherence times between
111ps and 1000ps.

89



t=1000ps

1.4 ] 1=333ps T T T T T T 1
1.2} 1=200ps
LOF 1=143ps

=111ps

o/GHz

Figure 6.11: The above Figure shows how the model predicts the amplitude
of resonances at high RF amplitudes and low coherence times will change
as a function of RF frequency. The solid lines show the position of the
resonances peak as a function of RF power for coherence times between
111ps and 1000ps.
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Chapter 7

Fabrication

7.1 Introduction

The previous chapters have examined the theory describing flux qubits and
Andreev interferometers. We now move onto more practical matters. In this
chapter, the process used to fabricate the qubit/interferometers is outlined,
and in the next chapter the measurement system used to test their properties
at low temperatures is described.

The structures tested in this project are made by evaporating a thin
film onto a silicon substrate. Four separate layers are used to create the
structures. Of particular interest is the qubit layer, where a novel tri-layer
polymer-germanium-polymer resist system was used. This technique allowed
the application of selective undercutting for Dolan bridge evaporation (evap-
oration at an angle) and much greater control of the overlap of the Josesphson
junctions. The four layers fabricated are-

1. Contact Layer, usually Au
2. Andreev Layer, usually Ag
3. Spacer Layer, usually AlO
4. Qubit Layer, usually Al

The different techniques used to create each of these layers is detailed
on the following pages. This new fabrication proceedure was developed by
myself, Professor Petrashov and Dr. Shaikhaidarov.
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7.2 Fabrication Techniques

Resists

The creation of each layer starts with the sample being covered with one or
more resists. These resists form the masks which define the structure created.
In order to ensure that an even and controllable thickness of resist on the
sample, resists are spread by placing a drop of the resist in solution on to
the sample, and then rotating it at several thousand RPM. The thickness
achieved is controlled by the type of resist used, the concentration of the
solution and the speed of rotation. The sample is then placed on a hot plate
and baked to evaporate the solution and harden the resist.

In general, two resists are used in conjunction. The top layer resist acts
as a mask and defines the pattern of structures created on the chip. The
bottom layer resist is thicker and develops at a slightly quicker rate. This
makes the lift off of the unneeded thin film from the sample easier, and makes
the Dolem bridge technique possible.

Photolithography

Photolithography is used to create structures down to sizes of a few microm-
eters. Resist is coated onto the sample then a ‘master’ mask (made from
chrome covered quartz) is placed over the sample and it is exposed to UV
light. The UV light damages the polymer chains in the resist allowing them
to be easily dissolved by a developer and when this is done a copy of the
mask has been created in the resist.

The advantage of UV lithography is that all areas of the samples are
exposed simultaneously. This means that large structures can be exposed
quickly, and that many different structures (in this case dozens of contact
layers) can be exposed at once. The disadvantage of UV lithography is that
the maximum resolution achievable is limited by diffraction.

In this project, particular care has to be taken during UV lithography to
ensure that-

e The wafer is clean before depositing the resists; this is achieved through
oxygen plasma etching.

e There is good contact between the chrome mask and the resist.

e The resist is developed long enough to ensure a good undercut in the
bottom layer resist, allowing for easier lift-off of the deposited metal.
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Figure 7.1: Monte Carlo simulation of electron scattering in resist on a silicon
substrate at a) 10 kV and b) 20 kV. From [66].

Electron Beam Lithography

In electron beam (e-beam) lithography, a beam of electrons is used to directly
draw a pattern into a resist. Electrons are produced by heating the cathode,
then accelerated to a large velocity by a high voltage and focused on a small
spot using EM lenses. This spot is then used to expose a pattern of dots
on the resist. Exposure to the high energy electrons causes chain scission in
the polymer based resist. This means that these sections dissolve quickly in
developer, causing a positive mask of the structure desired.

Over exposure of the resist can lead to cross linking of the chains in the
polymer. This has the opposite effect to chain scission, causing the resist to
develop more slowly and creating a negative mask. In this project, this was
something that had to be avoided.

During e-beam lithography the effect of electron scattering must be taken
into account. Monte Carlo simulations (see figure 7.1) show that forward
scattering of electrons leads to a slight broadening of the image, while back
scattering of electrons causes a large fog of exposure. This can lead to over
exposure of the resist and distortion of the pattern. This effect, known as
the proximity effect, can be minimized by using a thin top layer resist, and
by adjusting the dosing pattern to take account of the back scattering of
electrons.

Electron beam lithography can be used to create structures with resolu-
tions of 0.1um, much smaller than what is possible with optical lithography.
The disadvantage of e-beam lithography is the amount of time it takes to
create each mask. Whereas in optical lithography many structures can be
created simultaneously, in e-beam lithography each element of each structure
must be written in individually. This makes the process too slow for most
commercial applications.
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Figure 7.2: Schematic of the evaporator. A vacuum of < 5 x 1076 Torr is
achieved using a combination of rotary and diffusion pumps. There is a small
quartz chamber inside a bell jar which can be used for in situ etching of the
sample.

Thin Film Evaporation

In this project all of the thin metal films created have been thermally evapo-
rated. A diagram of the evaporator used in this project is shown in Figure 7.2.
The chamber of the evaporator is pumped down to a pressure of 5x 10~ 6Torr
using a rotary and diffusion pump. The metal charge is placed in a small
tungsten boat at the bottom of the chamber where it can be heated by pass-
ing a large current through the sample. The sample sits on a stage at the top
of the chamber, which can rotate in order to allow the Niemeyer-Dolan tech-
nique (evaporation at an angle) to be used. Above the sample is a smaller
chamber that can be filled with argon gas to allow in situ etching of the chip.
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7.3 Layers

7.3.1 Contact Layer

The contact layer is made of Au using photolithography techniques. Its
purpose is to act as a set of leads between the microscopic test structure and
the macroscopic measurement system. The design used for the contact layer
can be seen in Figure 7.3. It is created using photolithography techniques as
shown in Figure 7.3.1. Dozens of versions of the contact layer are fabricated
simultaneously on a circular 100mm diameter 5mm thick wafer of silicon,
which is later broken up into individual chips. First, the wafer is cleaned by
exposing it to oxygen plasma for 4 minutes. Then, 1200nm layer of LOR-
5B is spun onto the wafer and baked. This resist creates an undercut and
allows for easier lift of the excess metal film. Then a 400nm layer of S1183
photo resist is spun onto the wafer and baked. This is the layer that after
exposure and development defines the shape of the structures created. A
mask made from quartz and silver (see Figure 7.3) is placed over the wafer
and it is then exposed to UV light for 150 seconds. It is then placed in a
MF69 liquid developer for 90s, then washed with de-ionized water and blown
dry with nitrogen. At this stage it should be possible to see the pattern
developed in the resist, with the undercut created by the first layer of resist
clearly visible. The wafer is then placed in an evaporator, which is pumped
down to a pressure 5 x 10~6Torr, and 10nm film of NiCr and a 80nm film
of Au evaporated onto the sample. The purpose of the NiCr film is to aid in
the adhesion of the Au to the silicon. The wafer is then removed from the
evaporator and the excess metal and remaining resist is removed by placing
it in microposit remover 1165. The wafer is then, again, rinsed in de-ionized
water and blown dry. A picture of a finished wafer is shown in Figure 7.3.
At this stage the wafer is scored and then broken up into individual chips.

7.3.2 Andreev Layer

The Andreev layer is a 50nm layer of Ag and forms the interferometer and
leads of the circuit. It is created using a two layer polymer resist system using
e-beam lithography techniques. The steps used to create the contact layer
are shown in Figure 7.3.2. A typical design for the contact layer is shown in
Figure 7.5. The Andreev layer is fabricated on a YTmm square silicon chip with
the contact lead layer already in place. Onto this chip a layer of copolymer
resist is spun to a thickness of 1000nm and then baked. This resist forms
an undercut and allows for easier lift-off. A layer of PMMA resist is then
spun to a thickness of 85nm and then baked. This resist forms the mask
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Figure 7.3: (a) Schematic of the contact layer.(b) The quartz mask used to
create the contact layer. It has the contact layer pattern repeated many
times so that a large number of chips can be created simultaneously on a
single silicon wafer. This is then broken up into individual chips shown in

(c).
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Silicon wafer is cleaned in oxy-
gen plasma. Two layers of re-
sist (S183 and LOR-5B) are
spun onto silicon wafer and

baked.

/.Mi

Quartz-chrome mask is placed
over wafer which is then ex-
posed to UV light.

Resists are developed. Bottom
layer of resist creates undercut.

Wafer is again cleaned in oxy-
gen plasma to remove residu-
als of resist. A 10nm thin film
of Nichrome is evaporated onto
the wafer to aid adhesion of
gold. 80nm thin film of gold
is evaporated.

Microposit remover is used to
wash off remaining resist and
lift-off excess silver. Wafer is
then again cleaned in oxygen
plasma to remove any remain-
ing resist.

Figure 7.4: Steps used in creating the contact layer.



which defines the shape of the structures created. The chip is then placed
in the SEM and the pattern is exposed. It is then removed and developed
using a solution of 3% de-ionized water and 97% isopropanol for 10s. The
chip is placed in the evaporator which is pumped down to a pressure of less
than 5 x 10~6Torr. It is then etched for 20s in an argon plasma to remove
residuals of the resist, and 50nm of silver evaporated from a tungsten boat
onto the surface of the chip. After being removed from the evaporator, the
excess metal film and remaining resist is lifted off of the sample by placing it
in 1165 microposit remover which has been heated to 70°C. It is then rinsed
with isopropanol.

7.3.3 Spacer Layer

The spacer layer is a 10nm thick layer of oxidized aluminium. Its purpose
is to isolate the Andreev layer from the qubit layer in the position where
the wires cross. A design for the spacer layer can be seen in Figure 7.5.
The spacer mask layer is fabricated in an almost identical way to that of
the Andreev layer. The only difference is that only a single 80nm layer of
PMMA resist is used, instead of a layer of copolymer and then PMMA. This
is because the mixer used in the copolymer resist, a mixture of ethyl lactate
and a small amount of an unknown substance (which the company supplying
the resists would not reveal), was found to have a severely degrading effect
on the silver in the Andreev layer. Using a single layer of PMMA solves this
problem, and the lack of an undercut is not an obstacle to successful lift-off
because the design of the spacer layer is so simple.

Once the mask has been created, the chip is placed in the evaporator,
which is then pumped down to a pressure of less than 5 x 10”6 Torr, and the
S5nm is evaporated onto its surface. Oxygen is then admitted to the evapo-
rator and the pressure is allowed to rise to 80mbar. It is then maintained at
this pressure for 5 minutes. The chamber is then pumped back down to less
than 5 x 10~6Torr and the evaporation and oxidation process is repeated.
The chip is then removed from the evaporator and the excess material lifted
off in the same way as used in the Andreev layer.

7.3.4 Qubit Layer

The qubit layer is a 70nm thick layer of aluminium that forms the qubit, as
well as the antenna. It is created using a three layer resist system, with a
layer of germanium sandwiched between two layers of polymer resist. This
allows the undercutting to be developed independently of the image layer,

98



O
o

Figure 7.5: The designs of each microscopic layer needed for a complete
sample. (a) The Andreev layer. (b) The spacer layer. (¢) The qubit layer.
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Two layers of resist (copolymer
and PMMA) are spun onto the
silicon wafer and baked.

Resists are exposed in Scan-
ning electron microscope.

Resists are developed. The
bottom layer of resist creates
undercut.

50nm thick film of silver is
evaporated onto silicon.

Microposit remover is used to
wash off remaining resist and
lift-off excess silver.

Figure 7.6: Steps used in creating the Andreev layer.
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giving higher definition to the qubit. In order to create the superconduc-
tor /insulator /superconductor interface needed for the Josephson junctions,
evaporation is done at two angles using the Niemeyer-Dolan technique (see
Figure 7.7). The steps used to create the qubit layer can be seen in Figure
7.3.4.

When using the Doleem bridge technique, it is not possible to create a
loop containing only three Josephson junctions. The double layer nature
of the technique means that the number of junctions created must always
be even, and so using this technique means there will be a forth, unwanted,
junction. However, the area of the junction, and therefore the critical current,
will be large so that it should not affect the dynamics of the qubit[67].

A typical design for the qubit layer can be seen in Figure 7.5. First
a 1000nm layer of PMMA resist is spun onto the chip and baked. Then a
20nm layer of germanium is evaporated onto the sample using the techniques
described above. After this, another 80nm thick layer of PMMA resist is spun
on and baked. The qubit pattern is then exposed in the resist using the SEM,
and developed for 10s in a mixture of 97% isopropanol and 3% de-ionized
water. The germanium is then etched through the mask formed in resist so
the exposure pattern is created in the germanium. This is achieved by etching
for 30s in an oxygen sulphur hexafluoride plasma. Once this is done the chip
is returned to the SEM and the undercut pattern exposed and then developed
for 60s. The sample is then placed in the evaporator and etched for 20s in
argon plasma to any residual resists. Thirty five nanometers of aluminium
is evaporated onto the sample at an incident angle of 10°. Oxygen is then
admitted to the chamber and the pressure allowed to rise to 6 x 10~ 4torr
where it is maintained for 5 minutes. The sample is then rotated and another
35nm of aluminium is evaporated, this time with an incident angle of 10°in
the opposite direction. Finally, the chip is removed from the evaporator and
the excess metal film and resist is lifted off using microposit remover 1165.
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Figure 7.7: Diagram showing the creation of Josephson junctions using the
Niemeyer-Dolan technique. (a) Shows a cross section of the structure created
along the line of the aluminium wire, (b) shows a cross section of the structure
perpendicular to the aluminium wire, and (c) shows a plan of the structure
from above with dotted lines indicating where sections (a) and (b) were taken.
Image adapted from [68].
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A 1000nn layer of PMMA
resist is spun onto the
wafer and baked. 20nm of
germanium is then evapo-
rated onto the surface of
resist.

The bottom layer of re-
sist is developed, creating
an undercut while leaving
the mask created in ger-
mainium intact.

The top layer of resist is
exposed in a scanning elec-
tron microscope.

35nm of aluminium is
evaporated onto sample at
an angle of 10 degrees to
the surface normal. This
aluminium is then oxi-
dised. Another 35nm of
aluminium is then evapo-
rated at 10 degrees from
the surface normal in the
opposite direction.

Resist is developed, then
germainium is  etched
through the mask made in
resist with SFg plasma.

Microposit remover is used
to wash off remaining re-
sist and lift-off excess sil-
ver.

Bottom layer resist is ex-
posed in electron micro-
scope with pattern de-
signed to create undercut.
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Chapter 8

Measurement Setup

This chapter describes the setup used to measure the state of the qubit.
Experiments on flux qubits must be carried out at low temperatures. Alu-
minium has a critical temperature of 1.2K, but in order to avoid thermal ex-
citation of the qubit the sample must be cooled well below this to millikelvin
temperatures. To achieve this a dilution refrigerator was used, allowing the
sample to be cooled to temperatures of less than 20mK. In order to minimize
decoherence of the qubit caused by the environment, the qubit must be as
much, as possible, decoupled from any external noise. To achieve this the
qubit was shielded and all of the wiring connecting to the qubit was heav-
ily filtered. To avoid the problems associated with employing commercially
available filters at low temperatures, a custom tape filter was used[69]. The
sample is contained within a radio frequency tight copper box attached to the
mixing chamber of the refrigerator. The dilution refrigerator and all of the
measurement equipment was housed within a screened room. The computer
used to record data was outside this room and connected via a fibre optic
cable.

The measurement setup used is shown in Figure 8.1. The measurement
electronics and wiring can be divided into three groups, one working at low
frequencies used to probe the resistance of the Andreev interferometer, one
used at microwave frequencies used to control the state of the qubit, and one
used to control the magnetic flux bias via a small superconducting magnet.

In some experiments a second sample with its own set of wiring was placed
at a different position on the mixing chamber.
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Figure 8.1: This diagram shows the measurement setup used to measure the
properties of Qubit/Interferometer samples. Samples were cooled to 20mK
in a dilution refrigerator. The fridge wiring can be divided into three groups.
Low frequency twisted pair wiring was used to carry out a four point mea-
surement of the resistance of the interferometer. This wiring is filtered by
commercial 7 filters at room temperature and a custom tape filter at 20mK.
A superconducting coil was used to generate the external flux. The wiring
for this magnet was filtered by a commercial 7 filter at room temperature.
A rigid coaxial cable was used to transmit the RF signal to the qubit. This
cable had 29dBm of attenuation at various temperatures between 4.2K and
20mK.
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8.1 Low Frequency Measurements

In order to probe the resistance of the interferometer a four point measure-
ment was used as shown in Figure 8.1. An oscillator set to a low frequency
and a current limiting resistor at room temperature were used to drive a
current through the vertical section of the cross. The voltage drop across
this section was measured by two voltage probes, which were connected to
a low noise voltage pre-amplifier at room temperature. The output from
this amplifier was then passed to a lock-in amplifier. Data from the lock-in
amplifier was then recorded on a computer outside the screen room via an
optical decoupler.

The wiring inside the dilution fridge consisted of a twisted pair ribbon
down the mixing chamber stage. Here a bespoke tape filter[70] was used to
pass the signal into the copper box containing the sample. Figure 8.2 shows
the frequency response of the tape filter. At room temperature commercial
7 filters were used. The frequency response of these filters can be seen in
Figure 8.3.

8.2 Microwave Frequencies

In order to manipulate the qubit, it was necessary to irradiate the sample
with microwaves of frequency from < 1GHz to 20GHz, both pulsed and
continuous wave. The microwaves were carried to the sample by coaxial
cable. Attenuators were placed at 4.2K, at the 1K pot and at the mixing
chamber. The purpose of these attenuators was to heat sink the coaxial line
and to eliminate the standing waves caused by reflections in the lines.

Inside the copper box containing the sample, a printed circuit board was
used (see Figure 8.5). The sample was glued in the centre of the PCB.
Coplanar wave guides, connected to the coax by SMP connectors, led from
the edge of the PCB to the sample. Finally, the ends of the wave guides were
wire bonded to the sample. The transmission properties of the system were
measured using a VNA and the results are shown in Figure 8.4.

The continuous wave signal was generated using an Anritsu MGS69A.
In order to generate pulses we combined this signal with a pulse pattern
generator, using the setup shown in Figure 8.6. In order to achieve better
isolation of the pulses, multiple mixers were used.
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Figure 8.2: Frequency response of the tape filter used on the low frequency
wiring.
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Figure 8.4: Transmission properties of dilution fridge coaxial cable, measured
using a VNA.
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Figure 8.5: PCB onto which the sample was mounted.
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Figure 8.6: Setup used to generate RF pulses.
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8.3 Magnetic Field

The magnetic field used to control the qubit was provided by a small super-
conducting coil placed below the copper box. This coil was connected and
filtered as shown in Figure 8.1.

8.4 Secondary Sample

In some experiments a second sample was placed on the top of the mixing
chamber. This sample was used to measure the Josephson and charging
energy of junctions that were created at the same time as the main sample.
This sample had its own set of wiring, consisting of unfiltered copper twisted
pairs.
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Chapter 9

Results and Discussion

This section discusses the experimental results obtained. Results come from
samples created using the methods described in chapter 7. Samples were
measured in a dilution refrigerator. The base temperature of the refrigerator
was 20mK. The sample was the first sample to be created using the newly
developed tri-layer resist system and also the first to include a capacitor to
shunt high frequency noise.

9.1 Overview

The sample in this experiment showed the resistance oscillations as a func-
tion of applied flux of the type observed in [5], as well as the first evidence
of resonant excitation in the qubit, which before this point had not been ob-
served in a flux qubit and Andreev interferometer combination. The sample
also displayed a Pi-Shift in the resistance oscillations under high influence of
a large amplitude radio frequency (RF) field.

The design of the sample is shown in Figure 9.1 and SEM images of the
sample are shown in Figure 9.2. The sample consisted of a qubit interferom-
eter combination with a ratio f = 1.5, an antenna connected to the RF line
of the fridge and used to excite the qubit with microwave radiation, and a
secondary antenna connected to the other RF line on the fridge and used to
test the RF transmission of the system. In this sample a macroscopic 100pF
capacitor was connected across the qubit and interferometer in an attempt
to reduce the amount of high frequency noise.
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Figure 9.1: Diagram of the sample used in experiment. Diagram (a) shows
the whole sample. The structures were fabricated on a silicon wafer in a
80pum by 80um exposure area. On this sample are a qubit and interferometer
(bottom-left), excitation antenna (top) and secondary test antenna (bottom-
centre). Diagram (b) shows a close-up of the qubit and interferometer. The
ratio f was designed to be 1.5. The ﬁlzllgth of the interferometer was 3um.
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Figure 9.2: SEM images of the sample used in experiment 1. (a) Shows a
close up of the qubit, while (b) shows the qubit and interferometer together.
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9.2 Measurements on Qubit in the Ground
State

For this experiment we first repeated the measurements of Marshall to char-
acterize the sample by observing it in its ground state[3]. This was done by
sweeping a control current through the magnet and continuously measuring
the resistance R,, of the cross using a four point measurement.

As expected, R,, oscillated as a function of flux, with a sharp change in
phase close to . = n + ®y/2. Figure 9.3 shows the oscillations observed for
this qubit.

These oscillations were fitted to the theoretical model described in chapter
5 using a least squared fit method. The fitting parameters were the gap A,
the ratio of the measurement loop to the qubit area f and the screening
parameter o where

a=LI./Pg (9.1)

This fitting showed that the system was operating as it was designed to,
with a value of f & 1.5, a very small screening current (o < 0.05). The gap
energy for the system was estimated to be A/(E;/E.) = 0.03 =+ 0.01GHz.
Assuming E;/E. ~ 100, this gives an energy splitting of A ~ 3 + 1GHz.

9.3 Temperature Measurements

The effect of temperature on the sample was tested. This was achieved by
using a small heater on the mixing chamber of the dilution fridge to heat the
environment. Using this method two effects were observed.

1. A decrease in the amplitude of the oscillations with increasing temper-
ature.

2. A change in the shape of the degeneracy point with increasing temper-
ature similar to that seen under the influence of RF.

9.3.1 The Effect of Temperature on Oscillation Ampli-
tude

The most obvious effect of increasing the temperature of the system was a

reduction in the amplitude of the oscillations, as shown in figures 9.4 and 9.5.

This is because heating the system increases electron temperature, allowing
the electrons to occupy higher energy states, reducing the number of available
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Figure 9.3: The above graph shows the resistance of the interferometer os-
cillating as a function of external flux. Graph (a) shows the oscillations in a
wide range. Sinusoidal oscillations occur due to the flux through the Andreev
loop. Close to ®./®y = n + 0.5 the current in the qubit changes direction,
causing a sudden change in phase and change in the oscillations that we refer
to as the degeneracy point. Graph (b) shows a closer view of the resistance
oscillations around the first degeneracy point. (c) Shows the experimental
data fitted to the model described in chapter 5.1
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Figure 9.4: Resistance oscillations as a function of flux taken at mixing
chamber temperatures between 50mk and 350mk. An increase in temper-
ature leads to a decrease in oscillation amplitude due to the reduction in
available Andreev bound states.

Andreev bound states and; therefore, reducing the effect of Andreev reflection
on the system.

The reduction of an amplitude of the oscillations with temperature gives
a simple way of calculating the heating effect of the RF field. By plotting the
amplitude of the oscillations as a function of RF amplitude, we can estimate
a conversion factor allowing the calculation of the temperature of the system
at a given RF field. The effective heating of the system by RF is hmK/mV.

9.3.2 Temperature Dependent Changes in the Shape
of Resistance Curves Close to the Degeneracy
Point

The shape of the resistance oscillations close to the degeneracy point was

observed to change with temperature. This can be seen in Figure 9.6, which

shows curves taken at temperatures between 50mK and 350mK.
There are two possible explanations for this behaviour, which are illus-

118



0.13 + } .
0.12 + } } .
0.11

0.10

/Q

max
T
—a—
I

AR

0.09 | } } 1

0.08 | } -

0.07

1 " 1 " 1 " 1 " 1 " 1 " 1
50 100 150 200 250 300 350
Temperature /mK

Figure 9.5: Oscillation amplitude plotted as a function of temperature. In-
creasing temperature leads to a linear decrease in amplitude between 50mk
and 350mk.
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Figure 9.6: (a)Resistance oscillations close to &, = ®,/2 for temperatures
between 50mk and 350mK. The oscillations have been normalized to account
for the reduction in the oscillation amplitude due to heating. (b) Shows these
resistance curves subtracted from the one taken at base temperature.
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Figure 9.7: The above Figure illustrates two possible explanations for the
temperature dependent behaviour of the qubit. In (a) there is tunnelling
between the two potential wells and so the quantum behaves as a two state
quantum system. Thermal excitation raises the qubit from the ground to the
excited state. In (b) there is no tunnelling and so the system is trapped in
either the left or the right well. Thermal energy allows the system to escape
over the barrier V{) causing a change in current direction.
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Figure 9.8: (a) The change in the resistance plotted as a function of 1/7" at a
constant flux ®/®y = 0.49. By taking the natural logarithm of the resistance
and fitting a linear function the resulting data, as shown in (b), the energy
splitting between the ground and excited state can be estimated.
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trated in Figure 9.7. The first assumes that in the system tunnelling is
possible between the potential wells of the qubit, causing it to behave as a
two state system. The change in the resistance curve is then caused by the
qubit being thermally excited from the ground to the excited state. The
probability of finding the qubit in the excited state is

P o e B/KT (9.2)

where F is the energy separation between the ground and excited state.

The second explanation assumes that the system is behaving classically
and there is no tunnelling between the potential wells of the system. The
two wells represent the two different current directions in the loop, and ther-
mal excitation causes the system to escape over the barrier separating the
two wells, resulting in a change in current direction and, thus, a change in
resistance. In this case the probability of exciting the system over the barrier
would be

P oc e /KT (9.3)

where Vj is the height of the barrier.

The experimental results seem to support the first of these two scenarios.
If the system was behaving classically then the system would be expected
to exhibit hysteric behaviour with respect to flux. In practice, no hysteresis
was observed.

By plotting the natural logarithm of the change in resistance as a function
of 1/T, it is possible to estimate the exponent in 9.2, as shown in Figure 9.8.
By repeating this process at many different fluxes, it is possible to plot the
behaviour of the exponent as a function of flux, as shown in Figure 9.9. This
behaviour is well matched to the energy separation of the two states in flux
qubit, with a minimum at ®/2, growing larger as the flux moves away from
this point.

9.4 Behaviour of System When Driven by a
Continuous RF Field

In this section the results obtained from the system when it is driven by a
continuous RF field are presented. The behaviour observed can be broken
down into a number of different phenomenon, as listed below-

e A change in the shape of the resistance oscillations close to the de-
generacy point was observed. This effect was dependent on both the

124



frequency and amplitude of the RF field, and it is believed that it
represents the first spectroscopic measurements of a flux qubit using
Andreev interferometer.

e A Pi shift in the phase of the oscillations was observed at strong RF
fields. It is believed that this effect is due to the large modulation of
the total magnetic field by the RF field.

e A decrease in the amplitude of the oscillations was observed with in-
creasing amplitude of RF field. It is believed that this is due to the
heating of the system as discussed in the previous section.

9.4.1 Dependence on RF Field Amplitude

The shape of the resistance curves close to the degeneracy points changes
when a RF field is applied to the sample. Plots showing these changes at dif-
ferent RF amplitudes are shown in Figure 9.10. The shape of these changes
is consistent with the resonance peaks at high powers and extremely short
dephasing times. The amplitude of, and position of, these resonances in-
creases linearly with RF amplitude, as shown in Figure 9.11. This is in good
agreement with the model described in chapter 5. By fitting the curves us-
ing this model it is possible to estimate the coherence times and Wy, of the
system, as shown in Figure 9.12. These fittings give a maximum coherence
time for the system of 200+ 50ps, which is in good agreement with the values
calculated in chapter 5.

9.4.2 Dependence on RF Field Frequency

The shape of the resistance oscillations close to the degeneracy point was
also observed to change with the frequency of the applied RF field. This
behaviour is consistent with resonant excitation of the qubit. Curves taken
at applied frequencies from 4GHz to 16GHz are shown in figures 9.13. Figure
9.14 shows the position and amplitude of these resonance peaks plotted as a
function of frequency. This data was fitted to the model described in chapter
5. By fitting the position of the peaks to the energy spectrum described by
5.2 it was possible to estimate that for this qubit E;/Es = 200 £ 100 and
A = 3 £ 1GH~z (shown in figure 9.14). These means that A/(E;/E¢) =
0.02 £ 0.01GHz which agrees well with the value estimated from the ground
state and temperature measurements. We estimate that the coherence time
of our system is 7 = 150 &+ 50ps. Using () = wp;7 at 10GHz this gives us a
quaility factor of Q =9 + 3.
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Figure 9.10: (a)Shows the resistance of the inteferometer plotted as a function
of magnetic flux at RF field amplitudes between 0 and 35mV. (b) Shows the
the resistance at a function flux at RF amplitudes between 5mV and 35mV,
subtracted from that taken at 0mV, giving the change in resistance due to
RF field.
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127



RF

AR

—5mV
—— 10mV|
02 = 15mV|
——20mV
25mV|
.
0.1F /’ﬁ \\ ——30mV|
/ \ 35mV]
Y N\
Y/
0.0 paea \\ //% ¥\,\}
AN
0.1+ \ A
\_
02 1 1 1 1 1
0477 0486 0495 0504 0513 0522
tI)/cD0
(a)
T
141
| ]
12
1.0+ .
0.8F
L]
0.6 F
| ]
0.4+
L]
02F
L
00 1 1 1 1 1 1
10 15 20 25 30 35
A/mV
(c)

-0.1}

02

048

600
550
500
450

/ps

350
300
250
200

0.50 0.51

lii] /(I) o
(b)

049

®_ Coherence Time|
T

400 -

A/mV

(d)

Figure 9.12: The above graphs show the data obtained by fitting the ex-
perimental data to the model described in chapter 5. (a) The experimental
data and the computer simulation which were generated from it using the
model described in 5.1. The fitting parameters where the decoherence rate
' and the coupling Wy;. (b) The decoherence times generated by this fitting
process plotted as a function of RF amplitude. (c¢) The coupling parameter
plotted as a function of RF amplitude.
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There is some discrepancy between the shape of resonances observed and
those predicted by our model. This may be due to the some of the assump-
tions that have made in order to simplify the model. In the model we have
assumed a constant decoherence rate independent. In reality the coherence
rate will depend on the flux bias of the system. We have also assumed that
the RF amplitude is independent of the RF frequency. In practice resonances
in the RF line means this is not the case.
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Figure 9.13: (a)

Shows the resistance of the inteferometer plotted as a function of magnetic
flux at RF field frequencies between 4GHz and 14GHz. (b) Shows the re-
sistance at a function flux at RF frequencies between 4GHz and 14GHz,
subtracted from that taken at OmV, giving the change in resistance due to
RF field. (c¢) Shows the computer simulation of data shown in (b) based on
the model described in 5.1 130
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Figure 9.14: The above graphs show the behaviour of the resonance peaks
seen in Figure 9.10. (a) Shows the position of the peak. The dashed line
shows the energy spectrum (E; — Ey) described by equation 5.2. The fitting
parameters where A = 3GHz and E;/Ec = 200. The solid lines show the
model behaviour of resonant peak position with coherence times between
111ps and 1000ps, as described in chapter 5. (b) Shows the amplitude of the
peak as a function of RF frequency. The solid lines show the model behaviour
of resonant peak amplitude with coherence times between 111ps and 333ps.
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9.5 Andreev Interferometer’s response to a
strong RF field

We wished to investigate the influence of a strong RF field on an Andreev
interferometer alone. To do this we used a different sample, which consisted
of a silver cross connected to a plain loop of aluminium, as shown in Figure
9.15. As expected, the resistance of the cross oscillated as a function of the
magnetic flux through the loop. When a strong RF field was applied the
amplitude of the oscillations decreased with increasing RF amplitude, until
at high RF amplitudes a 7 shift in the oscillations was observed, as shown
in Figure 9.16.

This phenomenon is thought to be a consequence of the RF field adding
a high frequency oscillating component to the flux threading the aluminium
loop. This leads to a high frequency component of the phase so that the time
dependant phase can be written as

¢ = ¢+ psin <27r;) (9.4)

where ¢ is the phase across the interferometer due to the static magnetic
field, 7 = 1/f is the frequency of the RF field, x is the amplitude of the RF
field. The change in resitance can then be written as

(14 cos(9) (9.5)

R =Ry 1T a?

In this equation a is a parameter which models the damping of the oscilla-

tions due to heating from the RF. This high frequency component is averaged

by the measurement system leading to a observed change in resistance equal
to

f_TijQ(l + cos(¢ + psin(277)))dt

(1+ap?)7
The integral shown in 9.6 is a bessel function, and so the measured resi-
tance oscillates as a function of RF amplitude.
We measured the change in resistance as a function RF amplitudes for
a number of different values of ¢. These experimental results agree qualita-
tively with the model described above, as shown in Figure 9.17. In order to
see this effect the interferometer most be operating in the adiabatic regime,
in that the responses time of the interferometer must be shorter than the
period of the RF oscillations. This allows us to estimate an upper limit for
the time of flight of the electrons in the interferometer of 7y < 50ps.

AR =

(9.6)
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Figure 9.15: This Figure shows a diagram of the sample used to observe a
7 shift in the Andreev interferometer oscillations. It is the same design as
the main sample used in experiment one, but with the qubit replaced with a
plain loop of aluminium.

0.01280 ———4————————
0.01275 |
0.01270 |
0.01265 |

0.01260

Cross

Z0.01255

0.01250 —0mV
— 50mV

0.01245 | 100mV
— 150mV|

0.01240

L L 1 L L
-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003

magnet

Figure 9.16: Resistance plotted against applied magnetic field for an inter-
ferometer under 7.6Ghz RF radiation with increasing power. As power is
increased the oscillations amplitude decreases until a 7 shift is observed.
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Figure 9.17: (a) Resistance plotted against RF power for a microwave fre-
quency of 7.6Ghz, at various applied magnetic fields. The oscillation in
resistance can be seen superimposed onto the overall decrease in oscillation
amplitude due to the heating of the sample. (b) Plot of the change in resis-
tance as a function of RF amplitude modelled using equation 9.6
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9.6 Summary and Conclusions

The main achievement of this project is to show that the back action of the
Andreev probe on the attached flux qubit is low enough that an energy gap
can be observed in the qubit.

This conclusion is based on the following evidence

e We observe a change in the qubit behaviour with temperature and
flux that strongly suggests thermal excitation of the qubit into the
excited state. Fitting of this data gives an energy gap A = 3 + 1GHz.
This value is in good agreement with those obtained from ground state
observations of the qubit and from model calculations.

e The change in behaviour of the qubit under the influence of a RF field
was consistent with the qubit undergoing resonant excitation. From
this we were able to estimate an energy gap of A = 3 & 1GHz. This
is in good agreement with the observations made of the qubit in the
ground state, temperature measurements and model calculations.

e The measurements of the coherence time estimated 7 = 150ps. Such
a short coherence time can be explained as a consequence of the high
dephasing rate caused by the strong coupling of the interferometer to
the qubit, and of the high environmental noise.

We observe a 7 shift in the oscillations at high RF fields. This shift
suggests a very short response time of the Andreev of 1071%. These mea-
surements at high RF field could be used to study the damping of coherent
effects and their dependence on excitation frequency.

We have also developed a novel tri-layer resist system, discussed in chapter
7, that allow for the fabrication of high quality mesoscopic structures. The
selective undercut used in this fabrication process allows for the creation of
some unique structures and has many applications in other projects.

9.7 Future Work

In this project we have presented evidence that it is possible to observe
resonant excitation in a flux qubit using an Andreev interferometer. However,
the coherence times observed appear to be very short in comparison to those
measured by other groups using more established methods. In order to carry
out high quality spectroscopy and observe Rabi oscillations, and make the
Andreev interferometer a viable alternative to other methods, future work
will have to concentrate on increasing the coherence time of the qubit.
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In chapter 5 we derived formulas to describe the relaxation and dephasing
rates.

AJRY AZMPLg? | o
Lpg = - 2(Mygpint) =55 coth | ——— :
<w) e, O M) rgapeo <2kBT> D

Tpe =

| N ( € )2 87T[£M2 (ICQ)Q COS2(M1¢mt)lkBT (9.8)

2 hw h Ia) cos?(Mygig) R R

Considering these equations allow us to conceive of ways to improve the
experiment. The following sections present two methods which could be used
to increase the coherence time of the system. The first is a simple process
of decreasing the coupling between qubit and interferometer to increase the
coherence time, at the expense of decreasing the sensitivity of the system.
The second method is more ambitious, exploiting the tuneable supercurrent
in an Andreev interferometer to create a readout that can be quickly switched
between ‘on’ and ’off” states.

9.7.1 Method 1

Examining 9.7 and 9.8, it is clear that one option for increasing the coherence
time of the system would be to decrease M, the effective inductance between
the qubit and interferometer. In the current design, M is extremely high
because the qubit is directly connected to the interferometer. By disconnect-
ing the qubit so that it is coupled inductively to the interferometer, it would
be possible to decrease the M by several orders of magnitude. This would
lead to a corresponding increase in the dephasing and relaxation times. This
design is shown in Figure 9.18.

This increase in coherence would be at the cost of the sensitivity system.
The resistance of the interferometer would be less sensitive to the changes
in phase of the qubit. This decreased sensitivity would mean that the signal
to noise ratio of readout would have to be higher than present in order to
observe resonance peaks.

In summary, this method of increasing the coherence time would be easily
achievable and quickly implementable using current fabrication technologies
and measurement setup. It would, however lead to a permanent decrease in
the sensitivity of the system.

9.7.2 Method 2

The second method for increasing the coherence time is more ambitious. It
exploits the tenable supercurrent in an Andreev interferometer investigated
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Figure 9.18: A concecpt drawing for an improved qubit and interferometer.
Aluminium is shown in blue and silver in red. A silicon oxide spacer is
shown in green. In this design the qubit is no longer directly connected to
the interferometer, but is coupled by mutual inductance M. By fabricating
the circuit so that M is low, the coherence time of the qubit can be increased.
This design also includes a new method of fabricating the interferometer. In
this method the current into the interferometer is injected by an aluminium
wire which lies on top of the siver cross, seperated by a silicon oxide spacer.
This ensures that the current loop is in a plane perpendicular to plane of the
qubit, minimising the flux coupling between the measurment current and the
qubit

137



t
1
I
1
|

v

V

readout

Figure 9.19: The critical current of the interferometer as a function of the
control voltage V. During qubit manipulation the control voltage is zero
and the critical current of the interferometer long, leading to long coherence
times. When the qubit is probed, the voltage is increased to V,.cqdout, leading
to a smaller critical current and a strong coupling of the interferometer to
the qubit.
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by Morpurgo and others. 9.7 and 9.8 show that the relaxation and dephasing
times are related to the ratio of the qubit critical current to the interferom-
eter critical current, I.,/I.,. Morpurgo showed that the critical current of
the interferometer can be controlled by the voltage across the perpendicular
section [38], as shown in Figure 9.19. Using this it should be possible to
create a readout which can be switched from an off state where there is no
voltage, so the critical current is high and the coherence times long, to an on
state where there is a voltage allowing the qubit state to be read out.

In this regime the external flux is positioned close to ®y/2 so that the
excited state of the qubit becomes accessible. A pulse of RF is then applied so
that the qubit resonants between the ground and excited state. The critical
current of the Andreev interferometer is high at this time so the coherence
time of the qubit is long. Some time after the pulse of RF, a pulse of current
is passed through the interferometer. This decreases the critical current,
coupling the interferometer to the qubit and allowing it to be read out.

The advantage of this method is that it allows for a flexible readout system
that can be kept off to allow long coherence times, while still maintaining
the high sensitivity of the Andreev interferometer readout, when it is turned
on. This method, however is considerably more complex and would require a
large amount of time spent on perfecting the readout method and redesigning
the measurement setup to allow for pulsed measurements.
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