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Abstract

This note studies the behavior of an index It which is assumed to be a

tradable security, to satisfy the BSM model dIt/It = µdt+ σdWt, and to

be efficient in the following sense: we do not expect a prespecified trading

strategy whose value is almost surely always nonnegative to outperform

the index greatly. The efficiency of the index imposes severe restrictions

on its growth rate; in particular, for a long investment horizon we should

have µ ≈ r+σ2, where r is the interest rate. This provides another partial

solution to the equity premium puzzle. All our mathematical results are

extremely simple.

1 Introduction

The efficient index hypothesis (EIH ) is a version of the random walk hypothesis
and the efficient market hypothesis. It is a statement about a specific index,
such as S&P 500, and says that we do not expect a prespecified trading strategy
to beat the index by a factor of 1/δ or more, for a given threshold δ (such as
δ = 0.1). The trading strategy is assumed to be prudent, in the sense of its
value being nonnegative a.s. at all times. By saying that it beats the index by
a factor of 1/δ or more we mean that its initial value is K0 > 0 and its final
value KT satisfies KT /IT ≥ (1/δ)(K0/I0). (By the value of a trading strategy
we always mean the undiscounted dollar value of its current portfolio.) We will
see that the EIH has several interesting implications, such as µ ≈ r+ σ2 for the
growth coefficient µ of the index.

We use the EIH in the interpretation of our results, but their mathematical
statements do not involve this hypothesis. For example, in Section 2 we prove
that there is a prudent trading strategy that, almost surely, beats the index by
a factor of at least 10 unless

IT
erT

∈
(

eσ
2T/2−1.64σ

√
T , eσ

2T/2+1.64σ
√
T
)

(1.1)

(see Proposition 2.1). If we believe in the EIH (for δ = 0.1), we should believe
in (1.1). But even if we do not believe in the EIH, the proposition gives us a
way of beating the index when (1.1) is violated.
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As used in this note, the EIH is a weaker assumption than it appears to be.
There might be sophisticated prudent trading strategies that do beat the index
(by a large factor), but we are not interested in such strategies. It is sufficient
that the primitive strategies considered in this note be not expected to beat the
index.

Our EIH is obviously related, and has a similar motivation, to the standard
efficient markets hypothesis [2]. There are, however, important differences. For
example, the EIH does not assume that the security prices are “correct” in any
sense, or that investors’ expectations are rational (individually or en masse).
The EIH controls for risk only by insisting that our trading strategies be prudent.
Admittedly, this is a weak requirement, and so the threshold value of δ should
be a small number; in our examples, we use δ = 0.1. (If a trader is worried
about losing all money, nothing prevents her from investing only part of her
capital in prudent strategies that can lose everything.)

Remark. In [9, 11], the EIH was referred to as the “efficient market hypoth-
esis”, whereas the standard hypothesis of market efficiency as the “efficient
markets hypothesis”, with “markets” in plural. However, nowadays the stan-
dard hypothesis is more often called the “efficient market hypothesis” than the
“efficient markets hypothesis”, and so it is safer to use a different term for our
hypothesis. The results of this note agree with the results of [11] (see, e.g.,
(1) of [11] as applied to sn := r, ∀n), which were obtained using very different
methods.

We start the main part of the note with results about the growth rate of
the index under the EIH (Section 2). The main insight here is that the index

outperforms the bond approximately by a factor of eσ
2T/2 (cf. (1.1)). In the

following section, Section 3, we show that, under the EIH, µ ≈ r+σ2. Section 4
applies this result to the equity premium puzzle; the equity premium of σ2

is closer to the observed levels of the equity premium than the predictions of
standard theories. Section 5 discusses our findings from the point of view of
game-theoretic probability (see, e.g., [9]).

2 Growth rate of the index

The time interval in this note is [0, T ], T > 0; in the interpretation of our results
the horizon T will be assumed to be a large number. The value of the index
at time t is denoted It. We assume that it satisfies the BSM (Black–Scholes–
Merton) model

dIt
It

= µdt+ σdWt (2.1)

and that I0 = 1. The interest rate r is assumed constant. We will sometimes
interpret ert as the price at time t of a zero-coupon bond whose initial price is 1.

The risk-neutral version of (2.1) is

dIt
It

= rdt+ σdWt. (2.2)
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The explicit strong solution to this SDE is It = e(r−σ2/2)t+σWt .
Let E ⊆ R be a Borel set. If F : R → R, we let F (E) stand for the set

{F (x) | x ∈ E}; this convention defines the meaning of expressions such as
lnE
2 − 1. The BSM price at time 0 of the European contingent claim whose

payoff at time T is

F (IT ) :=

{

IT if IT ∈ E

0 otherwise
(2.3)

can be computed as the discounted expected value

e−rT
E

(

e(r−σ2/2)T+σ
√
Tξ 1

{

e(r−σ2/2)T+σ
√
Tξ ∈ E

})

=
1√
2π

∫

lnE
σ
√

T
− r

σ

√
T+σ

2

√
T

e−σ2T/2+σ
√
Tx−x2/2 dx

=
1√
2π

∫

lnE

σ
√

T
− r

σ

√
T+σ

2

√
T

e−(x−σ
√
T )2/2 dx

=
1√
2π

∫

lnE

σ
√

T
− r

σ

√
T− σ

2

√
T

e−y2/2 dy

= N0,1

(

lnE

σ
√
T

− r

σ

√
T − σ

2

√
T

)

, (2.4)

where ξ ∼ N0,1, N0,1 is the standard Gaussian distribution on R, and 1{. . .} is
defined to be 1 if the condition in the curly braces is satisfied and 0 otherwise.

Since the BSM price can be hedged perfectly (see, e.g., [3], Theorem 5.8.12),
there is a prudent trading strategy Σ with initial value (2.4) and final value
(2.3) a.s. We can see that Σ beats the market by the reciprocal to (2.4) if E
happens.

Two special cases

Let δ ∈ (0, 1) and E := (−∞, A]∪ [B,∞), where A and B are chosen such that

lnA

σ
√
T

− r

σ

√
T − σ

2

√
T = −zδ/2,

lnB

σ
√
T

− r

σ

√
T − σ

2

√
T = zδ/2, (2.5)

where zp is the upper p-quantile of the standard Gaussian distribution, i.e.,
is defined by the requirement that N0,1([zp,∞)) = p. Then N0,1(E) = δ.
Equations (2.5) give

A = erT eσ
2T/2−zδ/2σ

√
T , B = erT eσ

2T/2+zδ/2σ
√
T .

We can state the result of our calculations as follows.

Proposition 2.1. Let δ > 0. There is a prudent trading strategy (depending
on σ, r, T, δ) that, almost surely, beats the index by a factor of 1/δ unless

IT
erT

∈
(

eσ
2T/2−zδ/2σ

√
T , eσ

2T/2+zδ/2σ
√
T
)

. (2.6)
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Equation (2.6) says that for large T the efficient index can be expected to

outperform the bond eσ
2T/2-fold. The case δ ≥ 1 in Proposition 2.1 is trivial,

but we do not exclude it to simplify the statement of the proposition.
If we are only interested in a lower or upper bound on IT , we should instead

consider the set E := (−∞, A] or E := [B,∞), respectively. We will obtain
(2.5) with δ in place of δ/2 and, therefore, will obtain the following proposition.

Proposition 2.2. Let δ > 0. There is a prudent trading strategy that, almost
surely, beats the index by a factor of 1/δ unless

IT
erT

> eσ
2T/2−zδσ

√
T .

There is another prudent trading strategy that, almost surely, beats the index by
a factor of 1/δ unless

IT
erT

< eσ
2T/2+zδσ

√
T . (2.7)

It is clear that Propositions 2.1 and 2.2 are tight in the sense that the factor
1/δ cannot be improved.

3 Implications for µ

The following corollary of Proposition 2.1 shows that the EIH and the BSM
model (2.1) imply µ ≈ r + σ2.

Proposition 3.1. For each δ > 0 there exists a prudent trading strategy Σ =
Σ(σ, r, T, δ) that satisfies the following condition. For each ǫ > 0, either

∣

∣r + σ2 − µ
∣

∣ <
(zδ/2 + zǫ)σ√

T
(3.1)

or Σ beats the index by a factor of at least 1/δ with probability at least 1− ǫ.

Intuitively, µ ≈ r + σ2 unless we can beat the index or a rare event happens
(assuming that δ and ǫ are small and T is large).

Proof of Proposition 3.1. Without loss of generality, assume δ, ǫ ∈ (0, 1). As Σ
we take a prudent trading strategy that beats the index by a factor of 1/δ unless
(2.6) holds. Therefore, we are only required to prove that the event that (2.6)
holds but (3.1) does not has probability at most ǫ. We can rewrite (2.6) as

∣

∣

∣

∣

ln IT − rT − σ2

2
T

∣

∣

∣

∣

< zδ/2σ
√
T . (3.2)

Remembering that (2.1) has explicit solution It = e(µ−σ2/2)t+σWt , we can
rewrite (3.2) as

∣

∣

∣
σ
√
Tξ − (r + σ2 − µ)T

∣

∣

∣
< zδ/2σ

√
T ,
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where ξ ∼ N0,1, i.e., as

∣

∣

∣

∣

∣

ξ − (r + σ2 − µ)
√
T

σ

∣

∣

∣

∣

∣

< zδ/2. (3.3)

If (3.1) is violated, we have either r+σ2−µ < −(zδ/2+zǫ)σ/
√
T or r+σ2−µ >

(zδ/2 + zǫ)σ/
√
T . The two cases are analogous, and we consider only the first.

In this case, (3.3) implies ξ < −zǫ, the probability of which is ǫ.

Proposition 3.1 shows that the arbitrariness of µ in the BSM model (2.1) for
the index is to a large degree illusory if we accept the EIH.

The strategy Σ of Proposition 3.1 depends only on σ, r, T , and δ. If we
allow, additionally, dependence on µ and ǫ, we can use Proposition 2.2 instead
of Proposition 2.1 and strengthen (3.1) by replacing δ/2 with δ.

Proposition 3.2. Let δ > 0 and ǫ > 0. Unless

∣

∣r + σ2 − µ
∣

∣ <
(zδ + zǫ)σ√

T
, (3.4)

there exists a prudent trading strategy Σ = Σ(µ, σ, r, T, δ, ǫ) that beats the index
by a factor of at least 1/δ with probability at least 1− ǫ.

Proof. Suppose (3.4) is violated. Since the cases r + σ2 − µ < −(zδ + zǫ)σ/
√
T

and r + σ2 − µ > (zδ + zǫ)σ/
√
T are analogous, we will assume

r + σ2 − µ < − (zδ + zǫ)σ√
T

. (3.5)

(Our trading strategy depends on which of the two cases holds, and so depends
on µ and ǫ.) As Σ we take a prudent trading strategy that beats the index by
a factor of 1/δ unless (2.7) holds. We are required to prove that the probability
of (2.7) is at most ǫ. We can rewrite (2.7) as

ln IT − rT − σ2

2
T < zδσ

√
T ,

i.e.,

ξ − (r + σ2 − µ)
√
T

σ
< zδ,

where ξ ∼ N0,1. The last inequality and (3.5) imply ξ < −zǫ, whose probability
is ǫ.

4 Equity premium puzzle

The equity premium is the excess of stock returns over bond returns, and it
appears to be higher in the real world than suggested by standard economic
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theories. This has been dubbed the equity premium puzzle [7]. There is no
consensus as to the explanation, or even to the existence, of the equity premium
puzzle; for recent reviews see, e.g., [5, 8]. In this section we will see that our
results can be interpreted as providing a partial solution to the puzzle.

According to Proposition 3.1, under the EIH we can expect µ ≈ r+σ2. This
gives the equity premium σ2. The annual volatility of S&P 500 is approximately
20% (see, e.g., [6], p. 3, or [5], p. 8), which translates into an expected 4% equity
premium. The standard theory predicts an equity premium of at most 1% ([5],
p. 11).

The empirical study by Mehra and Prescott reported in [6], Table 2, esti-
mates the equity premium over the period 1889–2005 as 6.36%. Taking into ac-
count the later years 2006–2010 reduces it, but not much, to 6.05%. (The recent
news about bonds outperforming stocks over the past 30 years [4] were about
30-year Treasury bonds, whereas Mehra and Prescott use short-term Treasury
bills for this period.) Our figure of 4% is below 6.05%, but the difference is
much less significant than for the standard theory. If the years 1802–1888 are
also taken into account (as done by Siegel [10], updated until 2004 by Mehra
and Prescott [6], Table 2, and until 2010 by myself), the equity premium goes
down to 5.17%.

Equation (2.6) allows us to estimate the accuracy of our estimate σ2 of the
equity premium. Namely, we have, almost surely,

1

T

∫ T

0

dIt
It

− r − σ2 =
ln IT + σ2T/2− rT − σ2T

T
∈
(

−zδ/2σ√
T

,
zδ/2σ√

T

)

(4.1)

unless a prespecified prudent trading strategy beats the index by a factor of
1/δ. Plugging δ := 0.1 (to obtain a reasonable accuracy), σ := 0.2, and T :=
2010− 1888, we evaluate zδ/2σ/

√
T in (4.1) to 2.98% for the period 1889–2010,

and changing T to 2010−1801, we evaluate it to 2.28% for the period 1802–2010.
For both periods, the observed equity premium falls well within the prediction
interval.

5 Three kinds of probabilities for the index

In this section we will take a broader view of the simple results of the previous
sections. We started from the “physical” probability measure (2.1), used the
risk-neutral probability measure (2.2), and saw the importance of the “EIH
measure”

dIt
It

= (r + σ2)dt+ σdWt. (5.1)

We will see that the last two are essentially special cases of game-theoretic
probability, as defined in [9]. If E is a Borel subset of the Banach space Ω :=
C([0, T ]) of all continuous functions on [0, T ], we define its upper probability with
bond as numéraire by

Pb(E) := inf

{

K0

∣

∣

∣

∣

KT

erT
≥ 1E a.s.

}

,
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where 1E is the indicator function of E, K ranges over the value processes
of prudent trading strategies, and “a.s.” means with probability one under the
physical measure (2.1) (equivalently, under (2.2) or under (5.1)). In other words,
Pb(E) is the infimum of δ > 0 such that a prudent trading strategy can beat
the bond by a factor of 1/δ or more on the event E (except for its subset of zero
probability). We define the upper probability of E with index as numéraire by

PI(E) := inf

{

K0

∣

∣

∣

∣

KT

IT
≥ 1E a.s.

}

.

In other words, PI(E) is the infimum of δ > 0 such that a prudent trading
strategy can beat the index by a factor of 1/δ or more on the event E.

For each Borel E, Pb(E) is the risk-neutral measure of E and PI(E) is
its EIH measure. It is standard in game-theoretic probability to define the
corresponding lower probabilities

Pb(E) := 1− Pb(E
c) and PI(E) := 1− PI(E

c),

where Ec := Ω\E. Since our market is complete, upper and lower probabilities
always coincide. A major difference of the definitions of Pb and PI from the usual
definitions of upper probabilities in game-theoretic probability is the presence of
“a.s.”; in game-theoretic probability “a.s.” is absent as there is no probability
measure to begin with.

The processes (2.2) and (5.1) are in some sense reciprocal. By Itô’s formula,
if It satisfies (2.2), then I∗t := e2rt /It will satisfy (5.1) with I∗ in place of I
and −W in place of W , and vice versa. (The definition of I∗t makes the bond’s
growth rate ert the geometric mean of It and I∗t .) In particular, the growth rate

of typical trajectories of (2.2) is approximately e(r−σ2/2)t, and the growth rate

of typical trajectories of (5.1) is approximately e(r+σ2/2)t.
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