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Abstract

The main theme of this thesis is the design of a search for Supersymmetry in the ATLAS

Experiment using events with two opposite sign leptons, two jets and missing transverse

energy in the final state. This study has been performed within the framework of the

mSUGRA model. The most significant background in this channel is from events with a

top-antitop (tt̄) quark pair, where the tt̄ decays result in two W bosons that each decay

into a lepton and a neutrino. The bulk of the analysis is devoted to developing a data-

driven method to estimate the top background using a control sample. The tt̄ control

sample has been constructed by selecting events with one lepton and four jets. Two of

these jets may come from a W boson decay, and these are identified using kinematic

and flavour tag information. By replacing the W boson’s jets with a simulated lepton-

neutrino pair, one obtains a tt̄ event with characteristics that should be very close to

the tt̄ background of the dilepton search. The distributions of kinematic variables for

background events in the search region are also compared with those of the control

sample, and they are found in reasonably good agreement when the jets are correctly

identified. The analysis has been tested using simulated data. A statistical analysis

based on the profile-likelihood method has been developed for the search. For a data

sample of a given size, the expected discovery significance and upper limits on signal

cross sections are investigated.
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Chapter 1

Introduction

Despite its great success, there are a number of reasons to believe that the Standard

Model (SM) of particle physics is incomplete. Supersymmetry is one alternative to

extend the Standard Model, which looks quite appealing specifically the way it tackles

the hierarchy problem. It proposes new massive particles but none of them has been

observed. One of the main goals of the ATLAS experiment at the Large Hadron Collider

is to explore new physics (such as Supersymmetry) at the TeV scale.

The main theme of this thesis is the design of a search for Supersymmetry in the

ATLAS experiment by requiring events with two opposite-sign leptons, two jets and

missing transverse energy in the final state. This analysis has been performed within

the framework of the mSUGRA model, and it is based on 7 TeV centre-of-mass energy

using Monte Carlo data based on a full simulation of the detector. For this study,

a benchmark point, SU4, is chosen in the mSUGRA parameter space. The analysis

described here takes ATLAS’s official dilepton analysis [1] as a starting point, and it

is reviewed with slight modification. The Monte Carlo samples used in the thesis are

centrally produced within the ATLAS collaboration.

The most significant background in this channel is from events with a top-antitop (tt̄)

quark pair, where the tt̄ decays result in two W bosons that each decay into a lepton and

15
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a neutrino. In order to claim a SUSY discovery, the Standard Model backgrounds are

estimated by data driven methods. In this thesis, the bulk of the analysis is devoted to

develop a data driven method for estimating the tt̄ background in the signal region. To

do this, a control sample of tt̄ events has been constructed by selecting events with one

lepton and four jets, i.e., one of the above W bosons decays hadronically to populate the

final state with two additional jets. Later, these additional jets (here called W jets) are

replaced with a simulated lepton and a neutrino. The correct identification of 2 W jets

is a challenging task, which uses both kinematic and flavour tag information. The Monte

Carlo studies indicate that the identified W jets are correct in 51 % of the events selected

in the control sample. The fraction is not very high because the 2 W jets survived the

selection cuts only 59 % of the cases. When the 2 W jets are accepted in the control

sample, the method identifies them 87 % of the time. The distributions from tt̄ in

the dilepton search channel to those from tt̄ in the control sample are compared, and

it has been found that the distribution shapes are strongly dependent on the correct

identification of the 2 W jets.

The analysis has been tested using simulated data corresponding to an integrated

luminosity of 0.5 fb−1. A statistical analysis based on the profile-likelihood method has

been developed for the search. For a data sample of 0.5 fb−1, the median discovery

significance for the benchmark point SU4 in the mSUGRA parameter space was found

to be 2.1. Assuming the absence of a SUSY signal, the median upper limit on the cross

section for SUSY (SU4) is 0.59 times the predicted cross section, which is to say one

would expect to exclude this model.

The theoretical foundation behind the analysis is presented in Chapter 2. Chapter

3 provides a brief overview of the ATLAS detector. Reconstruction of physics objects

in ATLAS is the aim of Chapter 4. In Chapter 5, the analysis overview of the SUSY

search based on the dilepton channel is provided. Chapter 6 presents a novel data driven

technique which has been developed for estimating the tt̄ background. This techinque
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has been tested using the mock data in Chapter 7. Finally, the conclusions are drawn

in Chapter 8.



Chapter 2

Theory and Motivation

This chapter provides an overview of the theoretical foundation behind the analysis pre-

sented in this thesis. At first, we will focus on the Standard Model of particle physics

which identifies the building blocks of matter and describes the interactions that bind

them. The model is quite successful in explaining essentially all experimental observa-

tions made to date. Nevertheless, it is widely believed that this can not be the ultimate

theory of nature as it leaves many questions unanswered. One possible extension to the

Standard Model is Supersymmetry which may provide answers to some questions that

are raised against the Standard Model. The latter part of this chapter is devoted to the

discussion on Supersymmetry.

2.1 Standard Model of Particle Physics

The most important conceptual advances in physics in the last century were the special

theory of relativity and quantum mechanics, both of which were fused to create relativis-

tic quantum field theory. The Standard Model (SM) [2], [3], [4] which encapsulates our

current view of particle physics, has been developed using the framework of quantum

field theory. The SM was developed in the 1960s and early 1970s and it has been highly

18
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successful in describing almost all the data that has come from various experiments in the

last few decades. In the SM, elementary particles are divided into fermions (half-integral

spin) and bosons (integral spin). The fermions are the matter particles while bosons are

force carriers that communicate the forces between the fermions. Out of four known

forces of nature, three are successfully incorporated in the SM: electromagnetic, strong

and weak. The Standard Model is a renormalizable theory, which means calculations in

perturbation theory give finite results.

2.1.1 Matter Particles

The fermions in the Standard Model are divided into quarks and leptons. The strongly

interacting fermions are called quarks. The quarks also interact via electromagnetic and

weak forces. There are six types of quarks called up (u), down (d), charm (c), strange

(s), bottom (b) and top (t), and they are arranged into three generations as shown

in Table 2.1. In the SM, the fermions of ordinary matter are electron, up-quark and

down-quark. The quarks are not free particles. Instead they appear as bound state

of quarks called hadrons; for example, the proton and neutron are made up off three

quarks, (uud) and (udd) respectively. The quarks carry fractional electric charge i.e. 2
3

and −1
3 in units of the electron’s charge. In addition to this, they also possess strong

charge called colour. A quark can carry either red, blue or green colour. A particle must

carry colour charge in order to interact strongly. Quarks also carry a quantum number

called baryon number, which is +1
3 for quarks and −1

3 for antiquarks.

The leptons also interact through electromagnetic and weak forces but they are

immune to the strong interaction because they do not carry colour charge. Like quarks,

the leptons are of six types called electron (e), electron-neutrino (νe), muon (µ), muon-

neutrino (νµ), tau (τ) and tau-neutrino (ντ ) which are organised into three generations

as shown in Table 2.2. Muons and taus are the heavier versions of electrons, i.e., they

have identical properties to electrons except for their mass. All charged leptons have
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Generations Quarks Charge (/e) Mass

1st up (u) +2
3 1.53 - 3.3 MeV

down (d) -1
3 3.5 - 6.0 MeV

2nd charm (c) +2
3 1.27 GeV

strange (s) -1
3 104 MeV

3rd top (t) +2
3 171.2 GeV

bottom (b) -1
3 4.2 GeV

Table 2.1: Quarks and their properties. Numbers taken from [5].

Generations Leptons Charge (/e) Mass

1st electron (e) -1 0.511 MeV

electron-neutrino (νe) 0 ∼ 0

2nd muon (µ) -1 105.7 MeV

muon-neutrino (νµ) 0 ∼ 0

3rd tau (τ) -1 1.78 GeV

tau-neutrino (ντ ) 0 ∼ 0

Table 2.2: Leptons and their properties. Numbers taken from [5].

their own neutrinos, which are massless in the context of the original Standard Model.

Recently, the phenomena of neutrino oscillations has given the evidence of non-zero

neutrino mass [6], [7], [8]. Unlike charged leptons, the neutrinos interact only weakly

as they are electrically neutral. Leptons also carry a quantum number called lepton

number, which is +1 for particles and -1 for antiparticles.

2.1.2 Force Carriers

In the SM, the forces are described as exchange of spin-1 vector bosons (also called

force-carriers) between the fermions. All SM interactions have their own vector bosons

and their properties are shown in Table 2.3. The electromagnetic interaction is mediated

by photon (γ) and the part of the SM that explores the dynamics of particles in this
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Coupling Vector Bosons Charge (/e) Mass

electromagnetic photon (γ) 0 0

strong gluons (g) 0 0

weak W±, Z ±1, 0 80.4 GeV, 91.2 GeV

Table 2.3: Force-carriers and their properties. Numbers taken from [5].

interaction is called quantum electrodynamics (QED). In QED, the photon couples to

all the charged particles of the SM. The part of the SM responsible for strong interaction

is known as quantum chromodynamics (QCD). The force carrier of strong interaction is

gluon (g) which is electrically neutral and massless. Like quarks, the gluon also possess

colour.

The mediators of the weak interaction are W+, W− and Z bosons. Unlike photon and

gluon, they are massive of the order of 100 GeV as shown in Table 2.3. It is predicted that

W and Z bosons obtain their masses by the phenomenon of Higgs mechanism that will be

discussed in the next section. Moreover, the electromagnetic and weak forces are unified

and described as one electroweak (EW) force at high energies. This EW symmetry

breaks down when weak bosons acquire masses as a result of Higgs mechanism. At

energies of about 1016 GeV, all the SM forces are expected to be unified, and described

as Grand Unified Theory (GUT). Finally, the gravitons are also postulated as the force

carriers of the gravitational interaction but the SM does not include gravity.

2.1.3 The Higgs Mechanism

It is mentioned in the previous section that the SM forces are described as exchange of

spin-1 particles. A fundamental symmetry, called gauge invariance, is associated with

theories in which force-carriers are spin-1 particles. The gauge invariance requires these

force-carriers to be massless if they are the only bosons in the theory. This criterion is

satisfied by the electromagnetic and strong forces where photons and gluons are massless.

But the problem is W and Z bosons are massive, and the weak force cannot be gauge
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invariant if they are the only bosons present. This problem is rectified by the Higgs

mechanism. The Higgs mechanism introduces a hypothetical field called the Higgs field

and it predicts that the particles (bosons and fermions) acquire masses by interacting

with this field. The Higgs field is a quantum field but it is unlike any other field,

for example, it has non-zero vacuum expectation value1 while the electromagnetic field

has zero value. Moreover, Higgs mechanism predicts a spin-0 particle called the Higgs

boson. The Higgs boson is a quantum of the Higgs field, like photon is a quantum

of electromagnetic field. The Higgs boson is the only undiscovered particle which is

required by the SM. Direct searches of Higgs at the Large Electron-Positron Collider

(LEP), which was one of the largest particle accelerator and was used from 1989 until

2000, have established that the Higgs boson must have a mass greater than 114.4 GeV

[10]. Recent searches of Higgs at the Tevatron, which is the second highest energy

accelerator in the world after the Large Hadron Collider, exclude the Higgs boson mass

in the range 156 - 177 GeV [11].

2.1.4 Limitations

The SM is a highly successful theory as its predictions are very well tested and experi-

mentally verified. But despite its great success, it has serious limitations that demand

one to explore new avenues for its extension. There are a number of problems found

in the SM, such as: the SM does not provide a solution to the hierarchy problem (this

will be explained below); unification of forces is not possible in its framework; no SM

particle is eligible to be considered as a possible candidate for cold dark matter.

Supersymmetry is a possible extension to the SM that attempts to answer some of

these questions. In the next section, we will discuss what supersymmetry is and how it

tackles the above problems.

1In most other cases in physics the vacuum is a state with zero average field [9].
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2.2 Supersymmetry

Today, there are several candidate scenarios for physics Beyond the Standard Model

(BSM) but Supersymmetry (SUSY) is perhaps the best motivated. SUSY introduces a

new symmetry between fermions and bosons which is consistent with the gauge sym-

metries on which the SM is based. SUSY allows unification of gauge boson couplings

at the Grand Unification scale. It is an essential element of string theories and also

provides a candidate particle for the universe cold dark matter [12], [13]. In spite of

these motivations, no supersymmetric particle has ever been observed.

2.2.1 Motivation

The Hierarchy Problem

We have seen that the Higgs mechanism predicts a spin-0 particle called the Higgs boson.

In quantum field theory, the Higgs boson mass is subject to quantum corrections. These

corrections can become much larger than the Higgs mass itself. This is the hierarchy

problem. In the SM, a typical one-loop correction to the Higgs mass is [14]

δm2
H ∼ O(

α

π
)Λ2, (2.1)

where mH is the Higgs mass, α is the coupling strength and Λ is the energy cutoff scale

of new physics. It is clear from the above equation that the quantum corrections would

be much larger than the Higgs mass if Λ is set to the Planck mass scale, i.e., if Λ is

about 1019 GeV. This problem can be rectified in SUSY by postulating equal number

of fermion F and boson B loops with equal coupling strength. The fermion and boson

loops have opposite sign and Equation 2.1 is replaced by

δm2
H ∼ O(

α

π
) (m2

B −m2
F ), (2.2)
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The corrections to the Higgs mass is comparable if

|m2
B −m2

F | ∼ 1 TeV2. (2.3)

Unification of Forces

In a quantum theory, one can calculate how a force would behave if one could study

it at smaller distances (or higher energies). When this procedure is applied to electro-

magnetic, weak and strong forces within the framework of SM, then these forces become

more and more similar but they do not unify at any energy scale. However, when this

study is repeated within the framework of supersymmetric standard model, then these

forces are unified at an energy scale of ∼1016 GeV as shown in Figure 2.1. Here α−1
1 ,

α−1
2 , α−1

3 correspond to the gauge couplings for electromagnetic, weak and strong forces

respectively. The unification of these forces is an important achievement as it indicates

the unification energy of the GUT.

2.2.2 The Minimal Supersymmetric Standard Model (MSSM)

The Minimal Supersymmetric Standard Model (MSSM) [16], [17] is a supersymmetric

extension of the SM with the addition of a minimal number of new particles. A SUSY

transformation changes a fermionic state into a bosonic state and vice versa [15]

Q |Fermion> = |Boson>, Q |Boson> = |Fermion>, (2.4)

where Q is an operator that gives such a transformation. The result of this transfor-

mation is a production of new particles called supersymmetric particles (or sparticles).

SUSY postulates that for each SM particle, there exists a supersymmetric partner with

identical quantum numbers except the spin which differs by half a unit. The sparticles

predicted by the MSSM are given in Table 2.4. The symbol for superpartner is written

with a tilde. The naming convention is to add a prefix s for the superpartner of a SM
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Figure 2.1: The running of the inverse gauge couplings α−1 with increasing interaction
energy scale Q. The dashed lines represent the SM prediction while the solid lines are
the predictions within the framework of supersymmetric SM [15].

fermion e.g. selectron (ẽ), and to add the suffix ino for the superpartner of a SM boson

e.g. gluino (g̃).

In the Standard Model only one Higgs field is needed to give masses to the particles.

However, the MSSM requires two Higgs fields and it predicts five Higgs bosons: ho, Ho,

Ao, H+ and H−. These particles have the following superpartners: h̃o, H̃o, Ão, H̃+ and

H̃−. The linear combination of h̃o and H̃o along with Z̃ and γ̃ define a set of four new

SM particles SUSY partners Spin of SUSY partners

quarks squarks q̃ 0

leptons sleptons ˜̀ 0

gluon gluino g̃ 1
2

W±, H± -field charginos χ̃±1,2
1
2

Z, γ, H -field neutralinos χ̃0
1,2,3,4

1
2

Table 2.4: SM particles and their supersymmetric partners in the MSSM [12].
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particle states χ̃0
1, χ̃0

2, χ̃0
3, χ̃0

4 called neutralinos. Similarly, H̃+ and H̃− mix with W̃+

and W̃− to produce χ̃±1 , χ̃±2 called charginos. All the neutralinos and the charginos are

shown in the Table 2.4.

The supersymmetry we have discussed so far is an exact symmetry where the masses

of particles and sparticles are equal. But there is no direct experimental evidence of any

superpartner yet. Therefore, SUSY is assumed to be a broken symmetry that allows the

masses of sparticles to be much larger than their SM partners. We will discuss about

broken symmetry in Section 2.2.3.

R-Parity

R-parity is a muliplicative quantum number which takes opposite values for the Standard

Model and Supersymmetric particles, which are +1 and -1 respectively. This can be

defined as

R = (−1)3(B−L) + 2S , (2.5)

where B is the baryon number, L is the lepton number and S is a particle spin. There are

two consequences of R-parity conservation. First, the sparticles are produced in pairs.

Secondly, the lightest supersymmetric particle (LSP), to which all sparticles eventually

decay, must be stable. In the MSSM, R-parity conservation is assumed.

2.2.3 The Minimal Supergravity Model (mSUGRA)

It has been mentioned in the previous section that SUSY is not an exact symmetry.

The precise mechanism of broken symmetry is unknown but various models exist that

attempt to describe SUSY breaking. The most popular among them is the Minimal

Supergravity Model (mSUGRA) which is the special case of the MSSM. This model

assumes that gravity is responsible for the mediation of symmetry breaking [18]. In

defining the SUSY breaking mechanism, the mSUGRA model reduces the large number
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Benchmark Points mo m 1
2

Ao tanβ sign(µ)

(GeV) (GeV) (GeV)

SU1 70 350 0 10 +

SU2 3550 300 0 10 +

SU3 100 300 -300 6 +

SU4 200 160 -400 10 +

SU6 320 375 0 50 +

SU8.1 210 360 0 40 +

Table 2.5: Benchmark points in mSUGRA parameter space analysed by ATLAS [19].

of free parameters associated with the MSSM, which is more than 100, to a manageable

number of five after imposing GUT conditions [18]. The following are the five parameters

of mSUGRA:

mo, m 1
2
, Ao, tanβ and sign(µ)

Here, mo is the mass of all scalar particles at GUT scale, m 1
2

is the mass of all gauginos

at GUT scale, Ao stands for the common trilinear Higgs-sfermion-sfermion coupling at

the GUT scale, tanβ is the ratio of vacuum expectation values of two Higgs fields and

sign(µ) is the sign of Higgsino mass term.

Usually, different points in mSUGRA parameter space are chosen to study the various

possible signatures which might face the experiment. The benchmark points studied by

the ATLAS Experiment (topic of the next chapter) are listed in Table 2.5 [19]. The

benchmark point SU4 is important to study as it could provide early SUSY discovery

at the ATLAS Experiment. The sparticle mass hierarchy at SU4 is shown in Figure 2.2,

and the masses of these sparticles are listed in Table 2.6 [20].

In mSUGRA model, the LSP is the lightest neutralino χ̃0
1 which is stable, massive and

weakly interacting particle, and therefore this is an excellent candidate for the universe

cold dark matter. The benchmark points listed in Table 2.5 are roughly consistent with

the observed dark matter density [19].
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Figure 2.2: SU4 sparticle mass hierarchy (from Isajet 7.71) [20].

Mass (GeV) Mass (GeV)

g̃ 413

ũL 412 ũR 405

d̃L 420 d̃R 406

b̃1 358 b̃2 399

t̃1 206 t̃2 445

˜̀
L 232 ˜̀

R 213

τ̃1 201 τ̃2 236

ν̃L 218 ν̃τ 216

χ̃0
1 60 χ̃0

2 113

χ̃0
3 309 χ̃0

4 328

χ̃±1 113 χ̃±2 327

Table 2.6: SU4 sparticle masses (from Isajet 7.71), where mũ ∼ mc̃, md̃ ∼ ms̃, mẽ ∼
mµ̃ = m˜̀ and mν̃e ∼ mν̃µ = mν̃L [20].



Chapter 3

The ATLAS Experiment

The previous chapter served to define the particle content and interactions of the Stan-

dard Model. It is also pointed out that the Supersymmetry is a possible extension to the

SM which predicts new particles but none of them has been observed. In this chapter,

the plan is to discuss how the fundamental particles of the SM are detected and their

kinematic properties measured in ATLAS experiment. Here, a brief overview of the

ATLAS detector is provided, more detailed information can be found in [21], [22]. Be-

fore opening the discussion on the ATLAS experiment, we take a quick look on the

machine (Large Hadron Collider) which is designed to produce those particles that are

mentioned in the previous chapter.

3.1 The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) is the world’s highest energy accelerator which is

situated at the European Organisation for Nuclear Research (CERN), Switzerland. It

is a proton-proton collider which is contained in a circular tunnel with a circumference

of 27 km. There are two counter-rotating proton beams, for which the design energy is

7 TeV each, which are collided at four different locations with a centre-of-mass energy

29
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Machine Parameter Value

Design beam energy at collision 7.0 TeV

Design luminosity 1034 cm−2 s−1

Number of protons per bunch 1.05x1011

Number of bunches per beam 2835

Time between bunches 25 ns

Frequency of bunch crossing 40 MHz

Number of events per bunch crossing 20

Beam life time 22 h

Crossing angle 200 µ rad

Injection energy 450 GeV

Dipole magnetic field 8.4 T

Circulating current per beam 0.53 A

r.m.s. beam radius at intersection point 16 µm

Table 3.1: LHC machine parameters (from [23]).

of 14 TeV. Some parameters of the LHC machine are listed in Table 3.1. In each beam,

protons are grouped into bunches (or train) and each bunch carries ∼1011 protons. These

bunches cross each collision point every 25 ns. Each point of proton-proton collision is

studied by a detector. Four such detectors are ATLAS, CMS, ALICE and LHCb which

are shown in Figure 3.1. The ATLAS and CMS are general purpose detectors while

other two are special purpose. As this thesis is based on the ATLAS detector therefore,

the discussion is solely focused on this experiment.

The LHC started its first operation on 10 September 2008 when it successfully cir-

culated proton beams in both directions inside the main accelerator ring. On 30 March

2010, the LHC became the world’s highest energy accelerator when the collisions took

place at 7 TeV centre-of-mass energy. It is decided to continue operating with 7 TeV for

few years and then the LHC will operate at the design energy of 14 TeV.
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Figure 3.1: A sketch of the LHC along with four experiments [24]
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3.2 A Toroidal LHC Apparatus (ATLAS)

A Toroidal LHC Apparatus (ATLAS) [21], [22] is a general purpose detector which has

been placed at one of the collision points of the LHC. It detects and measures the prop-

erties of particles that are coming out from the production point. Usually, the general

purpose detectors are designed to investigate several things: accuracy enhancement of

known physics, confirmation of predicted particles, and searches of new phenomena. In

this connection, the main goals of the ATLAS include the following: to explore physics

at the TeV scale, to discover the Higgs boson, and to look for evidence of physics beyond

the Standard Model, such as Supersymmetry. Like other general purpose detectors, the

ATLAS is broken into various subsystems. It consists of a series of concentric cylinders

around the interaction point where the proton beams collide. The major subsystems are

the inner detector, calorimeters and muon spectrometers as shown in Figure 3.2. The

performance goals of these subsystems are shown in Table 3.2. Each of these subsystems

is further divided into multiple layers. The next few sections are devoted to a discussion

of these subsystems.

The coordinate system of ATLAS is a right-handed system which has the following

nomenclature: the interaction point is defined as the origin, the z-axis represents the

beam axis, the x-axis pointing towards the centre of the LHC ring, and the y-axis

describes the upward direction. Thus, the x-y plane is transverse to the beam axis. The

polar angle θ is measured from the z-axis while the azimuthal angle φ is measured from

the x-axis around the beam pipe. An important quantity that describes the angle of

particle to the beam axis is called pseudorapidity (η) which is defined as

η = − ln[tan(
θ

2
)]. (3.1)

The particles having larger values of |η| are closer to the beam pipe, while the particles

with a larger angles from the beam axis have lower |η| values, and they are described
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Figure 3.2: Cut-away view of the ATLAS detector [21].

as forward and central (or barrel) respectively. The ATLAS detector covers a pseudo-

rapidity range of |η| < 5. Another useful quantity is a distance 4R which is defined in

the pseudorapidity - azimuthal angle space as

4R =
√

(4η)2 + (4φ)2 . (3.2)

In the LHC, the total momentum of the initial state is unknown. This is because

the proton is not a fundamental particle instead it has constituents called partons (a

collective name of quarks and gluons) which actually take part in the collision. Each

parton takes a random share of the proton’s momentum, as determined by a parton

density function [25]. Due to the complicated nature of collisions in the hadron colliders,

the measurements along the z-axis are not very useful because an unknown fraction of

the energy escapes at low angles relative to the beam pipe. Therefore, momentum and

energy are usually quoted in the transverse (x-y) plane. The transverse momentum (pT )
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Detector component Required resolution (GeV) |η| coverage

Tracking
σpT
pT

= 0.05% pT ⊕ 1% < 2.5

EM calorimetry σE
E = 10%√

E
⊕ 0.7% < 3.2

Hadronic calorimetry

barrel and end-cap σE
E = 50%√

E
⊕ 3% < 3.2

forward σE
E = 100%√

E
⊕ 10% 3.1 - 4.9

Muon spectrometer
σpT
pT

= 10% at pT = 1 TeV < 2.7

Table 3.2: Performance goals of the ATLAS detector [21], where ⊕ indicates addition in
quadrature.

and transverse energy (ET ) are defined respectively as

pT =
√
p2
x + p2

y , and (3.3)

ET =
√
E2
x + E2

y , (3.4)

where x, y are the momentum and energy components along these axes. However, the

transverse momentum of the initial state is known which is zero, and the transverse

momentum of particles in the final state can be measured. Any mismatch between the

initial and final state momenta is usually quoted in terms of the missing transverse

energy (EmissT ) which indicates the presence of neutrino or other only weakly interacting

particles such as the lightest neutralino (χ̃0
1).

3.2.1 Inner Detector

Inner detector (or inner tracker) is a collection of sensors arranged to measure the paths

of charged particles as they move away from the collision point. The inner tracker

consists of three independent but complementary sub-detectors. These sub-detectors
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Figure 3.3: Three sub-detectors of the ATLAS inner tracker [21].

are the pixel detector, silicon-microstrip sensors (SCT), and transition radiation tracker

(TRT) as shown in Figure 3.3. The entire inner detector is inside a magnet called

the central solenoid. The solenoid provides a 2 T axial magnetic field for the inner

tracker. The magnetic field causes the charged particles to curve when they emerge

from the production point (or production vertex). The measurement of these curvatures

result in the determination of particle’s charge, position and momentum vector. The

requirements imposed on the tracker are the following: accurate measurements of high

pT tracks, location of primary vertices, and identification of secondary vertices.

The accuracy of momentum measurement is defined by the resolution of tracking

detectors in the magnetic field. The tracking resolution is determined by
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σp
p

= cp⊕ d, (3.5)

where p is the particle’s momentum, c is the error in measuring the bend angle of particle

in the magnetic field, and d is a term due to multiple scattering which is only important

at low particle’s momentum. The tracking resolution required by the ATLAS detector

is

σpT
pT

= 0.05% pT ⊕ 1%. (3.6)

Pixel Detector

The pixel detector is the innermost part of the detector which is comprised of three

cylindrical layers in the barrel, and three disk layers in each of the two end-caps. The

detecting material is made of silicon with a thickness of 250 µm. The smallest unit that

can be read out is a pixel which has a size of 50x400 µm2. When a pixel is traversed by

a charged particle, it produces a signal and provides a position measurement. There are

1744 modules in total, each measuring 2 cm by 6 cm. Each module contains 16 readout

chips and other electronic components. There are roughly 47,000 pixels per module. The

minute pixel size is designed for precise track measurement very close to the interaction

point. Due to its high granularity, the pixel detector has low hit occupancy which is

very important for pattern recognition. The position accuracy of the pixel detector is

10 microns [26].

Silicon-Microstrip Sensors (SCT)

The middle component of the inner detector is the Silicon-Microstrip Sensors (SCT). The

SCT is similar in function to the pixel detector but instead of small pixels, it has a long,

narrow strips. It is composed of four double layers of silicon strips as shown in Figure 3.3.

Each strip measures 80 µm by 12.6 cm. In order to measure the particle tracks, the SCT
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covers a much larger area and more sample points than the pixel detector. The position

accuracy of SCT is few tens of microns [26].

Transition Radiation Tracker (TRT)

The outermost component of the inner detector is the transition radiation tracker (TRT).

Here, the detecting elements are gas filled straws (or drift tubes) as shown in Figure 3.3.

Each straw is 4 mm in diameter with a length of up to 144 cm. The gas inside the straw

becomes ionized when a charged particle passes through. The charge is then converted

into signal that results in the measurement of particle’s position. The position accuracy

of TRT is about 200 microns [26].

Moreover, the transition radiation tracker also takes part in the identification of

electrons. The electron identification capability is added by employing Xenon gas to

detect transition radiation photon created in a radiator between straws.

3.2.2 Calorimeters

After the tracker, particles encounter the calorimeter system as shown in Figure 3.4. The

calorimeters are situated outside the solenoid magnet that surrounds the inner detector.

The purpose of the calorimeter are to measure a particle’s energy by absorbing it. The

calorimeters are designed to provide large solid angle coverage, fine segmentation and

good energy resolution. The ATLAS calorimeter covers a range of |η| < 4.9. The energy

resolution of calorimeter can be expressed as

σE
E

=
a√
E
⊕ b, (3.7)

where E is the particle energy, a is the statistical fluctuations in the sampled energy,

and b is the non-uniformity of the medium. The above relation represents that pre-

cision improves with particle energy, which is in contrast to the tracking resolution

(Equation 3.5) where the precision downgrades with rise in energy.
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The calorimeters are sub-divided into the electromagnetic calorimeter (ECAL) and

the hadronic calorimeter (HCAL). The inner calorimeter is the ECAL while HCAL is

the outer calorimeter.

Electromagnetic Calorimeter (ECAL)

The electromagnetic calorimeter (ECAL) absorbs and measures the energies of electrons

and photons produced in the collision. The identification of and accurate reconstruction

of these particles are the required capabilities of ECAL. The energy resolution of ECAL

in ATLAS is given by

σE
E

=
10%√
E
⊕ 0.7%. (3.8)

The ECAL consists of many layers of lead plates with liquid argon as a sampling

material. The function of the lead plates is to absorb the incident particle, and transform

its energy into a shower of lower energy particles. When the shower particles traverse

the argon, between the plates, they create ionization. The ionization results in the

production of electronic signal which is proportional to the incident particle energy.

There are two radiative processes that initiate the above electromagnetic shower. They

are Bremsstrahlung radiation produced by electron, and pair-production of electron-

positron produced by photon. There is a characteristic length scale associated with

these radiative processes in the material called the radiation length (Xo). The thickness

of ECAL is usually quoted in terms of radiation lengths. The total thickness of ECAL

in ATLAS is over 22Xo in the barrel and over 24Xo in the end caps.

Hadronic Calorimeter (HCAL)

The hadronic calorimeter (HCAL) surrounds the electromagnetic calorimeter, and like

ECAL, it is also a sampling calorimeter. The HCAL absorbs and measures the energies

of hadronic jets. The hadronic jets are a group of high energy hadrons (e.g. pions, kaons,
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Figure 3.4: Cut-away view of the ATLAS calorimeter system [21].
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protons) that move in a narrow cone. Besides identification and energy measurement of

the hadronic jets, the major goal of HCAL is to measure the missing transverse energy

(Emiss
T ) [Ref]. The energy resolution of HCAL in the barrel and end-cap region is given

by

σE
E

=
50%√
E
⊕ 3%. (3.9)

The HCAL consists of steel plates separated by plastic tiles or scintillators. The

function of the steel plates is to absorb the jet particles and transform their energies

into a shower of lower energy hadrons. When the shower particles interact with plastic

tiles, they produce scintillations. The amount of light emitted by the scintillator is

proportional to the incident energy of jet particles. There is a characteristic length scale

in the medium, called the the interaction length λ (mean free path), at which a hadronic

interaction occurs. In ATLAS, the approximate thickness is 9.7λ in the barrel and 10λ

in the end caps.

3.2.3 Muon Spectrometer

The final layer of sub-detector system, outside HCAL, is the muon spectrometer. It is

designed to identify muons and measure their momentum in the range |η | < 2.7. Its

layout is shown in Figure 3.5. The muons are very penetrating and they are the only

charged particles which are not absorbed by the calorimeter. Therefore, particles that

are observed in the muon spectrometer are assumed to be muons. Its function is similar

to the inner tracking system i.e. it constructs particle curvature in the magnetic field

and measures its momentum. But instead of a solenoid, the magnetic field is provided

by three toroids, one barrel and two end-cap toroids, with a field strength of 0.5 T and

1 T respectively. These toroids along with the central solenoid are shown in Figure 3.6.

The resolution of muon spectrometer required by ATLAS is
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Figure 3.5: Cut-away view of the ATLAS muon system [21].

σpT
pT

= 10% at pT = 1 TeV (3.10)

Most of the |η | range is covered by muon sensors called muon drift tubes (MDT).

These are gas-filled metal tubes, 3 cm in diameter, with high voltage wires running on

their axes. When muons pass through these tubes, they produce electrical pulses in the

wires. These pulses allow position measurement to 0.1 mm. At large pseudorapidities,

muon drift tubes are not suitable for muon measurements because of high radiation

environment. Therefore, cathod strip chambers (CSC) are used instead. Cathod strip

chambers are multiwire proportional chambers with cathode segmented into strips. The

muons traverse the chambers produce signals that allow position measurement to

0.1 mm.
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Figure 3.6: A solenoid, a barrel toroid and two end-cap toroids of the ATLAS magnet
system [23].

3.2.4 The Trigger System

It is pointed out in Table 3.1 that the LHC has a designed luminosity of 1034 cm−2 s−1

with a bunch crossing of 25 ns. At this level, the interaction rate will be about 109 Hz.

Out of these interactions, only a few are expected to have special characteristics that

might lead to new discoveries. Therefore, in order to avoid storing immense amount of

uninteresting information, only those events are selected for storage that have special

characteristics. This selection is a highly delicate procedure which is carried out by the

trigger. The trigger system in ATLAS has three distinct levels: level-1 (L1), level-2 (L2)

and event filter (EF). Further, L2 and EF are collectively known as high level trigger

(HLT) as shown in Figure 3.7. The ATLAS trigger system reduces the huge interaction

rate of 109 Hz to ∼102 Hz, i.e., a rejection factor of 107.

Level-1 is a hardware trigger which is based on the coarse calorimeter and muon

information. It searches for high transverse momentum electrons, muons, photons and

jets, as well as for the missing transverse energy and total transverse energy. In each

event, it also defines one or more Regions-of-Interest (RoIs) i.e. those regions where its

selection process identifies interesting features. Level-1 trigger makes a decision in less

than 2.5 µs and reduces the interaction rate to about 75 kHz. After L1 trigger, the next
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Figure 3.7: The ATLAS trigger with design specifications of the interaction rates [27].
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stage is level-2 which is a software trigger. L2 trigger uses all the available data within

the RoI’s. It is designed to reduce the interaction rate to about 3 kHz with an event

processing time of ∼ 40 ms. The final stage of the event selection process is carried out

by the event filter which is also a software trigger. It performs a detailed analysis on

the full event data. The EF is designed to reduce the interaction rate to about 200 Hz

with an event processing time of ∼ 4 s. If the event is accepted, the data is sent to the

storage system. About one petabyte (one million gigabytes) of data is expected to be

recorded each year.



Chapter 4

Event Simulation and Particle

Reconstruction in ATLAS

The previous chapter served to describe how the particles are detected and their kine-

matic properties measured in the ATLAS detector. In this chapter, our aim is to provide

an overview of event simulation and reconstruction of particles in ATLAS. At first, the

simulation process is discussed, in which various stages are involved to produce data

in a format that can be used for physics analysis. Later we describe reconstruction of

physical objects in ATLAS. Here, our discussion will be focused on electrons, muons,

jets and missing transverse energy. These objects are defined on the basis of the criteria

recommended by ATLAS for Computing System Challenge (CSC) exercise [19]. Excel-

lent identification capability of these objects is needed for most physics studies carried

out at the LHC, including searches for Supersymmetry.

Here, we will only provide a brief overview of the simulation and reconstruction of

particles in ATLAS. The main reference for this chapter is [19], [28] where one can find

the full details.
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4.1 Event Simulation

Event simulations are used to generate particle physics events and simulate the response

of a detector expected as a result of these events. These computer simulations are based

on Monte Carlo MC methods. The Monte Carlo method uses random number generator

to model the physics processes and the interactions of the particles with the detector.

The simulation process is composed of various stages as shown in Figure 4.1.

The first stage is the event generator. This is a Monte Carlo program which simulates

particle physics events with probabilities as predicted by a given theory. In general,

there are two classes of event generator programs: general purpose and specialised. The

general purpose generator does everything starting from proton-proton initial state to

the final state particles, while the specialised generators just describe part of the process

and provide improved descriptions of specific decays or final states.

For example, PYTHIA [29] is a general purpose program which can simulate high

energy physics events in various combinations. In PYTHIA, a typical high energy event

may be described as: Two particle beams (e.g protons) come towards each other. Each

particle in the beam is characterised by a parton density function, which describes the

partonic substructure in terms of flavour composition and energy sharing. A shower

initiator parton from each beam starts off a sequence of branchings such as q → qg to

build up an initial-state shower. One incoming parton from each of the two showers

enters the hard process, which results in the production of outgoing partons (usually

two). The outgoing parton may branch to build a final-state shower.

When a shower initiator is taken out of a beam particle, a beam remnant is left

behind. This remnant may have an internal structure, and a net colour charge that

relates it to the rest of the final state. With each branching, the QCD force grows until

the confinement mechanism groups the partons together in to colour neutral hadrons.

Many of the produced hadrons are unstable and decay further.
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Figure 4.1: Major stages in the production of simulated and real data [30].

Finally, the event generator programs provide total cross-section for a particular pro-

cess. In addition to this, they also deliver four-vectors of momenta of particles produced

as a result of proton-proton collision. Full details of the above description can be found

in [29].

Next one needs to know how the detector will respond to those particles. At this

stage, Monte Carlo detector simulation comes into picture. The detector simulation

is achieved by a detailed modelling of particle interactions with the detector medium

(full simulation) using a program based on the GEANT4 package [31]. This models the

response of the detector and produces raw data which is in the same format as real data.

The full simulation process is very CPU intensive due to the detailed description

of the detector. Therefore, if the physics studies require to simulate large samples of

events, then one uses the fast simulation package, ATLFAST [32]. This replaces the

full detector simulation and reconstruction phases of the Monte Carlo reconstruction
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Figure 4.2: Full simulation versus ATLFAST simulation. Adapted from [33].

chain with appropriate smearing functions as shown in Figure 4.2. Since no detailed

simulations of particle interactions are involved, therefore CPU time is reduced. The

speed at which ATLFAST runs depends on many factors, e.g., complexity of physics

channel, but in general, it is 4 or 5 orders of magnitude faster than running the full

simulation chain [33]. Full details about ATLFAST package can be found in [33].

4.2 Particle Reconstruction

The role of reconstruction is to transform the stored raw data into the so called physics

objects which are necessary for physics analysis. These objects correspond to the detector

signals that are consistent with those expected as a result of particle interactions with

the detector. The types of reconstructed objects include electrons, muons, and jets.

Performance studies of these objects are not the aim of this section, but one can find

these details in Ref [19]. The majority of the physics objects in ATLAS are composed

from the tracks in the inner detector and muon spectrometer, and energy deposits (or
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cluster) in the calorimeters.

Various algorithms are used for the reconstruction and identification of these objects.

These algorithms are common for both simulated and real data. The format of data used

here is Analysis Object Data AOD [28]. The reconstructed objects are grouped into

containers. These objects are loosely reconstructed therefore, the same object may be

reconstructed by two or more identification algorithms. Consequently, the same object

may be present in more than one container e.g. an electron may be present in both

electron and jet containers. In order to avoid the double counting of an object, overlap

removal procedure is applied to the containers of the AOD.

4.2.1 Electrons

As electrons are charged particles, when they come out from the interaction point, they

leave tracks in the inner detector. In addition to the tracks, they also deposit energy in

the electromagnetic calorimeter. Therefore, reconstruction of electrons is performed us-

ing the information stored in both sub-detector systems. There are two main algorithms

for electron reconstruction used in ATLAS. The details of the electron reconstruction

algorithms can be found in Ref [19]. The first is the standard algorithm for isolated

high pT electrons which is seeded from the electromagnetic calorimeter. The second al-

gorithm is for non-isolated low pT electrons which is seeded from the inner detector. In

this thesis, the standard algorithm is used for electron reconstruction. In the standard

reconstruction of electrons, a cluster is found in the electromagnetic calorimeter using

sliding window algorithm. The sliding window algorithm searches for the η×φ win-

dow where the total energy is maximum. Following the identification of electromagnetic

cluster, a matching track is searched in the inner detector.
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4.2.2 Muons

As muons are very penetrating, they leave tracks both in the inner detector and muon

spectrometer. In addition to the tracks, they also lose some energy in the calorimeters.

Therefore, information from all sub-detector systems are used for the reconstruction

of muons. ATLAS implements three ways to reconstruct muons, the details of muon

algorithms can be found in Ref [19], [34]. One approach is to reconstruct standalone

muons by finding tracks in the muon spectrometer alone. Another method is of combined

muons in which muons are first identified as standalone and then matched with the track

in the inner detector. The third is tagged muon approach in which muons are identified

by extrapolating inner detector tracks to the track segments in the muon spectrometer.

4.2.3 Jets

A jet is a combination of information stored as tracks in the inner detector as well as

energy deposited in the electromagnetic and hadronic calorimeters. Two different signals

from the calorimeter are used for jet finding which are tower and topological clusters.

Towers are formed by collecting cells into bins of 4η×4φ = 0.1×0.1 grid and summing

up their energy deposits. Topological cell clusters represent an attempt to reconstruct

three-dimensional energy deposition in the calorimeter. The reconstruction of jets in

ATLAS is performed by various algorithms e.g. cone algorithm, kt algorithm, Anti-kt

algorithm etc. The details of these algorithms can be found in [19], [35]. The cone

jet algorithm is a collection of particles within a cone size 4R =
√

(4η)2 + (4φ)2

of either 0.4 or 0.7. It takes transverse energy threshold of 1 GeV as a seed. The

axis of the cone is aligned with the four-momentum of jet. The kt algorithm adds jet

constituents by working pair-wise grouping of closest objects. The distance parameter

R =
√

(4η)2 + (4φ)2 is adjusted to 0.4 and 0.6 for narrow and wide jets respectively.

The Anti-kt algorithm is similar to kt algorithm except it groups highest pT objects first

instead of grouping closest objects first.
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4.2.4 Missing Transverse Energy

The total transverse energy ET of an event in ATLAS is measured by summing together

the energy deposited in the calorimeter and muon systems in the transverse plane. The

missing transverse energy is defined as the energy imbalance between the ET and the

total transverse energy of the colliding particles. The particles that interact only weakly

such as neutrinos or the lightest neutralinos escape the detector medium without leaving

any signal. Therefore, direct measurement of these particles is not possible instead

their presence are inferred by measuring the missing transverse energy. In addition to

these weakly interacting particles, there are other sources of missing transverse energy,

called fake sources, such as instrumental effects, noisy or dead calorimeter cells, badly

reconstructed or fake muons and acceptance effects due to lack of coverage over certain

regions. Therefore, a very good measurement of the missing transverse energy is a critical

requirement for the study of many physics channels in ATLAS including supersymmetry.

The details of the determination of missing transverse energy in ATLAS can be found

in [19].



Chapter 5

Dilepton SUSY Search

The previous three chapters served to provide a foundation that is needed to examine

the production of supersymmetric particles in p-p collisions inside the ATLAS detector.

In this chapter, our aim is to provide the analysis overview of the SUSY search based

on the dilepton channel. The characteristic signatures of supersymmetry in the LHC

are high momentum jets, large missing energy and a number of leptons (≥ 0). The

search for these signatures is performed by looking for an excess of events in various

SUSY channels including the dilepton channel. Many studies have been devoted to the

dilepton channel inside the ATLAS collaboration. One official analysis at the centre-of-

mass energy of 7 TeV has been done recently, which is the main Ref [1] of this chapter.

The analysis described here takes the official dilepton analysis as a starting point, and

here it is reviewed with slight modification.

5.1 The Dilepton Channel

This channel is characterised by the presence of two leptons in the final state, and this is

a very promising venue for the discovery and measurement of Supersymmetry [1]. Many

studies have been devoted to this signature in the last sixteen years. The two leptons
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Figure 5.1: Feynman diagram of a signal process which contains two opposite sign leptons

that are produced via χ̃0
2 decay.

in the final state can have either same or opposite sign. This study has been performed

with opposite sign leptons.

If R-parity is conserved, two supersymmetric particles are produced in each SUSY

event, each of which cascades to the lightest supersymmetric particle (LSP). The LSPs

are a source of missing energy in the event. In the SUSY dilepton event, two opposite

sign leptons (`) can be produced in SUSY cascade through the decays of neutralinos

(χ̃0
i ) and charginos (χ̃±i ), e.g.

χ̃0
i −→ `±`∓χ̃0

j and (5.1)

χ̃±i −→ `±`∓χ̃±j . (5.2)

Feynman diagrams of these processes are shown in Figures 5.1 and 5.2 respectively.

5.2 Analysis Overview

This SUSY dilepton study has been performed with fully simulated AODs (Section 4.2)

at the centre-of-mass energy of 7 TeV by using ATLAS software called Athena [28]. The

Monte Carlo samples we have used in this analysis are centrally produced within the
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Figure 5.2: Feynman diagram of a signal process which contains two opposite sign leptons

that are produced via χ̃+
2 decay.

ATLAS collaboration, and these are listed in Section 5.2.3.

5.2.1 Event Selection

In the SUSY dilepton search, the final state contains two leptons, two jets (at least) and

missing transverse energy as shown in Figure 5.3. Here, the word lepton is used to denote

isolated electrons and muons. Events are vetoed if the number of leptons are greater

than two. This is done in order to avoid overlapping with a separate trilepton analysis

being carried out in ATLAS that requires three leptons in the final state. Moreover,

events are also vetoed if an electron is contained within the crack region, 1.37 <|η| <

1.52, because of the degraded calorimeter coverage in this region. The basic selection

criteria applied in this study are:

1. Two opposite sign leptons with pleptonT > 20 GeV and |η|< 2.5.

2. Two jets with pjetT1 > 100 GeV and pjetT2 > 50 GeV, and |η|< 2.5.

3. EmissT > 80 GeV and EmissT > 0.3Meff .

4. ST > 0.2.
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Figure 5.3: Schematic illustration of the final state of the SUSY dilepton mode.

Here pleptonT , pjetT1 and pjetT2 are the transverse momenta of the leptons, leading jet and

next-to-the leading jet respectively. EmissT is the missing transverse energy of the event.

Meff is the effective mass which is the scalar sum of transverse momenta of all main

objects, and is defined as

Meff =

Njets∑
i=1

pjet,iT +

Nlep∑
i=1

plep,iT + EmissT , (5.3)

where Njets is the number of jets and Nlep is the number of leptons defining the analysis.

ST is the transverse sphericity and is defined as

ST =
2λ2

(λ1 + λ2)
, (5.4)

where λ1 and λ2 are the eigenvalues of 2×2 sphericity tensor Sij =
∑

k pkip
kj computed

from all selected jets and leptons. Here, λ1 is assumed to be greater than λ2. ST is

defined between 0 and 1 inclusive 0 ≤ ST ≤ 1, where ’0’ would correspond to a perfect

back-to-back event and ’1’ to a completely isotropic one. The reason for considering this

variable is that QCD di-jet events are expected to be back-to-back where as ’squark’
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production events are not expected to be back-to-back (they are more spherical).

Meff and ST are the event shape variables. As the characteristic signatures of SUSY

are high transverse momentum pT of jets and large missing energy Emiss
T , therefore SUSY

events are expected to have large values of Meff . It means, a high cut on Meff will

further suppress non-SUSY events.

In this study, we have relaxed a cut on pT of the leading jet (point 2 above), i.e.,

pjetT1 > 100 GeV. In the previous study, it was pjetT1 > 180 GeV which was necessary

because of the large uncertainty in the tt̄ background. In the present analysis, this

uncertainty is substantially reduced by using a tt̄ control sample from data. Therefore,

here we can lower the pjetT1 cut and obtain a higher signal efficiency. This technique for

estimating the tt̄ background is detailed in the next chapter.

5.2.2 Physics Object Definitions

The following object selection defines particle candidates which are used during event

selection process. The object selection criteria are mostly based on official dilepton

studies [1].

Electrons

Electron candidates are reconstructed by the algorithm called egamma. Electrons are

also required to be isolated in the calorimeter, i.e., the total calorimeter energy within

a cone of 4R < 0.2 (where 4R =
√

(4η)2 + (4φ)2 ) should be less than 10 GeV. In

addition to this standard cut, the pT of electrons should be greater than 20 GeV and |η|

should be less than 2.5.

Muons

Muons are reconstructed by the algorithm called Staco muon. We take muon candidates

that are combined tracks from the muon spectrometer and the inner tracker. In order to
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select an isolated muon, the total calorimeter energy within a cone of 4R < 0.2 should

be less than 10 GeV. Finally, the pT of muons should be greater than 20 GeV and |η|

should be less than 2.5.

Jets

Jet candidates are reconstructed by the anti-kt jet algorithm with 4R = 0.4 based on

tower clusters. The selected jets must have pT greater than 20 GeV and |η| should be

less than 2.5.

Missing Transverse Energy

After calculations of the transverse energy, the resulting value is calibrated to get a

more reliable number. Calibration of the energy can be done in different ways. One

standard method is called the refined calibration where calorimeter cells are associated

with an identified physics object. In this way, the reconstruction of missing transverse

energy is improved, and more accurately corresponds to the energy carried away by non-

interacting particles. One configuartion of refined calibration is MET-RefFinal [36], and

this has been used in this analysis for the calculation of missing transverse enegy.

Overlap Removal

After passing the object selection criteria, it is expected that objects may overlap. For

example, an electron could be reconstructed both as an electron and as a jet. When

the candidate objects overlap with each other, a procedure is required to remove all

overlapping objects except one. The overlapping criteria are based on the geometrical

variable 4R =
√

(4η)2 + (4φ)2 and is applied as follows:

1. if an electron and a jet are found within 4R < 0.2, keep the electron and remove

the jet.

2. if a muon and a jet are found within 4R < 0.4, keep the jet and remove the muon.
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3. if an electron and a jet are found within 0.2 ≤ 4R < 0.4, keep the jet and remove

the electron.

5.2.3 SUSY Signal and SM Background Processes

In R-parity conserving models, two supersymmetric particles are produced in each SUSY

event, each of which cascades to the lightest supersymmetric particle (LSP). As men-

tioned in Section 5.1, two opposite sign leptons can be produced in signal events via

decays of neutralinos χ̃0
i and charginos χ̃±i (Equations 5.1 and 5.2).

In Chapter 2, we mentioned a set of mSUGRA points that were considered during

the ATLAS CSC excercise. In this thesis, the benchmark point SU4 is used which is

defined by the following mSUGRA parameters: mo = 200 GeV, M 1
2

= 160 GeV, A =

-400 GeV, tanβ = 10 and µ > 0. The Monte Carlo sample of SU4 used in the analysis

is detailed in Table 5.1.

A variety of processes exist in the Standard Model that can produce two opposite

sign leptons in the final state and will be regarded as background to a SUSY signal. The

SM processes considered as background for the SUSY dilepton analysis are tt̄, W+jets,

Z+jets, diboson and Drell-Yan. The MC samples of these SM backgrounds are detailed

in Table 5.1, Table 5.2 and Table 5.3. Further details on these MC samples are given in

Appendix A.

After requiring two opposite sign leptons in the events of the above processes, sev-

eral distributions are plotted as shown in Figures 5.4 to 5.7. These distributions are

normalized to 1fb−1 of integrated luminosity. In these plots, Z+jets and tt̄ backgrounds

contributed significantly. When defining a signal region for the dilepton analysis, one

begins by considering the dominant background to the search. It is clear from Figure 5.7,

tt̄ is the dominant background for events with EmissT > 80 GeV. The number of events

after various selection cuts are listed in Table 5.4. Here Cut2, Cut3 and Cut4 are the cuts

mentioned in Section 5.2.1 where we defined the event selection criteria of the dilepton
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ID Dataset Name Generator Cross Section (pb) Ngen

106400 SU4 Jimmy 47.87 39956

105985 WW Herwig 11.50 244918

105986 ZZ Herwig 0.97 229912

105987 WZ Herwig 3.46 209935

105200 T1 MC@NLO 80.03 707652

108319 DrellYan-mumu Pythia 1296.2 729929

108320 DrellYan-ee Pythia 1296.2 779870

108321 DrellYanLowM-mu3 Pythia 2261.4 379963

108322 DrellYanLowM-ee3 Pythia 2240.6 299973

Table 5.1: SU4, diboson, tt̄ and Drell-Yan Monte Carlo samples used in this analysis.
The dataset name, the generator with which it was produced, the effective cross-section
(cross-section×generator-filter-efficiency) are given. In addition, the total number of
events generated (Ngen) are also listed. Numbers taken from [37].

analysis. In the signal region (i.e. at the level of Cut4 in Table 5.4), the tt̄ process gives

the maximum background contribution.
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ID Dataset Name Generator Cross Section (pb) Ngen

107680 WenuNp0-pt20 AlpgenJimmy 6921.6 2167223

107681 WenuNp1-pt20 AlpgenJimmy 1304.3 601369

107682 WenuNp2-pt20 AlpgenJimmy 378.0 764676

107683 WenuNp3-pt20 AlpgenJimmy 101.9 964659

107684 WenuNp4-pt20 AlpgenJimmy 25.7 229878

107685 WenuNp5-pt20 AlpgenJimmy 7.0 59703

107690 WmunuNp0-pt20 AlpgenJimmy 6919.6 1159826

107691 WmunuNp1-pt20 AlpgenJimmy 1304.2 556882

107692 WmunuNp2-pt20 AlpgenJimmy 378.1 3487974

107693 WmunuNp3-pt20 AlpgenJimmy 102.0 939617

107694 WmunuNp4-pt20 AlpgenJimmy 25.6 229893

107695 WmunuNp5-pt20 AlpgenJimmy 7.0 69958

107700 WtaunuNp0-pt20 AlpgenJimmy 6918.6 1836699

107701 WtaunuNp1-pt20 AlpgenJimmy 1303.2 561843

107702 WtaunuNp2-pt20 AlpgenJimmy 377.8 3488839

107703 WtaunuNp3-pt20 AlpgenJimmy 101.9 874607

107704 WtaunuNp4-pt20 AlpgenJimmy 25.7 234860

107705 WtaunuNp5-pt20 AlpgenJimmy 7.0 58694

Table 5.2: W+jets Monte Carlo samples used in this analysis. The dataset
name, the generator with which it was produced, the effective cross-section (cross-
section×generator-filter-efficicency) are given. In addition, the total number of events
generated (Ngen) are also listed. Numbers taken from [37].
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ID Dataset Name Generator Cross Section (pb) Ngen

107650 ZeeNp0-pt20 AlpgenJimmy 669.67 2088865

107651 ZeeNp1-pt20 AlpgenJimmy 134.41 1033797

107652 ZeeNp2-pt20 AlpgenJimmy 40.72 384877

107653 ZeeNp3-pt20 AlpgenJimmy 11.30 89953

107654 ZeeNp4-pt20 AlpgenJimmy 2.86 9999

107655 ZeeNp5-pt20 AlpgenJimmy 0.76 4997

107660 ZmumuNp0-pt20 AlpgenJimmy 669.68 5124227

107661 ZmumuNp1-pt20 AlpgenJimmy 134.64 789825

107662 ZmumuNp2-pt20 AlpgenJimmy 40.75 303912

107663 ZmumuNp3-pt20 AlpgenJimmy 11.25 89961

107664 ZmumuNp4-pt20 AlpgenJimmy 2.85 29978

107665 ZmumuNp5-pt20 AlpgenJimmy 0.76 5000

107670 ZtautauNp0-pt20 AlpgenJimmy 669.56 674835

107671 ZtautauNp1-pt20 AlpgenJimmy 134.65 1244685

107672 ZtautauNp2-pt20 AlpgenJimmy 40.76 284907

107673 ZtautauNp3-pt20 AlpgenJimmy 11.27 74960

107674 ZtautauNp4-pt20 AlpgenJimmy 2.84 29982

107675 ZtautauNp5-pt20 AlpgenJimmy 0.76 9993

Table 5.3: Z+jets Monte Carlo samples used in this analysis. The dataset name, the gen-
erator with which it was produced, the effective cross-section (cross-section×generator-
filter-efficicency) are given. In addition, the total number of events generated (Ngen) are
also listed. Numbers taken from [37].
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Figure 5.4: Distributions of the pT of the leading lepton after accepting two opposite
sign leptons in fully simulated data.
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Figure 5.5: Distributions of the pT of the sub-leading lepton after accepting two opposite
sign leptons in fully simulated data.
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Figure 5.6: Distributions of the total number of jets after accepting two opposite sign
leptons in fully simulated data.
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Figure 5.7: Distributions of the missing transverse energy (EmissT ) after accepting two
opposite sign leptons in fully simulated data.
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Physics Process 2 leptons + 2 jets Cut2 Cut3 Cut4

SU4 52.0 22.0 9.58 9.58

tt̄ 559.0 86.0 5.77 4.30

diboson 151.94 4.66 0.06 0.03

Drell Yan 1150.29 11.28 0 0

W+jets 232.54 6.0 0.23 0.12

Z+jets 28965.40 543.85 0.78 0.29

Total SM 31059.17 651.79 6.84 4.74

Table 5.4: Number of events in 1fb−1 at various event selection levels.



Chapter 6

Data Driven Method for

Estimating the tt̄ Background

The previous chapter served to provide an overview of the SUSY dilepton analysis.

There, we have seen that the most significant background was from tt̄ events. The

proper understanding of these background processes is essential before one claims a

SUSY discovery. For this purpose, data driven methods are usually required to study

and estimate the SM backgrounds. In this chapter, our aim is to present a novel data

driven technique that we have developed for the estimation of tt̄ background. This

analysis is based on 7 TeV centre-of-mass energy using fully simulated AODs. Before we

focus our discussion on this technique, a general introduction on data driven methods is

being provided.

The general aim of data driven methods is to be able to estimate from the data the

SM backgrounds and their uncertainties in a signal region, in which new physics may be

present [38]. The predictions for SM processes from Monte Carlo models are not perfect

because the model is an incomplete representation of the true theory and the simulation

of the detector is imperfect. The inaccuracy of these MC models (event generator and

detector simulation) contributes systematic uncertainties in the estimation of the SM

65
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Figure 6.1: Feynman diagram of the tt̄ process that contributes to background in the
SUSY dilepton search.

backgrounds. Thus, the estimation method cannot rely on MC predictions alone, which

is why data driven analysis is strongly desired, i.e., one wants to estimate the background

directly from the real data. The background estimation is performed by construction of

a control sample, from which predictions in the signal region are derived.

6.1 Construction of tt̄ Control Sample

The most significant background for the SUSY dilepton channel is expected to come from

tt̄ process, where both W s decay into a lepton and a neutrino, as shown in Figure 6.1.

Besides two opposite sign leptons, the SUSY dilepton selection exploits the distributions

of kinematic variables related to the two jets, i.e., pT of the leading and sub-leading jets,

missing transverse energy as well as event shape variables, e.g., effective mass.

To constrain the number of tt̄ background events using the real data, we need a

control sample of events containing jets and leptons having essentially the same kinematic

distributions as in the dilepton search channel. One way to achieve this is to select events

having four jets and one lepton (4j+1`) as shown in Figure 6.2, rather than two jets and

two leptons (2j+2`) shown in Figure 6.1. The only difference between the two Feynman

diagrams of tt̄ is a W boson decay, i.e., both W s decay leptonically in Figure 6.1 while
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Figure 6.2: Feynman diagram of tt̄ process in the control sample.

in Figure 6.2 one of the W s decays hadronically. This difference populates the final state

of tt̄ control sample with two additional jets and only one lepton.

As the top quark decays into a bottom quark and a W boson, each tt̄ event in the

4j+1` selection should contain two b-jets. We call each of the two tops (i.e. top plus

antitop) a leg of the event. The leptonic top leg contains a b-jet, a lepton and a neutrino

while hadronic top leg is composed of three jets that also includes a b-jet. First, one

needs to reconstruct the event, i.e., the hadronic W , the hadronic top, and the leptonic

top. Then, excluding the two jets that are from the W , the remaining two jets should

have kinematic distributions that are similar to those of two jets in the tt̄ background

for the 2j+2` search selection. Further, the hadronically decaying W is replaced by a

simulated lepton and a neutrino, so that the distributions of the missing energy and

event shape variables should be similar to that of the tt̄ in the dilepton channel.

The basic steps of the procedure are thus as follows:

1. Select events with four jets and one lepton. Initially this will select not only tt̄ but

also W+4jets with the W decaying leptonically, but these will be suppressed later

by requiring that the event should satisfy tt̄ characteristics.

2. Reconstruct the hadronic W , the hadronic top, and the leptonic top using a

likelihood-based technique. The likelihood uses both kinematic and flavour tag
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information for each particular jet assignment to hadronic and leptonic top legs.

3. In order to reconstruct the leptonic top, one also needs the z-component of the

neutrino momentum which one can determine by solving a quadratic equation.

4. From the possible ways of assigning jets for a tt̄ event, choose the way with the

maximum likelihood. This information is used to estimate the probability of W

jet assignment using Bayes theorem. Events are accepted in the control sample

only if this probability exceeds a given threshold.

5. The jets identified as those from the W decay are removed and replaced by a

simulated lepton-neutrino pair. The choice which jet to replace with a lepton and

which with a neutrino is done randomly.

6. The quantities EmissT , Meff and ST are recalculated to apply the corresponding

requirement as in the 2j+2` selection.

7. Moreover, in the environment of mock and real data, other physics processes are

also present besides tt̄. These non-tt̄ events are suppressed by constructing a statis-

tic that reflects the level of agreement between the event’s measured characteristics

and the tt̄ hypothesis.

For all steps above, we can check using the Monte Carlo truth matching how often

the correct assignment of jets is made. For example, one can make a distribution of the

mass of the hadronic W candidate for all selected 4j+1` events, and also for that subset

of those events where the jets are assigned correctly. We now discuss the above steps in

greater detail.

6.1.1 Assignment of jets using Mapping Hypothesis

After accepting events using the 4j+1` selection, next one needs to determine which

two jets out of four selected come from a W boson. In order to do so, we use both the
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Figure 6.3: Illustration of the hypothesis tested with the 4j+1` control sample.

kinematic and flavour tag information. Of the four jets in each event selected for the

control sample, two of these should be b jets, and the other two should come from the

hadronic decay of the W (here called W jets). Of course in some of the selected events

this may not be the case. For example, one of the b jets may have gone missing, and an

additional gluon jet was reconstructed. It means, when one of the b jets fails to survive

cuts in 4j+1` selection, and instead a gluon jet may pass the cuts and accepted as a

fourth jet. These possibilities are further discussed in Section 6.2. Nevertheless if we

make the hypothesis that in the control sample two of the jets are b jets, and the other

two are from a W decay, and we then can find the jet assignment that maximises the

likelihood of this hypothesis.

A jet assignment hypothesis is illustrated in Figure 6.3. The b jet that accompanies

the hadronically decaying W is denoted b1, the up-type quark jet (i.e., u or c) from

the W decay is called q1, the down-type jet (d, s or b) is called q2, and the b jet that

accompanies the leptonically decaying W is called b2.

Each selected event has four reconstructed jets, labelled by indices a, b, c, d. Each

jet is characterized by a flavour tag weight w, related to the presence or absence of

tracks that do not extrapolate back to the primary vertex. In addition we have the

four-momenta of the reconstructed jets, that of the lepton, and the missing transverse
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energy EmissT . From this we can estimate the momentum vector of the missing neutrino

up to a two-fold ambiguity.

A particular assignment of the reconstructed jets onto the hypothesis described above

would be, e.g., b1 = c, q1 = a, q2 = b, b2 = d as illustrated in Figure 6.3. There are 24

possible assignments, so we will compute 24 likelihood values. For the likelihood we can

write L(q1, q2, b1, b2), i.e., the arguments represent, in the given order, the indices of the

reconstructed jets assigned to q1, q2, b1 and b2. For a choice of the reconstructed jets a

b, c, d, we can model the likelihood as

L(a, b, c, d) =
1√

2πσWh

e
−(mab−MW )2/2σ2

Wh
1√

2πσth
e
−(mabc−mt)2/2σ2

th

× 1√
2πσWl

e
−(mdlν−mt)2/2σ2

tl

× LW (wa, wb) Lbb(wc, wd) . (6.1)

Here the first three Gaussian terms use the information on the invariant mass of different

jet combinations. We want jets a and b to have an invariant mass close to the mass of

W boson MW , and the mass of jets a, b and c should be close to the mass of top quark

mt. Also, the invariant mass of jet d with the lepton and neutrino should have a mass

close to mt, where for this one needs to use an estimate for the z component of the

neutrino’s momentum. For this we assume that some strategy has been used to resolve

the two-fold ambiguity, which is discussed in Section 6.1.2. The values of σWh
, σth and

σtl can be estimated from Monte Carlo studies that exploit truth information.

The final two terms in Equation (6.1) represent the likelihood for the four measured

values of the flavour tag weight. The first two values, wa and wb, are hypothesised to

come from the up-type and down-type quark jets, respectively, of the hadronic W decay,

and the latter two values, wc and wd, are hypothesized to be from b-jets. For the two
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jets from the W decay, we can write the likelihood as

LW (wa, wb) =
∑
i,j

Pijf(wa|i)f(wb|j) , (6.2)

where the index i is summed over the flavours u and c, and j is summed over d, s and

b. The coefficients Pij represent the probability of the flavour combination ij for the

W decay. If we neglect the phase-space suppression for W decays to different quark

flavours (except for top, which is completely suppressed), then the probabilities Pij can

be written

Pij =
|Vij |2∑
i,j |Vij |2

, (6.3)

where Vij is the relevant CKM matrix element and where in the denominator the indices i

and j are summed over the kinematically accessible quark flavours for up and down-types,

respectively (i = u, c, j = d, s, b). In this way, the part of the likelihood function that

describes the vertex properties of the jets from the W takes into account the correlations

between the flavours of the up- and down-type jets. (This would be even more powerful

if one had a measure that distinguished u and d jets from s jets.)

For the functions f(w|u), f(w|d) and f(w|s), it should be sufficient to use an averaged

distribution of w predicted for “light” jets, i.e., u, d, or s. We denote this as f(w|l) (with

l standing for “light”). The functions f(w|c) and f(w|b) give the distributions for c and

b jets, both of which contain in general displaced vertices.

The final term in Equation (6.1) represents the likelihood of the b-jet hypothesis for

the two final b-tag weights. It can be written

Lbb(wc, wd) = f(wc|b)f(wd|b) . (6.4)

The pdfs f(w|i) for i = l, c, b can be obtained from Monte Carlo histograms, parame-
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Figure 6.4: Invariant mass distribution of two jets that are coming from the hadronic
W boson decay.

terised with a smooth function.

6.1.2 Determination of Kinematic Terms

In order to calculate the kinematic terms of the likelihood in Equation 6.1, i.e., the

first three Gaussian terms, one also needs to know the values of σWh
, σth and σtl . One

can estimate these values with the help of the invariant mass distributions of jets. For

example, σWh
can be determined by plotting invariant mass distribution of two jets that

belong to the hadronic W decay. The identification of these jets is made by investigating

Monte Carlo truth information. The RMS value shown in Figure 6.4 is a good estimate

for σWh
, i.e., 16.72. Similar procedure is adopted to estimate the values of σth and σtl ,

which are found to be 26.4 and 43.4 respectively.

Another kinematic term that needs to be determined is the z component of the

neutrino momentum that belongs to the leptonic top leg. The system of equations

describing the kinematics of the leptonic decay of W can be expressed by
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E2
ν = p2

νx + p2
νy + p2

νz (6.5)

m2
W = (E` + Eν)2 − (p`x + pνx)2 − (p`y + pνy)

2 − (p`z + pνz)
2 (6.6)

EmissTx = pνx (6.7)

EmissTy = pνy (6.8)

where Eν and E` are the energies of the neutrino and lepton respectively, and (pνx ,

pνy , pνz) and (p`x , p`y , p`z) are the x, y and z components of momenta of neutrino

and lepton respectively. The right-hand side of Equation 6.6 gives the invariant mass

squared of the lepton-neutrino pair, and this is set equal to m2
W , the mass squared of

the W boson. EmissTx
and EmissTy

relate the projection of EmissT onto the transverse axes

x and y respectively.

The above system of equations can be reduced to a quadratic equation in pνz which

one can solve to determine the z component of neutrino momentum up to a two-fold

ambiguity. The strategy usually used inside the ATLAS collaboration is to take the

smaller of the two pz values because leptons (charged and the neutrino) are expected

to have high transverse momentum pT and they do not have much momentum along

the z-axis (beam axis), so the solution with the smallest pz is more likely to be the

right one [39]. Therefore, we have also chosen the smaller of the two pz values for this

analysis. Moreover, when the quadratic equation has no solution, we throw away the

event.

6.1.3 Parameterisation of Flavour Tag Distribution

In order to compute the likelihood in Equation 6.1, one also needs to determine the

flavour tag weight terms. The flavour tag weight w is a discriminating variable used to

separate b-, c- and light-jets. As each tt̄ decay produces two b quark jets (or b-jets),
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Figure 6.5: Cartoon representing two flavour tag distributions.

the identification of these b-jets helps to determine which two jets correspond to the

hadronic decay of the W . The b-jets possess several characteristic properties that can

be utilised to separate them from jets coming from the hadronisation of lighter quarks

(light-jets). The most important property is the relatively long lifetime of b-hadrons of

about 1.5 ps [5]. This leads to a measurable flight length of a few millimetres before

their subsequent decay, i.e., the decay of b-hadron produces a displaced decay vertex or

secondary vertex. In short, the value of the flavour tag weight w reflects presence or

absence of a secondary vertex. A cartoon representing two distributions of flavour tag

weight is shown in Figure 6.5. One can see that the distribution on the left does not

contain secondary vertex therefore, it has lower values of flavour tag weights w. The

tag weight distribution of light-jets is very similar to the shape of this distribution. The

other distribution in Figure 6.5 which is skewed towards the higher tag weight values

correspond to those jets in which the secondary vertex is present e.g. b-jet.

There are various flavour tagging methods studied in ATLAS. One such method

is spatial taggers that utilise lifetime information like secondary vertices and impact

parameters. The spatial tagger that has been used in this thesis is IP3D+SV1 tagger.
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The tagging technique and performance of IP3D+SV1 tagger is detailed in [19].

To compute the likelihood terms in Equation 6.2 and Equation 6.4, one requires

probability density functions (pdfs) f(w|i) for i = b-, c- and light-jets. These pdfs

can be obtained from Monte Carlo histograms parameterised with smooth functions.

We have parameterised the tag weight distribution with Johnson distribution which is

defined as [40]

f(w) =
η√
2π

1√
(w − ε)2 + λ2

× exp

−1

2

(
γ + η ln{w − ε

λ
+

√
(w − ε)2

λ2
+ 1}

)2
 (6.9)

where η and γ are shape parameters, λ is scale parameter, ε is location parameter and w

is the tag weight. The parameters η, ε, γ and λ are estimated by minimising the quantity

χ2 = 2

N∑
i=1

(ni log
ni
ν̂i

+ ν̂i − ni) (6.10)

using the MINUIT package [41]. The Equation 6.10 is taken from the Ref [42]. Here N

is the total number of bins in the histogram and ni is the content of bin i. Each bin

is assumed to be Poisson distributed, i.e., ni ∼ Poisson(νi) and νi is the mean value of

bin i and ν̂i is the estimator of νi. The MC histogram of the light-jet along with the

fitted function in blue and red colours respectively are shown in Figure 6.6. c- and b-

jets distributions along with their fitted functions are shown in Figure 6.7 and Figure 6.8

respectively.
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Figure 6.6: Tag weight distribution of light-jets along with the fitted function.
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Figure 6.7: Tag weight distribution of c-jets along with the fitted function.
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Figure 6.8: Tag weight distribution of b-jets along with the fitted function.

6.1.4 Identification of Jets using Probability of W Jet Assignment

Once the unknowns in the kinematic and flavour tag terms are determined, one can

compute the likelihood in Equation 6.1. As 24 jet assignments are possible, one needs to

calculate 24 likelihood values corresponding to each jet assignment. Of the 24 hypotheses

Hk, k = 1, ..., 24, the one which gives the maximum likelihood is denoted Ĥ. We can

then estimate the probability PCA that Ĥ assigns correctly the two jets from the W . A

probability of any hypothesis (Hk) for mapping of reconstructed jets onto q1, q2, b1 and

b2 can be obtained from Bayes’ theorem as

P (Hk| ~m, ~w) =
L (~m, ~w |Hk)π(Hk)∑24
i=1 L (~m, ~w |Hi)π(Hi)

(6.11)

where ~m = (mab,mabc,mdlν) is the set of measured invariant masses and ~w is the set

of flavour tag weights defined in Equation 6.1. L (~m, ~w |Hk) is the likelihood, k is an

integer which can take any value between 1 ≤ k ≤ 24. π(Hk) and π(Hi) are the prior

probabilities which can be taken as 1/24.
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It is clear from Figure 6.3 that out of 24 possible jet assignments, 4 represent correct

assignments of the two jets from the W decay. That is, if Ĥ assigns the two W jets

correctly, then swapping q1 and q2 would still be correct, as would be obtained as well

from swapping b1 and b2, or both q1, q2 and b1, b2. These have probabilities P (Ĥ| ~m, ~w),

P (Ĥ, q1↔q2 | ~m, ~w), P (Ĥ, b1↔b2 | ~m, ~w) and P (Ĥ, q1↔q2, b1↔b2 | ~m, ~w). Ĥq1↔q2 is the

hypothesis when q1 and q2 of Ĥ are swapped. Ĥb1↔b2 is the hypothesis when b1 and b2

of Ĥ are swapped. Finally, Ĥq1↔q2 , b1↔b2 is the hypothesis when both q1, q2 and b1, b2

of Ĥ are swapped. Thus, the probability of correct W jet assignment (PCA) is

PCA =
L(~m, ~w | Ĥ) + L(~m, ~w | Ĥq1↔q2) + L(~m, ~w | Ĥb1↔b2) + L(~m, ~w | Ĥq1↔q2 , b1↔b2)∑24

i=1 L (~m, ~w |Hi)
(6.12)

What is important here is that PCA is a number that can be obtained for real data.

No Monte Carlo truth information is required, beyond what was used to determine the

form of the likelihood function. Therefore, we can cut on PCA to select events where

the assignment of the W jets should be reliable. The distribution of PCA normalized

to 1fb−1 of integrated luminosity is shown in Figure 6.9. The higher values of PCA

corresponds to the higher probability of identifying correctly the jets from the W . We

require PCA ≥ PCA,min in order to ensure that the events in the control sample have

their W jets correctly identified with reasonably high probability. The value of PCA,min

will be determined on the basis of studies discussed in Section 6.3.

6.1.5 Determination of Scale Factor

It was discussed earlier that once the jets from the W are identified, one needs to

replace them with simulated lepton and neutrino. After this replacement, the number

of leptons and jets in both 4j + 1` and 2j + 2` selections become equal. Then, one can

apply the similar search selection cuts to the control sample. But, the total rates for tt̄
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Figure 6.9: The probability distribution of correct jet assignment normalized to 1 fb−1

of integrated luminosity.

events using 2j + 2` and 4j + 1` selections will differ because of the different branching

ratios (BR) for the leptonic and hadronic W decay, i.e., BR(W → µ or e) ∼= 2
9 and

BR(W → hadrons) ∼= 2
3 , and because of the limited efficiency with which one identifies

the two jets that come from the W decay. After defining a final set of cuts for SUSY

search and a corresponding set of final cuts for the control sample, the ratio of rates,

called scale factor, is given by

τ =
tt̄ events survived in the control sample

tt̄ events survived in the dilepton search sample
, (6.13)

where both numerator and denominator correspond to the same effective luminosity

LMC, which should be as high as possible to obtain the most accurate determination of

the scale factor τ . The point of carrying out the analysis in this way is that the systematic

uncertainty in our estimate of τ is expected to be much smaller than the uncertainty in an

estimate of tt̄ background based solely on Monte Carlo. This is because τ is formed using
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Figure 6.10: Schematic diagram of parton-jet matching used for the identification of jets.

a ratio in which most of the systematic errors are expected to cancel. The uncertainty

in the determination of top background was estimated to be 20% corresponding to an

integrated luminosity of 1 fb−1 [19].

6.2 Identification of Jets using Parton Jet Matching

In the previous section, the 4 jets of the control sample were identified by choosing the

jet assignment with the highest likelihood and further requiring PCA ≥ PCA,min. In this

section, our aim is to use the Monte Carlo truth information to determine what fraction

of the time this assignment is actually correct. This step is needed for optimising the jet

identification technique used in the previous section. A schematic diagram of parton-jet

matching used in this analysis is shown in Figure 6.10.

Here q1 and q2 are the partons (or quarks) coming from hadronic W decay, and b1

and b2 are two b quarks produced in tt̄ decay. J1, J2, J3 and J4 are the 4 reconstructed

jets selected in the tt̄ control sample. If these reconstructed jets are initiated by the

partons shown in Figure 6.10, they should be roughly in the same direction as that of

their corresponding partons. For example in Figure 6.10, the direction of J1 and b1 looks

very similar, and therefore one can say b1 and J1 are a matched pair of parton and jet.

In order to match a parton and a jet direction quantitatively, we compute a quadratic
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sum of 4Rij as

4Rk =

√∑
i,j

(4Rij)2 (6.14)

where i = (b1, q1, q2, b2) and j = (J1, J2, J3, J4) represent partons and jets respectively

as shown in Figure 6.10. 4R is the usual geometrical variable defined as 4R =√
(4η)2 + (4φ)2 . Here, the difference (4) is between a parton and a jet, i.e., be-

tween i and j. There are 24 possible arrangements among the partons and the jets, but

only one particular case is shown in Figure 6.10, i.e., J1 corresponds to b1, J2 corre-

sponds to q1, J3 corresponds to q2 and J4 corresponds to b2. 4Rk is the overall 4R

where subscript k, which labels the assignment of partons to jets, is an integer between

1 ≤ k ≤ 24. Each 4Rk value represents a particular parton-jet arrangement. Then,

we select the minimum of 24 4Rk values, which we call 4RMin. The minimum of 4Rk

value is computed for every event and is shown in Figure 6.11.

Further, in each minimum value of overall 4R we also find the individual term 4Rij

that gives the maximum contribution in the quadratic sum of 4Rij (Equation 6.14). A

plot of the maximum individual term of the overall 4R minimum called δRMax is shown

in Figure 6.12. The spike below 0.5 in Figure 6.12 represents those events when all four

partons are matched with the four reconstructed jets. The values above 1.0 corresponds

to the cases when not all four jets are matched but some of them may be well matched.

This happens because cuts (i.e. |η| < 2.5 and pjetT > 20 GeV) are being applied to the

reconstructed jets before accepting them in the control sample. Therefore, if any jet

originated from the partons, shown in Figure 6.10, fails to survive these cuts will be lost,

and instead some other jet may pass the cuts and accepted as a fourth jet in the control

sample. It means, if the fourth accepted jet is not originated from the above partons

then its direction is expected to be different than the directions of the reconstructed jets

(J1, J2, J3, J4) shown in Figure 6.10. Consequently, the fourth accepted jet will not find a
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Figure 6.11: Distribution of the minimum value of overall 4R.

well matched parton. Moreover, if the lost jet is one of the b jets and the fourth accepted

jet is a light jet, then it will also affect the jet identification characteristics defined in

the likelihood (Equation 6.1). Because the flavour tag weight of a light jet is usually

significantly lower than a b jet while our likelihood based technique identifies b jets with

the help of high tag weights. To ensure all the partons (b1, q1, q2, b2) in Figure 6.10 are

well matched with the reconstructed jets (J1, J2, J3, J4), a cut value on δRMax is needed.

For purposes of the optimisation studies done in this section, a cut value of 1.0 has been

used, i.e., all parton-jet pairs are considered to be well matched when δRMax < 1.0.

6.3 Frequency of Correctly Identified Jets

We now summarise our strategy for tt̄ background estimation:

1. Select 4j + 1` events that are compatible with tt̄.

2. Identify 2 jets that correspond to the W and replace them with an `ν pair.
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Figure 6.12: Distribution of the maximum individual term of the overall 4R minimum.

3. Apply cuts to the control sample identical to those used in the dilepton search

sample.

4. Estimate tt̄ background rate in the search sample using the control sample.

As described in Section 6.1, the 2 jets (point 2 above) are identified using the like-

lihood of each jet assignment and by requiring the estimated probability to have found

the W jets exceeds a given threshold (Equation 6.12). We expect that the 2 W jets are

not always correct but a mixture of correct and incorrect fractions. To study how often

we get the correct jet pairs, the 2 W jets are matched with the Monte Carlo truth. In this

connection, three distributions of probability of correct jet assignment that correspond

to three different cases are shown in Figure 6.13. It can be seen from Figure 6.13 that

if the 2 W jets are accepted in the 4j + 1` events, then the frequency of their correct

identification is high. The frequency of the correct identification of 2 W jets is dependent

on the threshold value of PCA. That is if the threshold is set at the lower values (say

0.3), then the chances for the correct identification of 2 W jets is low, even though the
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event acceptance rate in the control sample is high. On the other hand, if the threshold

PCA,min is high (say 0.95), then the 2 W jets are correctly identified with high frequency.

In this case, the event statistics of the tt̄ will be small. As mentioned in the point 2

above, the identified 2 W jets are then replaced with an `ν pair, therefore these jets

should be correctly identified so that the later part of the analysis gives better results.

Thus, a cut value of 0.9 is chosen for this analysis, i.e. PCA,min = 0.9, which is also

shown in Figure 6.13. Quantitatively, out of 4j + 1` accepted events, 51% of the time

the 2 W jets are correctly identified. The invariant mass distribution of two identified W

jets is shown in Figure 6.14. In this figure, the invariant mass distribution of correctly

identified 2 W jets is also shown. The correct jet fraction is not very high because

only 59% of the cases the 4 selected jets actually contain 2 W jets. When the 2 W jets

are present in the 4j + 1` events, then 87% of the time we found the correct W jets.

Moreover, if 4 selected jets contain 2 W jets and 2 bjets, then 2 identified W jets are 91%

correct.

The above results suggest for the modification in the event selection procedure, not

yet carried out in this analysis, so that the acceptance fraction of 2 W jets is significantly

higher than 59%. One way to achieve this is to relax the selection cuts on pseudorapidity

|η| and transverse momentum pT of jets, and to accept four or more jets in the control

sample instead of requiring exactly four jets (4j + 1` selection). The proposed solution

is not easily manageable. For example, in the 4j + 1` selection, 24 jets assignments are

possible which is not very complex when we do the calculation for the likelihood. But,

when the number of jets in the control sample are 5 (5j + 1` selection) and 6 (6j + 1`

selection), then 120 and 720 likelihood calculations will be needed respectively. It means

that the task of finding Ĥ becomes very laborious. Further, in the 4j + 1` selection, the

presence of the two b jets makes the task of finding the two W jets much simpler. That

is, the two b jets are isolated because of the presence of the secondary vertex, i.e. the

high flavour tag weight w values, and what remains are the two W jets. But after the
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Figure 6.13: The probability distribution of correct jet assignment for three different
cases normalized to 1 fb−1 of integrated luminosity.

identification of the two b jets in the 5j + 1` and 6j + 1` selections, it will be difficult

to find which 2 of 3 and 2 of 4 remaining jets respectively correspond to the 2 W jets.

Also, when 2 W jets are identified, then one needs to apply the selection cuts similar to

those used in the dilepton search sample. That is, the remaining part of the 5 and 6 jets

analyses will be similar to the 4j + 1` selection.

6.4 Comparison of Distribution Shapes

In order to test how well the tt̄ control sample is, one needs to compare the distributions

from tt̄ in the 2j + 2` selection (dilepton search sample) to those from tt̄ in the 4j + 1`

selection (control sample). These distributions should have a very similar shape. All

distributions are normalized to unit area so that their shapes can be compared. In all

the plots shown below, the blue line denotes the variable distribution in the dilepton

search sample while the red line corresponds to the same variable distribution in the

control sample.
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Figure 6.14: Invariant mass distributions of all W jet pairs and correctly identified W
jet pairs.

First, we will compare the distribution shapes of two jets that do not come from the

hadronic W decay. In the earlier sections, the two jets which correspond to the W have

been identified first by using flavour tag weight and kinematic information and then

using parton and jet matching. The two identified jets are then replaced with simulated

lepton and neutrino, and what remains are those jets that do not belong to the W . The

distributions of the transverse momenta of the leading and sub-leading jets are compared

in Figures 6.15 and 6.16 respectively. Here, Monte Carlo truth information is used to

identify jets. It is clear from these plots that the two jet system from 4j+ 1` selection is

very similar to that of 2j + 2` selection. As one does not have access to partons in real

data therefore, when the matching is based on measurable quantities such as flavour tag

weights, then such a good agreement is not necessarily expected.

Now we will compare the jet distributions in those cases when the matching is based

on measurable quantities instead of MC truth. The distribution of the transverse mo-

mentum (pT ) of the leading jet is shown in Figure 6.17. One can see that the level of

agreement is not as good as in Figure 6.15 when the matching was based on MC truth.
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Similar result is obtained for the distribution of the pT of the sub-leading jet as shown

in Figures 6.19 and 6.16.

The discrepancy in the results occur because the distributions depend on whether or

not the two identifiedW jets, that are replaced with simulated lepton and neutrino, really

came from the W . It means if the 2 W jets are correctly identified, then the distributions

are in better agreement. Therefore, the distributions have also been compared in those

cases when the W jets are correctly identified as shown in Figure 6.18 and 6.20.

Next we will compare the distribution shapes of the missing transverse energy Emiss
T .

In the 2j + 2` selection, the final state contains two neutrinos which are the source of

missing energy in the tt̄ dilepton event. On the other hand, the 4j + 1` selection has

only one neutrino and therefore we need to replace two jets with simulated lepton and

neutrino to make the kinematics similar. Therefore, it is required to recalculate the

missing transverse energy by including the information of a simulated neutrino. After

this modification, we can compare the distributions, which are shown in Figure 6.21. It

can be seen in Figures 6.21 and 6.22 that the distribution shape of missing transverse

energy is not strongly dependent on the correct identification of W jets as we saw in case

of the distributions of the jets. Finally, the distribution shapes of the effective mass Meff

are compared in Figure 6.23. Like jets, Meff is also strongly dependent on the correct

identification of 2 W jets as can be seen in Figure 6.24.

It is clear from the above plots that the distributions of kinematic and event shape

variables in the control sample are not in perfect agreement to those of the dilepton

search sample. The main reason for these disagreements is the low frequency of finding

the correct W jets, i.e. 51%. It has been discussed earlier that out of 4j + 1` selected

events, only 59% of the time the 4 accepted jets actually contain 2 W jets thats why the

frequency of correct W jets is low. Moreover, the differences in the above distributions

introduce systematic uncertainty in the estimate of scale factor τ , and its treatment has

been discussed in Sections 7.4.
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Figure 6.15: Distribution of pT of the leading jet for simulated tt̄ events passing the
dilepton selection and for the control sample. The identification of jets in the control
sample is based on the MC truth information.
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Figure 6.16: Distribution of pT of the sub-leading jet for simulated tt̄ events passing the
dilepton selection and for the control sample. The identification of jets in the control
sample is based on the MC truth information.
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Figure 6.17: Distribution of pT of the leading jet for simulated tt̄ events passing the
dilepton selection and for the control sample. The identification of jets in the control
sample is based on the measurable quantities.

 of the leading jet (GeV)
T

p

0 50 100 150 200 250 300 350 400 450 500

N
o

rm
a
li
z
e
d

 t
o

 u
n

it
 a

re
a

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

dilepton channel

control sample

Figure 6.18: Distribution of pT of the leading jet for simulated tt̄ events passing the
dilepton selection and for the control sample. The identification of jets in the control
sample is based on the measurable quantities. Only those events are compared which
contain correct W jets.
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Figure 6.19: Distribution of pT of the sub-leading jet for simulated tt̄ events passing the
dilepton selection and for the control sample. The identification of jets in the control
sample is based on the measurable quantities.
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Figure 6.20: Distribution of pT of the sub-leading jet for simulated tt̄ events passing the
dilepton selection and for the control sample. The identification of jets in the control
sample is based on the measurable quantities. Only those events are compared which
contain correct W jets.
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Figure 6.21: Distribution of EmissT for simulated tt̄ events passing the dilepton selection
and for the control sample. The identification of jets in the control sample is based on
the measurable quantities.
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Figure 6.22: Distribution of EmissT for simulated tt̄ events passing the dilepton selection
and for the control sample. The identification of jets in the control sample is based on
the measurable quantities. Only those events are compared which contain correct W
jets.
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Figure 6.23: Distribution of Meff for simulated tt̄ events passing the dilepton selection
and for the control sample. The identification of jets in the control sample is based on
the measurable quantities.

Effective Mass (GeV)

0 200 400 600 800 1000 1200

N
o

rm
a
li
z
e
d

 t
o

 u
n

it
 a

re
a

0

0.001

0.002

0.003

0.004

0.005

0.006 dilepton channel

control sample

Figure 6.24: Distribution of Meff for simulated tt̄ events passing the dilepton selection
and for the control sample. The identification of jets in the control sample is based on
the measurable quantities. Only those events are compared which contain correct W
jets.
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6.5 Selection of tt̄ Events

In the environment of mock and real data, other physics processes will also be present

besides tt̄. This means, when 4j+1` events are selected for the tt̄ control sample, non-tt̄

events will also be accepted. Therefore, some procedure should be adopted to suppress

those non-tt̄ events. One way to achieve this is to construct a statistic that reflects the

level of agreement between the event’s measured characteristics and the tt̄ hypothesis,

and define a cut. Thus, the events that survive the cut are those that look like tt̄. For the

statistic we can write χ2(q1, q2, b1, b2), i.e., the arguments represent, in the given order,

the indices of the reconstructed jets assigned to q1, q2, b1 and b2 as shown in Figure 6.3.

For the choice of the reconstructed jets a, b, c, d we can model the statistic as

χ2(a, b, c, d) =
(mab −MW )2

σ2
Wh

+
(mabc −mt)

2

σ2
th

+
(mdlν −mt)

2

σ2
tl

−2 ln
LW (wa, wb)

fmaxwa fmaxwb

− 2 ln
f(wc|b)
fmaxwc

− 2 ln
f(wd|b)
fmaxwd

(6.15)

where the variables have the same meaning as defined in Section 6.1 (Equations 6.1

-6.4). Here, fmaxwj is the maximum of [ f(wj |l), f(wj |c), f(wj |b) ] where j = a, b, c, d. The

first three terms correspond to the invariant masses of the hadronic W , the hadronic

top and the leptonic top respectively. It is expected that the contribution of these

mass terms in the above equation will be smaller for the tt̄ events as compared to the

non-tt̄ events. While the last three terms in the chi-square provide the flavour tag

information of the 4 reconstructed jets. Each tt̄ decays into two b-jets that mostly have

large flavour tag weights. It means, the last two terms in the above equation become

nearly zero. Moreover, the above equation corresponds to the particular assignment

of the reconstructed jets as shown in Figure 6.3 in which q1 = a, q2 = b, b1 = c and

b2 = d. There are 24 possible assignments, so we will compute 24 chi-square values,
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and find which one is the minimum, i.e., χ2
min. If we make a plot of the distribution

of χ2
min for tt̄ events, we expect the distribution will move towards the lower values of

χ2
min. Four distributions of χ2

min, each corresponding to specific physics process, are

shown in Figure 6.25. It can be seen from the figure that W+jets is the most significant

background, i.e., non-tt̄ process, in the control sample. In Figure 6.25, the two peaks

in the tt̄ distribution are the characteristic of the tt̄ events. The first peak on the left

corresponds to the two b-jets which have large values of flavour tag weights. The second

peak on the right corresponds to the case when one of the two b-jets has a lower value

of flavour tag weight. The second peak can also be appeared when the tt̄ control sample

contains only one b-jet. In the light of the above, a cut value of χ2
min is required to

suppress the non-tt̄ events. One can perform an optimisation study to find the best cut

value. But for this thesis, a cut value of 5 is chosen by looking at the plot (Figure 6.25),

which seems quite reasonable. That is only those events are accepted for the control

sample if χ2
min < 5.



6.5 Selection of tt̄ Events 95

2minχ

0 5 10 15 20 25 30 35

­1
N

o
rm

a
li

z
e

d
 a

t 
1

 f
b

200

400

600

800

1000

1200

1400
SU4

ttbar

W + jets

Z + jets

Cut = 5.0

Figure 6.25: Selection of tt̄ events.



Chapter 7

Results and Interpretation

The previous chapter served to provide the details of a novel, data-driven technique that

we have developed for the estimation of the tt̄ background. In this chapter, our aim is to

test the above data driven method by using the mock data. This means, various physics

processes will be considered that are relevant for the control and the dilepton search

samples. Moreover, a C++ program has also been developed to compute the discovery

significance of SUSY model (SU4) and upper limit on signal cross-section.

7.1 Estimating the tt Background using the

Control Sample

We can now write down the full statistical procedure for the SUSY search. The statistical

part of the analysis is mostly based on Ref [43]. In the 2j+ 2l selection after all cuts we

will find in data a certain number of events, n, which we model as following a Poisson

distribution with an expectation value

E[n] = µs+ b . (7.1)

Here s is the expected number of events from the nominal signal model and µ is a

96
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strength parameter defined so that µ = 0 corresponds to the background-only hypothesis

and µ = 1 to the nominal signal hypothesis. By introducing the strength parameter it

allows one to combine channels where one has different values of s but a common µ. The

parameter b here refers specifically to the expected number of tt background events. In

practice there will also be other sources of background but for purposes of the present

discussion we assume they can be neglected. In this analysis, the non-tt backgrounds

are estimated from Monte Carlo.

In the control sample (4j + 1l selection), also from data (real or mock), we observe

m events. This value is modelled as following a Poisson distribution with a mean

E[m] = τb , (7.2)

where b is the expected number of background events in the 2j + 2l selection. That is,

the b in Equation 7.2 for the control selection is the same as the expected background

contributing to the 2j + 2l SUSY selection in Equation 7.1. Here, the scale factor τ

relates the expected number of events found in the 4j+ 1 selection to the corresponding

mean number in the 2j + 2l selection. Furthermore we assume that the scale factor τ in

Equation 7.2 can be estimated by Equation 6.13 using the Monte Carlo.

The data thus consist of two measured values, n and m, and there are two unknown

parameters, µ and b. Here µ is the parameter of interest and b is a nuisance parameter.

In a more complete analysis, τ could also be regarded as nuisance parameter, but in the

present study its value is taken to be fixed. For now we will treat s and τ as known

parameters. The likelihood function for µ and b is the product of two Poisson terms:

L(µ, b) =
(µs+ b)n

n!
e−(µs+b) (τb)m

m!
e−τb . (7.3)

The log-likelihood function can therefore be written
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lnL(µ, b) = n ln(µs+ b)− (µs+ b) +m ln(τb)− τb+ C , (7.4)

where the constant C represents terms that do not depend on the parameters and can

be dropped.

Following Ref [43], to find the discovery significance, we define the test statistic q0

as

q0 =


−2 ln L(0,

ˆ̂
b)

L(µ̂,b̂)
µ̂ ≥ 0

0 µ̂ < 0 .

(7.5)

To set an upper limit on a hypothesized value of the strength parameter µ, we define

the test statistic qµ as

qµ =


−2 ln L(µ,

ˆ̂
b)

L(µ̂,b̂)
µ̂ ≤ µ

0 µ̂ > µ .

(7.6)

Here µ̂ and b̂ are the values of the parameters that maximize the likelihood (the ML

estimators), and
ˆ̂
b is the value of b that maximises L for the given µ (the conditional

ML estimator).

If there is only one background process, then the estimators for µ and b can be found

by setting the corresponding derivatives of lnL equal to zero. One finds:

µ̂ =
n−m/τ

s
, (7.7)

b̂ =
m

τ
. (7.8)

The conditional ML estimator
ˆ̂
b for a specified µ is
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ˆ̂
b =

n+m− (1 + τ)µs

2(1 + τ)
+

[
(n+m− (1 + τ)µs)2 + 4(1 + τ)mµs

4(1 + τ)2

]1/2

(7.9)

Equations (7.6), (7.7), (7.8), (7.9) can be combined to give a value of qµ for given data

values n and m. In cases with more than one background component, it is easiest to solve

for the required quantities numerically. A program for doing this has been developed in

this thesis.

One can show that for sufficiently large n and m, the sampling distribution of qµ

under the hypothesis of µ is a combination of a delta function at zero and a chi-square

distribution for one degree of freedom, with each component having weight one half. We

call this the half-chi-square distribution.

Using this information one can compute for a value of qµ the p-value of the hypothesis

µ,

pµ =

∫ ∞
qµ,obs

f(qµ|µ) dqµ , (7.10)

and from this one can find the corresponding significance

Zµ = Φ−1(1− pµ) , (7.11)

where Φ is the cumulative standard Gaussian distribution (zero mean and unit width),

and Φ−1 is its inverse (the quantile). In order to establish a discovery we try to reject

the background-only hypothesis µ = 0. For example, a threshold significance of Z = 5

corresponds to a p-value of 2.87 × 10−7. While for computing the upper limit on µ at

95 % confidence level, a p-value of 0.05 corresponds to a significance of Z = 1.64.

For the half-chi-square distribution for f(q0|q0) and f(qµ|qµ), one finds that the

discovery and exclusion significances are given respectively by the simple formulas
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Z0 =
√
q0 , (7.12)

and

Zµ =
√
qµ . (7.13)

In the preparation of an analysis, one often needs the expected (or median) signifi-

cance. For the discovery, one can report the expected significance one would obtain for

data containing signal plus background. While for purposes of upper limits, one usually

wants the median significance with which one would exclude µ = 1, where the data

distribution for obtaining the median assumes background only.

To find the median significance, one can evaluate qµ (and q0) using an artificial data

set where n and m are replaced by their expectation values µ′s+ b and τb, respectively

(called the Asimov data set). Here µ′ is the value of the strength parameter corresponding

to data distribution one wants for the median. For discovery significance, one wants

µ′ = 1, i.e., the signal plus background. While for upper limits one wants µ′ = 0, i.e.,

the background-only hypothesis.

7.2 Preparation of Mock Data

In order to estimate tt̄ background, we need to determine the value of the scale factor

τ which we introduced in the previous chapter. The tt̄ event survival rates with an

effective luminosity LMC of 8.8 fb−1 are given in Table 7.1. This result is based on

fully simulated data. The sets of cuts designated Cut2, Cut3 and Cut4 are the same as

defined in Section 5.2.1. The scale factor τ can be estimated by using Equation 6.13,

i.e., τ = 139/38 ≈ 3.7.

In addition to the scale factor, we also need to know the following information: events

expected in the signal region (SR), E[n], events expected in the control region (CR),
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Cross-Section LMC Event Selection Cut2 Cut3 Cut4

(pb) (fb−1)

80.03 8.8 2j + 2` 757 51 38

80.03 8.8 4j + 1` 3664 180 139

Table 7.1: Number of tt̄ events at various selection cuts in the search and control samples.

Quantities Value

events expected in the SR, E[n] 14.32

events expected in the CR, E[m] 16.1

expected signal events, s 9.58

expected non-tt̄ events in the SR, bnon−tt̄−SR 0.44

expected non-tt̄ events in the CR, bnon−tt̄−CR 0.2

expected tt̄ events in the SR, btt̄ 4.3

expected tt̄ events in the CR, τbtt̄ 15.9

Table 7.2: Some useful data at the integrated luminosity of 1 fb−1.

E[m], expected signal events, s, non-tt̄ events expected in the SR, bnon−tt̄−SR, non-tt̄

events expected in the CR, bnon−tt̄−SR, expected tt̄ events in the SR, btt̄, and expected

tt̄ events in the CR, τbtt̄. These quantities are determined using fully simulated data of

the physics processes relevant for the search and the control sample, and their values are

listed in Table 7.2.

To compute discovery significance and upper limit, one needs to determine the values

of n and m (defined in Section 7.1). In order to do so, the physics processes we saw

in Chapter 5 have been combined into one data sample (called mock data) with an

integrated luminosity of 0.5 fb−1. The mock data events observed in the signal and

control regions are listed in Tables 7.3 and 7.4 respectively. Here, the different cut levels

have their usual meanings. After all the cuts, the number of events that survived in

the dilepton search and in the control samples are 9 and 5 respectively, i.e., n = 9 and

m = 5.
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Sample 2 jets + 2 leptons Cut2 Cut3 Cut4

mock data 15588 352 9 9

SU4 29 11 6 6

tt̄ 266 53 3 3

diboson 76 0 0 0

Drell Yan 507 3 0 0

W+jets 66 4 0 0

Z+jets 14644 281 0 0

Table 7.3: Search sample events observed in mock data at 0.5 fb−1.

Sample 4 jets + 1 lepton Cut2 Cut3 Cut4

mock data 2030 300 10 5

SU4 57 6 0 0

tt̄ 1008 201 7 5

diboson 9 1 0 0

Drell Yan 18 0 0 0

W+jets 691 76 3 0

Z+jets 247 16 0 0

Table 7.4: Control sample events observed in mock data at 0.5 fb−1.
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Quantities Value

n, events observed in the SR 9

m, events observed in the CR 5

Table 7.5: Events observed in mock data sample at 0.5 fb−1.

7.3 Discovery Significance and Upper Limit

In Section 7.1, we wrote full statistical procedure for the SUSY dilepton search. In

this connection, a C++ program called LimitCalc has been developed to compute the

discovery significance and upper limit. The LimitCalc program is a modified version of

SigCalc [44] program which was developed for computing the discovery significance. The

measurements obtained from the mock data are listed in Table 7.5.

7.3.1 Discovery Significance

We have implemented two ways to estimate the discovery significance Z0. In the first

method, we compute the statistic q0 for the measured values n and m listed in Table 7.5

by using Equation 7.5. It is pointed out earlier that if the distribution of q0 follows the

half-chi-square distribution (asymptotic), then one can compute the discovery signifi-

cance by using Equation 7.12, i.e., Z0 =
√
q0 = 3.35. The asymptotic formula is valid

for the large data sample.

If the data sample is not large enough to guarantee the validity of the asymptotic

formula, one can use Monte Carlo experiments to find the distribution of q0. In this

method, the measurements (n and m) are generated after setting µ = 0 as

ngen ∼ Poisson(btt̄ + bnon−tt̄−SR) (7.14)

mgen ∼ Poisson(τbtt̄ + bnon−tt̄−CR) (7.15)

where the variables have their usual meanings. In the first method, we had only one set
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of measurements, and from this we found q0(n,m), which we now call q0,obs. But in the

second method, we have the distributions of measurements. This means, for each value

of ngen and mgen, one can obtain a value of the statistic q0. Therefore, one can make

the distribution of q0 by using all the values of ngen and mgen. Later, one can compute

the p-value (called p0) as

p0 =
number of MC experiments when q0 > q0,obs

total number of MC experiments
(7.16)

Finally, the discovery significance is computed by Z0 = Φ−1(1− p0) (Equation 7.11),

and it is found to be 3.30, in good agreement with the value of 3.35 based on the

assymptotic formula. This result can also be confirmed by looking at Figure 7.1. In

this figure, the red line corresponds to the half-chi-square distribution, while the blue

histogram represents the distribution of q0 made by using the values of ngen and mgen.

One can see from Figure 7.1 that the two distributions are in good agreement, which is

equivalent to the statement that the significance, which corresponds to the area under

the curve to the right of q0,obs, is essentially the same.

We have seen two ways to estimate the discovery significance Z0 for the data sets

(n,m) and (ngen,mgen). Now we want to know what would be the distribution of Z0 if

one were to obtain many independent data sets, each generated according to: ngen ∼

Poisson(µs+ btt̄+ bnon−tt̄−SR) and mgen ∼ Poisson(τbtt̄+ bnon−tt̄−CR). In particular, we

want to know the expected (or median) discovery significance if the data are generated

using µ = 1. This is our measure of experimental sensitivity. The distribution of Z0

is shown in Figure 7.2. One way to find the expected discovery significance is by using

Asimov data set as pointed out in Section 7.1. From the MC, construct the Asimov data

set as

nA,1 = s+ btt̄ + bnon−tt̄−SR = 7.16 (7.17)
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Figure 7.2: Distribution of discovery significance Z0 for many independent data sets.
The expected significance Z0(nA,1,mA,1) is also shown.

mA,1 = τbtt̄ + bnon−tt̄−CR = 8.05 (7.18)

where the variables have their usual meanings. By using the first method above, the

expected discovery significance is found to be Z0(nA,1,mA,1) =
√
q0(nA,1,mA,1) = 2.1,

which is also shown in Figure 7.2.

7.3.2 Upper Limit

In addition to estimate the discovery significance, one also needs to know the upper limit

on the strength parameter µ. That is one wants to compute the maximum value of µ

that corresponds to the p-value of 0.05 (95 % confidence level CL). In this connection,

we have implemented three ways to find the upper limit µup. Two of them use the

asymptotic approach, which is only valid for the large data set, while one method is

based on the Monte Carlo study.
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This method is based on the asymptotic approximation which means it is valid for

sufficiently large data set. Here, the upper limit µup at 95 % CL is computed by

µup = µ̂+ 1.64σµ̂, (7.19)

where σµ̂ is the standard deviation, and the other variables have their usual meanings.

The estimate of µ̂ and σµ̂ are obtained from the fit. For the measurements listed in

Table 7.5, i.e., n = 9 and m = 5, the estimated values of µ̂ and σµ̂ are 1.55 and 0.64

respectively. By using the above equation, the upper limit is found to be 2.6.

Like above, this method also uses the asymptotic approach. But here, we test various

values of µ in some range (e.g. 0 ≤ µ ≤ 3), and then the maximum value of µ is found

by using a graph. In this method, we compute the statistic qµ by using Equation 7.6.

Although, the measurements n and m are fixed at 9 and 5 respectively, but qµ will be

different because of the variation of µ in the range (0 ≤ µ ≤ 3). That is we have a value

of qµ, which we call qµ,obs, for each value of µ. Later, a list of pµ values can be formed

by using pµ = 1−Φ(
√
qµ,obs) corresponding to the values of the statistic qµ,obs. Here, Φ

is the cumulative standard Gaussian distribution (zero mean and unit width). Finally,

a plot of pµ is made against µ, and the largest µ is computed at 95 % CL. The plot is

shown in Figure 7.3, and the upper limit µup from this graph is found to be about 2.8,

i.e., the value of µ at pµ = 0.05.

If the data sample is not large enough to guarantee the validity of the asymptotic

formula, one can use Monte Carlo experiments to find the distribution of q0. In this

method, the measurements n and m are generated after setting µ = 1 as

ngen ∼ Poisson(s+ btt̄ + bnon−tt̄−SR) (7.20)

mgen ∼ Poisson(τbtt̄ + bnon−tt̄−CR) (7.21)
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Figure 7.3: Plot of pµ against µ based on the asymptotic formula.
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Figure 7.4: Plot of pµ against µ based on the Monte Carlo experiments.

where the variables have their usual meanings. For each value of ngen, mgen and µ, one

can compute a value of qµ. Next, one needs to make a list of pµ corresponding to the µ

values in the range 0 ≤ µ ≤ 3 as

pµ =
number of MC experiments when qµ > qµ,obs

total number of MC experiments
(7.22)

Like the second method above, we make a plot of pµ against µ, and then compute µ

that corresponds to 95% CL. The plot is shown in Figure 7.4 and the upper limit from

this graph is found to be about 2.9, in reasonably good agreement with the value of 2.8

based on the assymptotic formula (Figure 7.3).

We have seen three ways to estimate the upper limit µup. Now we want to know

what would be the distribution of the limits µup if one were to obtain many independent

data sets, each generated according to: ngen ∼ Poisson(µs + btt̄ + bnon−tt̄−SR) and
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Figure 7.5: Distribution of upper limit µup for many independent data sets. The ex-
pected upper limit µup(nA,0,mA,0) is also shown.

mgen ∼ Poisson(τbtt̄ + bnon−tt̄−CR). In particular, we want to know the expected (or

median) upper limit if the data are generated using µ = 0. This is our measure of

experimental sensitivity, i.e., the limit we expect to set if there is no signal present in

nature. The distribution of µup is shown in Figure 7.5. One way to find the expected

upper limit is by using Asimov data set as pointed out in Section 7.1. From the MC,

construct the Asimov data set as

nA,0 = btt̄ + bnon−tt̄−SR = 2.37 (7.23)

mA,0 = τbtt̄ + bnon−tt̄−CR = 8.05 (7.24)

where the variables have their usual meanings. By using the first method above, the ex-

pected upper limit µup(nA,0,mA,0) is found to be 0.59, which is also shown in Figure 7.5.
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7.4 Treatment of Uncertainty in Scale Factor τ

The uncertainty in the scale factor τ can be modeled with a log-normal distribution or

equivalently with Gaussian pdf as

f(η1; η, ση1) =
1√

2π ση1
exp

(
−(η1 − η)2

2σ2
η1

)
(7.25)

where η1 = ln τ1 and η= ln τ . Here, τ1 is unknown and it will be treated as a nuisance

parameter, while τ is the scale factor whose value is calculated earlier, i.e., 3.7. The

standard deviation ση1 is defined as

ση1 = ln(1 + σrel) (7.26)

where σrel is the relative uncertainty in scale factor and one can take its value to be 0.1,

0.2 or 0.5. The likelihood function for µ and b along with the uncertainty in scale factor

can be written as

L(µ, b, τ1) =
(µs+ b)n

n!
e−(µs+b) (τb)m

m!
e−τb

1√
2π ση1

exp

(
−(η1 − η)2

2σ2
η1

)
. (7.27)

where the first two terms are the same as in Equation 7.3, while the third term modeled

the uncertainty in scale factor. All variables have their usual meanings. Now repeat the

steps followed in Sections 7.1 and 7.3, and determine again the sensitivity, i.e., median

significance. The result will indicate how an uncertainty in scale factor would affect the

experimental sensitivity.



Chapter 8

Conclusions and Outlook

The main theme of this thesis was to design a search for Supersymmetry in ATLAS by

requiring events with two opposite-sign leptons, two jets and missing transverse energy

in the final state. We have seen various Standard Model processes which also contain

the above kinematics, and these are background to a SUSY signal. The tt̄ process is the

most dominant background in the signal region. Before one claims a SUSY discovery, the

proper understanding of these backgrounds is essential. Therefore, data driven methods

are used to estimate these backgrounds.

A novel data driven technique for estimating the tt̄ background has been presented

in this thesis. To constrain the tt̄ events, control sample has been prepared with 4j+ 1`

selection. The correct identification of W jets was a challenging task, which has been

done by choosing the jet assignment with the maximum likelihood and in addition,

requiring probability of W jets assignment exceeds a given threshold. This probability

is not as high as one might hope, because the 2 W jets survived the selection cuts only

59 % of the cases. When the 2 W jets are accepted in the control sample, the method

identifies them 87 % correctly. Moreover, the distributions from tt̄ in the 2j+2` selection

(dilepton search sample) to those from tt̄ in the 4j + 1` selection (control sample) are

compared, and it has been found that the distribution shapes are strongly dependent on
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the correct identification of the 2 W jets.

The analysis has been tested using simulated data with an integrated luminosity

of 0.5 fb−1. A statistical analysis based on the profile-likelihood method has been de-

veloped for the search. It has been seen that although the number of events is quite

small, the significance from asymptotic formulae are in reasonably good agreement with

values obtained from Monte Carlo. For a data sample of 0.5 fb−1, the median discovery

significance for the benchmark point SU4 in the mSUGRA parameter space was found

to be 2.1. Assuming the absence of a SUSY signal, the median upper limit on the cross

section for SUSY (SU4) is 0.59 times the predicted cross section, which is to say one

would expect to exclude this model.

A possible extension to the work presented in this thesis may be to relax the cuts

on pseudorapidity |η| and transverse momentum pT of jets, and to require four or more

jets in the control sample, so that the acceptance fraction of the 2 W jets is significantly

higher than 0.59.

SUSY Dilepton Search in ATLAS

The analysis overview of SUSY dilepton search was given in Chapter 5, which was mostly

based on ATLAS dilepton note [1]. The recent publication in ATLAS on this channel is

Ref [45]. The recent analysis uses a data sample collected during the first half of 2011

that corresponds to a total integrated luminosity of 1.0 fb−1 recorded with the ATLAS

detector. The aim of this section is to discuss some of the main results of this publication.

In 2011 analysis, three signal regions are considered, placing requirements on Emiss
T

and number of high pT jets, as shown in Table 8.1. These regions are optimised by

considering their potential reach in the parameter space of mSUGRA/CMSSM [46], [47]

models. These models have varying mass parameters mo and m 1
2
, but fixed values of

Ao = 0, tanβ = 10 and sign(µ) > 0 .

The expected and observed number of events in each signal region are compared
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Signal Region OS-SR1 OS-SR2 OS-SR3

Emiss
T [GeV] 250 220 100

Leading jet pT [GeV] - 80 100

Second jet pT [GeV] - 40 70

Third jet pT [GeV] - 40 70

Fourth jet pT [GeV] - - 70

Number of jets - ≥ 3 ≥ 4

Table 8.1: Criteria defining each of the three signal regions for opposite-sign (OS-SRx)
analysis [45].

Background Observed 95% CL

OS-SR1 15.5 ± 4.0 13 9.9 fb

OS-SR2 13.0 ± 4.0 17 14.4 fb

OS-SR3 5.7 ± 3.6 2 6.4 fb

Table 8.2: Predicted number of background events, observed number of events and the
corresponding 95% CL upper limit on σ× ε×A, using the CLs technique for each signal
region [45].
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to the background expectation as shown in Table 8.2. It can be seen from Table 8.2,

there is a good agreement between the numbers of observed events and the Standard

Model predictions. These results are used to set limits on the effective production cross-

section, i.e., σ× ε×A. Here, σ is the cross-section for new phenomena, ε is the detector

reconstruction and identification efficiency, while A is the fraction of events passing ge-

ometric and kinematic cuts at particle level. Limits are set using the CLs prescription,

as described in Ref [48]. The results on limits are also shown in Table 8.2. Effective pro-

duction cross-sections in excess of 9.9 fb for events containing supersymmetric particles

with Emiss
T greater than 250 GeV are excluded at 95% CL.



Appendix A

Data Samples

The following ATLAS samples were used for the dilepton search analysis described in

this thesis:

mc10_7TeV.106400.SU4_jimmy_susy.merge.AOD.e598_s933_s946_r2175_r2176

mc10_7TeV.105200.T1_McAtNlo_Jimmy.merge.AOD.e598_s933_s946_r2215_r2260

mc10_7TeV.105985.WW_Herwig.merge.AOD.e598_s933_s946_r2215_r2260

mc10_7TeV.105986.ZZ_Herwig.merge.AOD.e598_s933_s946_r2215_r2260

mc10_7TeV.105987.WZ_Herwig.merge.AOD.e598_s933_s946_r2215_r2260

mc10_7TeV.108319.PythiaDrellYan_mumu.merge.AOD.e574_s933_s946_r2215_r2260

mc10_7TeV.108320.PythiaDrellYan_ee.merge.AOD.e574_s933_s946_r2215_r2260

mc10_7TeV.108321.PythiaDrellYanLowM_mu3.merge.AOD.e574_s933_s946_r2215_r2260

mc10_7TeV.108322.PythiaDrellYanLowM_ee3.merge.AOD.e574_s933_s946_r2215_r2260

mc10_7TeV.107680.AlpgenJimmyWenuNp0_pt20.merge.AOD.e600_s933_s946_r2215_r2260

mc10_7TeV.107681.AlpgenJimmyWenuNp1_pt20.merge.AOD.e600_s933_s946_r2215_r2260

mc10_7TeV.107682.AlpgenJimmyWenuNp2_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107683.AlpgenJimmyWenuNp3_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107684.AlpgenJimmyWenuNp4_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107685.AlpgenJimmyWenuNp5_pt20.merge.AOD.e760_s933_s946_r2215_r2260

116



117

mc10_7TeV.107690.AlpgenJimmyWmunuNp0_pt20.merge.AOD.e600_s933_s946_r2215_r2260

mc10_7TeV.107691.AlpgenJimmyWmunuNp1_pt20.merge.AOD.e600_s933_s946_r2215_r2260

mc10_7TeV.107692.AlpgenJimmyWmunuNp2_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107693.AlpgenJimmyWmunuNp3_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107694.AlpgenJimmyWmunuNp4_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107695.AlpgenJimmyWmunuNp5_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107700.AlpgenJimmyWtaunuNp0_pt20.merge.AOD.e600_s933_s946_r2215_r2260

mc10_7TeV.107701.AlpgenJimmyWtaunuNp1_pt20.merge.AOD.e600_s933_s946_r2215_r2260

mc10_7TeV.107702.AlpgenJimmyWtaunuNp2_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107703.AlpgenJimmyWtaunuNp3_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107704.AlpgenJimmyWtaunuNp4_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107705.AlpgenJimmyWtaunuNp5_pt20.merge.AOD.e760_s933_s946_r2215_r2260

mc10_7TeV.107650.AlpgenJimmyZeeNp0_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107651.AlpgenJimmyZeeNp1_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107652.AlpgenJimmyZeeNp2_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107653.AlpgenJimmyZeeNp3_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107654.AlpgenJimmyZeeNp4_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107655.AlpgenJimmyZeeNp5_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107660.AlpgenJimmyZmumuNp0_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107661.AlpgenJimmyZmumuNp1_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107662.AlpgenJimmyZmumuNp2_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107663.AlpgenJimmyZmumuNp3_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107664.AlpgenJimmyZmumuNp4_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107665.AlpgenJimmyZmumuNp5_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107670.AlpgenJimmyZtautauNp0_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107671.AlpgenJimmyZtautauNp1_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107672.AlpgenJimmyZtautauNp2_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107673.AlpgenJimmyZtautauNp3_pt20.merge.AOD.e737_s933_s946_r2215_r2260

mc10_7TeV.107674.AlpgenJimmyZtautauNp4_pt20.merge.AOD.e737_s933_s946_r2215_r2260
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mc10_7TeV.107675.AlpgenJimmyZtautauNp5_pt20.merge.AOD.e737_s933_s946_r2215_r2260

The Monte Carlo generators used for the production of the above data samples are listed

in Table 5.1, Table 5.2 and Table 5.3. These data samples are centrally produced that

fully simulate the ATLAS detector using GEANT4 package [31]. They are analysed

using Athena release 16.
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