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Abstract.

We demonstrate a dual-rail optical Raman memory inside a polarization

interferometer; this enables us to store polarization-encoded information at GHz

bandwidths in a room-temperature atomic ensemble. By performing full process

tomography on the system we measure up to 97±1% process fidelity for the storage and

retrieval process. At longer storage times, the process fidelity remains high, despite

a loss of efficiency. The fidelity is 86 ± 4% for 1.5µs storage time, which is 5,000

times the pulse duration. Hence high fidelity is combined with a large time-bandwidth

product. This high performance, with an experimentally simple setup, demonstrates

the suitability of the Raman memory for integration into large-scale quantum networks.

PACS numbers: 03.67.Lx, 42.50.Ex, 42.50. Gyar
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1. Introduction

Photons are well-established as carriers of quantum information and their transmission

through high-bandwidth fibers or free-space opens the possibility of a global quantum

network [1, 2]. To compensate for the effects of photon loss in a fiber network and the

inherently probabilistic nature of quantum processes, it is necessary to map quantum

information from a ‘flying’ photonic qubit to a stationary one and back again, in a

controllable manner. This is the essence of a quantum memory: it must faithfully store,

and reproduce, the quantum state of a photonic qubit, including polarization. Key

performance benchmarks of a quantum memory are high efficiency, long storage times

and large bandwidths. Ultimately the clock-rate of a quantum information protocol

will depend on the pulse durations used; a high bandwidth is required to store the

temporally short pulses which lead to high processing rates. Also, in order to perform

operations while the qubit is in storage, the storage time of the memory must be several

times larger than the pulse duration. For this reason, the time-bandwidth product

(TBP) is an important metric for a quantum memory. Note that the TBP, which

represents the number of clock cycles spanned by the storage time, is distinct from the

multimode capacity which represents the number of temporal or spectral bins that can

be simultaneously stored. A large TBP is critical for synchronisation tasks, while large

multimode capacity is advantageous for some protocols that invoke multiplexing.

Quantum memories have been demonstrated in ultracold atoms [3, 4, 5],

cryogenically cooled solids [6, 7, 8] and single atoms in high-finesse optical cavities [9].

However, if quantum memories are to be used as part of a global quantum network,

they will eventually have to operate in remote, unmanned locations, so the apparatus

must be simple and robust. A promising candidate for such robust operation is a

room-temperature atomic ensemble. Storage times of several milliseconds have been

achieved using electromagnetically induced transparency (EIT) in simple vapor cells [10].

The gradient-echo memory (GEM) technique has also been used to great effect in

atomic gases, achieving up to 87% readout efficiency utilizing a switched magnetic field

gradient [11, 12]. Despite these long storage times, and high efficiencies, the bandwidth

of atomic memories is often limited by the narrow linewidth of the atomic transitions,

hence precluding a large TBP. However this limitation can be overcome by using a

controlled read-in and read-out mechanism based on an off-resonant Raman interaction,

which has been proposed [13] and demonstrated [14] by this group.

The Raman memory protocol is based on a two-photon off-resonant process in

an atomic Λ-level system, with a weak signal and strong control pulse, which maps the

electric field of the signal pulse onto a collective excitation in an atomic ensemble known

as a spin wave, as shown in figure 1. Here the strong control pulse produces a virtual

excited state, with a linewidth determined only by the bandwidth of the control pulse.

Because the control and signal fields must address the two ground-states separately, the

bandwidth of this memory is limited, in practice, by the ground state splitting. Based

on this interaction, we have implemented a memory in room-temperature Cesium (Cs)
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vapor [14, 15], which is capable of storing pulses of 300 ps duration, corresponding to

a 1.5 GHz bandwidth with a maximum efficiency of 30%. The maximum storage time,

currently limited by residual magnetic fields, is approximately 2µs, which is 104 times

longer then the pulse duration. These parameters yield the highest TBP of any quantum

memory so far. By attenuating the signal field such that it contained, on average,

1.6 photons per pulse, we demonstrated memory operation on the single-photon level.

The unconditional noise floor on these measurements was 0.25 photons/pulse, indicating

the functionality of this system in the quantum regime. The origins of this noise are

expected to be spontaneous Raman scattering and four-wave mixing [15], the former

could be removed by improved frequency filtering, but the latter is intrinsic to the

vapor cell memory. Raman quantum memory represents a robust and reliable option

for integration in large-scale quantum networks. Its high bandwidth, coupled with an

unprecedented TBP, and the abililty to store single photons makes it ideally suited to

synchronizing probabilistic quantum events, for example in entanglement swapping or

enhancing multi-photon rates.

|3

z

17 GHz

Signal

|1

|2

9.2 GH

(a)

Control

Read

Write

(b)

Figure 1. (a) The Raman quantum memory scheme: A weak signal pulse (thin green)

is mapped into a collective excitation of an atomic ensemble by a strong orthogonally

polarized control pulse (thick red). Upon further application of a second control pulse,

the signal is read out of the memory due to imperfect memory efficiency some signal

light is no t stored; this is transmitted by the memory. (b) Level diagram for the

Raman memory operating on the Cesium D2 line. The signal is stored via an off-

resonant Raman transition in a Λ-level system in atomic Cesium vapor. The ground

states 6S1/2, F = 3 (denoted by |3〉) and 6S1/2, F = 4 (|1〉) are split by 9.2 GHz and

the detuning from the excited state, 6P3/2 (|2〉), is typically around 17 GHz. Prior to

the memory operation, the atoms are prepared in |1〉 by optical pumping.

To interface effectively with future quantum networks, a memory must also be

capable of storing the quantum information encoded in the incoming photons. In fiber-

based networks, the polarization degree of freedom is particularly useful, because it

allows a single-photon qubit to be transmitted in a single spatial and temporal mode.

Furthermore, because photons generally interact only weakly with their environment,

polarization-encoded information can be transmitted over long distances without

decoherence — for example, radiation from the Big Bang is still partially polarized [16].

This is a critical requirement for the feasibility of large-scale networks. The ability to
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store polarization information with high fidelity is, therefore, a key benchmark for a

useful quantum memory.

Raman memory may operate in a multimode configuration, but in its simplest

form it is effectively single-mode [17]; hence it cannot store an arbitrary polarization

state. However, this problem can be addressed by building a dual-rail memory inside

a polarization interferometer with one arm storing the vertical component of the

polarization state and the other the horizontal. In this way the polarization state

of the input light can be perfectly stored in the two ensembles. This has been

successfully demonstrated using the EIT technique in ultracold atoms [18, 19, 20] and

a warm atomic ensemble [21]. Unlike the EIT memory, the novel off-resonant nature

of the Raman memory allows the storage of high-bandwidth pulses. Furthermore, a

low unconditional noise floor due to the suppressed collisional fluorescence facilitates

single-photon level operation at room-temperature [15], which is not possible in

many schemes, and technically challenging in others. These advantages motivate

the investigation of polarization storage in the Raman memory. In this paper we

demonstrate that the Raman memory can store polarization-encoded information using

the dual-rail procedure. We perform state tomography on the dual-rail Raman memory

to characterize its capability to store polarization. We observe a process fidelity of up

to 97± 1% at 12.5 ns storage time. This fidelity remains high for longer storage times,

yielding 86 ± 4% after 1.5µs — 5000 times longer than the pulse duration. Hence we

demonstrate high fidelity polarization storage at large bandwidths with unprecedented

time-bandwidth products.

2. Dual-rail memory

The experimental implementation of the Raman memory in warm Cesium gas is

discussed elsewhere [14], so is only briefly described here. The master laser for this

experiment is a Spectra Physics Tsunami which produces pulses of 300 ps duration at

a 80 MHz repetition rate. The laser is tuned close to the Cesium D2 line at 852 nm. A

Pockels cell picks two pulses from this 80 MHz pulse train with a variable delay, where

the first pulse defines the storage and the second the retrieval time window. From

these picked pulses, the orthogonally polarized signal and control pulses are derived

by a polarizing beam splitter. The signal is subsequently shifted by the Cs hyperfine

ground state splitting of 9.2 GHz, using an electro-optic modulator (EOM), to obtain

two-photon Raman resonance. The EOM is time gated, such that only pulses in the

storage time window are frequency modulated, yielding the presence of signal field only

in the storage time bin. Subsequently, the signal and control arms are re-overlapped

spatially and temporally on a PBS and are focussed into the Cs vapor cell, which

is heated to 67◦C using resistive heating coils. The Raman interaction only couples

orthogonal polarizations far from resonance, hence the signal and control fields remain

orthogonal. In the memory output mode, this orthogonality enables extinction of the

strong control field. Frequency filters are used to further extinguish the control field
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before detecting the signal on a photodiode. Prior to the memory procedure, the atomic

ensemble is prepared in the memory ground state (6S1/2,F = 4) by optical pumping

with a diode laser. The optical pumping laser is orthogonally polarized to the signal

and is in a counter-propagating geometry. The cell is shielded from stray magnetic fields

with several layers of µ-metal. By fitting the storage time to our model of magnetic

dephasing, we estimate the stray magnetic field to be on the order of 0.1 Gauss [15],

which is consistent with residual magnetization generated by our heating coils.

Since, in this regime, the Raman memory is single-mode, polarization-encoded

information cannot be stored in a single atomic ensemble. Instead, we construct a

passively stable polarization interferometer, employing two polarizing beam displacers

(PBD) [21, 22], with the Cs cell positioned inside the interferometer (see fig. 2).

The PBDs split the signal pulses into their constituent horizontal (H) and vertical

(V) components inside the interferometer with subsequent recombination at the

interferometer output. The orthogonally polarized optical pumping laser and control

pulses are overlapped with the signal field in the interferometer but are spatially

separated outside of it. The phase accumulated by the signal due to unequal path lengths

between the H and V arms is compensated behind the interferometer output [23]. In this

way, we create a two-mode memory by accessing two non-overlapping atomic ensembles

in the same Cs cell, with one mode storing horizontally (H) and the other vertically

(V) polarized light. By balancing the efficiencies of these two memories, which prevents

an artificial rotation of the output polarization, we can accurately store polarization

information.

3. Quantum process tomography

In order to benchmark the polarization storage capability of the memory, we use

quantum process tomography (QPT) [24, 25, 26, 27]. A quantum process is any physical

process, unitary or non-unitary, which takes a physical input state ρin and produces a

physical output state ρout. In the quantum process formalism [28], any such process can

be written as

ρout =
∑
i,j

χijΓiρinΓj, (1)

where χij is known as the process matrix and contains the complete information about

the dynamics of the system, and the Γi,j are a complete set of orthonormal basis matrices

for the density matrix. QPT is a technique for estimating an unknown quantum process

by preparing a range of different input states and making measurements on the output

state. For our polarization qubit, we prepare and measure six polarization states:

{|H〉, |V 〉, |D〉 = 1√
2
(|H〉 + |V 〉), |A〉 = 1√

2
(|H〉 − |V 〉), |R〉 = 1√

2
(|H〉 − i|V 〉), |L〉 =

1√
2
(|H〉 + i|V 〉)}. The 36 resulting input-output measurement settings provide a

reliable basis set with which to fully characterize the storage process for the qubit

system [29, 30]. Here, we reconstruct the measured process matrix using maximum

likelihood estimation [25] (for a detailed recipe, see [31]). Each measurement was
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Figure 2. Layout of the two-memory interferometer. The signal field (red) is prepared

in an arbitrary polarization state, cos θ|H〉+ eiφ sin θ|V 〉, which is split into two arms

in a polarization interferometer using a pair of polarizing beam displacers (PBD). The

control field (black) and optical pumping laser (blue dashed) are introduced along

each arm with the orthogonal polarization, hence enter and exit the PBDs at different

ports. The signal is read in at time t1, and out at time t2, by a strong control pulse.

Following the memory, the signal field polarization is analyzed with a polarizer and a

pair of calibrated waveplates before Fabry–Perot etalons are used to extinguish stray

control field light. Additional phase picked up in the interferometer is compensated by

a pair of quarter-wave plates set to ±45◦ sandwiching a half-wave plate. The signal

and control field preparation, as well as the focussing lenses are omitted for clarity, for

details refer to reference [14]. The inset shows a typical memory signal, in this instance

the storage time is 500 ns, the read-out signal is magnified by a factor of 10 for clarity.

repeated 500 times to determine the measurement statistics, which were in turn used to

determine error bars via Monte Carlo simulation.

To characterize our qubit memory, we measure the process with the memory

switched “on”, by analyzing the retrieved signal field with the control field present,

and “off”, by analyzing the transmitted signal field with the control field blocked. We

then quantify the memory performance by calculating the process fidelity between the
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two resulting process matrices, defined by F = tr
[√√

χonχoff
√
χon

]2
[32], a measure of

the similarity of two different quantum processes which in our case is synonymous with

the memory’s ability to preserve polarization encoded information. Hence, for an ideal

Raman memory, the “on” process is identical to the “off” process, which should just be

the identity process, corresponding to F = 1. Fidelities of less than 1 imply that the

state has been altered by the process.

4. Results

The experiment is performed using classical weak coherent states containing on the order

of 1000-10,000 photons per pulse. However, these results will also hold for truly quantum

single-photon inputs because the counting statistics of single photons passing through

a linear optical system always follow the classical behavior [33]. An obvious example of

this being the interference visibility of light attenuated below the single-photon-level [34].

In order to run the experiment in the single-photon regime, the interferometer would

have to be modified to include small waveplates in each arm to compensate for the

birefringence of the cell windows. Currently, this birefringence causes a small rotation

of the control field polarization leading to leakage through the polarization filtering;

this added control field noise precludes single-photon level measurements. In addition,

the long counting times required to build up single-photon statistics require stability

of the interferometer on long time scales of several hours, which would require active

stabilization of the interferometer.

To assess the coherence of the polarization storage, full process tomography of the

memory was performed at a range of storage times and the fidelity is obtained from the

reconstructed process matrices χij, as described in sec. 3. By running the experiment

in its “off” state, with the control field blocked, we also obtain the process matrix of

the interferometer. Figure 3 shows typical reconstructed process matrices for the input

(control blocked) and retrieved pulse for an exemplary storage time of 750 ns. The input

process matrix, χoff , can be seen to consist mainly of the identity, I, demonstrating that

the interferometer is stable throughout the measurement. The retrieved matrix, χon,

is also dominated by the identity showing that the memory replicates the polarization

state faithfully. In this case, the process fidelity was calculated to be 85±4%.

The individual values for the process fidelity are plotted, alongside the memory

efficiency, as a function of storage time in Figure 4. This shows that the fidelity was

highest for 12.5 ns storage (97 ± 1%), but remained constantly above 84% for storage

times of up to 1.5µs, beyond which the retrieved signal became too weak for a meaningful

reconstruction of the process matrix due to the decreasing memory efficiency (see fig.

4). Notably the fidelity is approximately constant as a function of storage time. Thus

it does not degrade despite the decreasing efficiency of the memory, showing that no

polarization coherence, and hence no information, is destroyed by memory losses. This

is an important feature if this memory is to be integrated in future quantum networks,

illustrating the high quality and the robustness of this memory protocol for polarization
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(a) (b)

Figure 3. (a) The process matrix, χoff , as measured with the control field blocked.

This evaluates the performance of the polarization interferometer. As can be seen,

only the identity transformation appears in the process, proving the stability of the

interferometer during the measurement. (b) The process matrix of the retrieved pulse,

χon, after 750 ns storage time. The fidelity of the memory process is calculated, by

comparison of these two matrices (see sec. 3), to be 85±4%.
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Figure 4. The process fidelity of the memory (red squares) plotted alongside the

efficiency of the memory (blue dots) with increasing storage time. The fidelity

remains high even as memory efficiency decreases, implying that the fidelity of stored

polarization information is insensitive to loss. The efficiency is lower here than has

previously been reported [15] as the control field power is shared between both arms

of the polarization interferometer.

From previous studies, we expect the limiting factor in the storage time to be stray

magnetic fields [15] as a non-zero magnetic field causes dephasing of the spin wave

inside the atomic ensemble and therefore a loss of efficiency. However, a consistent

fidelity seems to suggest that the spinwave remains coherent, despite the decrease in

efficiency. One way to resolve this apparent discrepancy is to consider the effect of the

control pulse. The spin-wave is created, and read-out, by pulses of the same polarization.

For this reason the read-out pulse selects only the component of the spin wave which

remains coherent with the read-in. This causes the read-out signal to have the same
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polarization as the input signal, hence the polarization state, and thereby the process

fidelity, are maintained.

The off-resonant nature of the Raman memory means that, ordinarily, the ensemble

is transparent to the signal field. An advantage of this feature is that unstored signal

photons are simply transmitted by the memory (as shown in fig. 1) and can be used

in subsequent experiments. To confirm that these transmitted photons are not affected

by the action of the control pulse, the process fidelity of the unstored photons was

also calculated. Typically, a fidelity of over 99.5% was measured indicating that the

transmitted photons are unaffected by the storage process.

5. Conclusion

In conclusion, we have demonstrated the storage and on-demand retrieval of

polarization-encoded information in a room-temperature Raman quantum memory with

high fidelity at GHz bandwidths. The high time-bandwidth product and rugged design

of this memory make it a promising candidate for integration in scalable quantum

networks. The polarization basis represents a reliable and robust option for the

transmission of photonic quantum information. Thus the preservation of polarization

during storage and retrieval is of paramount importance for a quantum memory. In this

paper we have performed process tomography on a dual-rail Raman quantum memory,

demonstrating storage of the polarization of a weak coherent state with up to 97± 1%

process fidelity. The fidelity remains above 84% for up to 1.5µs storage time which is

around 5000 times longer than the pulse duration, so this high-fidelity storage is coupled

with a record time-bandwidth product. Furthermore, the fidelity does not decrease with

increasing storage time, despite losses in memory efficiency, showing that the fidelity of

the information remaining in storage is insensitive to loss.

The off-resonant operation of the Raman memory suppresses collision-induced

fluorescence, making single-photon storage and retrieval possible with low noise. This

has already been demonstrated in a single-mode Raman memory. Although the

polarization memory was implemented here with weak coherent states, only technical

difficulties preclude the storage of single photons in the dual-rail memory. Hence this

result represents a key step towards the storage of true single-photon polarization qubits.
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