
On Guaranteeing Polynomially Bounded

Search Tree Size

David A. Cohen1, Martin C. Cooper2, Martin J. Green,1, and
Dániel Marx3

1 Dept. of Computer Science, Royal Holloway, University of London, UK
2 IRIT, University of Toulouse III, 31062 Toulouse, France

3 Institut für Informatik, Humboldt-Universität zu Berlin, Germany

Abstract. A constraint network consists of a set of variables which
must take values in some domain, where the allowed assignments are
limited by a set of constraints. Each constraint limits the simultaneous
assignment of values to some subset of the variables called its scope.
The nature of the restriction given by a particular constraint is called its
relation. The structure of a constraint network is the hypergraph over
the set of variables whose edges are the constraint scopes. The language
of a constraint network is the set of relations over the domain used in its
constraints.

Much work has been done on describing tractable classes of constraint
networks. Most of the known tractable examples are described by either
restricting the structure of the networks, or their language. Indeed, for
both structural or language restrictions very strong dichotomy results
have been proven and in both cases it is likely that all practical examples
have already been discovered.

As such it is timely to consider tractability which cannot be described
by language or structural restrictions. This is the focus of the work here.

In this paper we investigate a novel reason for tractability: having at
least one variable ordering for which the number of partial solutions to
the first n variables is bounded by a polynomial in n.

We show that the presence of sufficient functional constraints can guar-
antee this property and we investigate the complexity of finding good
variable orderings based on different notions of functionality.

What is more we identify a completely novel reason for tractability based
on so called Turan sets.

keywords: constraint satisfaction, satisfiability, hybrid tractabil-
ity, functional constraints, Turan tractability, variable ordering.

1 Introduction

A constraint network consists of a collection of variables, each of
which must take its value from a specified domain. Some subsets
of these variables have a further limitation, called a constraint, on
the values they may simultaneously take. Thus a constraint has two
components: a list of variables called its scope, and a set of allowed
valuations that this list may be assigned, called its relation [10].

The set of relations occurring in a particular constraint network
is often called the language of the network. The scopes of a constraint
network, abstracted as sets of variables, are called the structure of
the network.

It is natural to define tractable classes of constraint networks
by restricting the language or the structure. It is conjectured that
there is a dichotomy for all constraint languages: they are either
tractable or NP-hard [7]. This dichotomy has been made explicit by
Bulatov [2]. Since much work has been done in this area we have a
growing base of evidence for this conjecture.

On the other hand, the work on structural tractability is even fur-
ther advanced. Grohe [8] showed that a set of structures is tractable
if and only if the tree-width of their cores is bounded.

In this paper we extend the classical theory of constraint net-
work tractability beyond the artificial distinction between language
and structure. Such hybrid tractability is just beginning to be sys-
tematically studied [3, 11, 13].

We will exhibit two novel polytime-testable hybrid properties of
constraint networks which guarantee a polynomial-size search tree
as well as a polynomial number of solutions. Classes defined by such
properties are clearly tractable. Indeed, in such cases, polytime solv-
ability is preserved even after the addition of any number of arbitrary
constraints and/or the addition of any polytime objective function,
since it suffices to test the extra constraints and/or evaluate the
objective function for each of the polynomial number of solutions.

We say that a constraint is functional [6] on one of its variables
if the value of this variable is uniquely determined by an assignment
to the rest of the variables of the scope. Examples include functional
dependencies in databases, or mathematical constraints of the form
Xi = f(Xi1 , . . . , Xir). In particular, linear constraints are functional

in all variables. A constraint network with sufficient functional con-
straints has the property for which we are looking.

In the second case we use a structure from combinatorial math-
ematics called a Turan set. By making sure that constraints with
sufficiently tight relations have scopes which form a Turan set we
can find a polynomial bound on the number of partial solutions to
any subset of the variables.

The paper is structured as follows. In Sect. 2 we introduce the
necessary basic definitions and give a motivating example. Section 3
is a study of different forms of functional CSP instances. Section 4
presents a novel tractable class which guarantees a polynomial bound
on the number of solutions, but which is not based on any form of
functionality.

2 Background

We first define the problem we are trying to solve.

Definition 1. A constraint network is a triple 〈V,D,C〉 where:

– V is a finite set of variables;
– D is a finite domain;
– C is a set of constraints. Each constraint c ∈ C consists of a

pair c = 〈σ(c), ρ(c)〉 where σ(c) ∈ V ∗, the constraint scope, is a
list of variables and ρ(c) ⊆ D|σ(c)|, is the constraint relation.

A solution to P = 〈V,D,C〉 is a mapping s : V → D which
satisfies each constraint. That is, for each 〈σ, ρ〉 ∈ C, s(σ) ∈ ρ.

For any set of variables X ⊆ V we have the standard notion of
the induced network P [X] = 〈X,D,C ′〉 on X, where, for every
c ∈ C whose scope includes at least one variable of X there is a
corresponding induced constraint c[X] ∈ C ′. The scope of c[X] is
the sublist of variables of σ that occur in X and the relation of c[X]
consists of those tuples of values that extend to tuples in ρ.

2.1 Ordered Polynomial Tractability

We are interested in constraint networks for which we only ever
generate a polynomial number of partial solutions during complete

backtrack search. As such we are interested in networks which have
particularly well behaved variable orderings.

Definition 2. A class of constraint networks is ordered polyno-
mial if there is some polynomial p such that, for any such instance
P , there is some ordering x1 < x2 < . . . < xn of the variables of P
where, for each i = 1, . . . , n the induced network P [{x1, . . . , xi}] has
at most p(|P [{x1, . . . , xi}]|) solutions.

Example 1. This example describes the tractable class of constraint
networks with fractional edge cover number at most k discovered by
Grohe and Marx [9].

For any constraint network P = 〈V,D,C〉 we define the structure
of P to be the hypergraph H(P) with vertex set V and a hyperedge
for each constraint scope (abstracted as a set of variables).

A fractional edge cover of the hypergraph 〈V,E〉 is a mapping
ψ : E → [0,∞) such that, for every v ∈ V ,

∑
e∈E,v∈e ψ(e) ≥ 1. The

weight of ψ is
∑

e∈E ψ(E) and the fractional weight, ρ∗H, of H is
the minimum weight of all fractional edge covers of H.

Grohe and Marx [9] proved that the number of solutions to any
constraint network P is at most |P |ρ∗(H(P)).

Since the fractional edge cover number of any induced network
is at most that of the original network it follows that the class of
constraint networks with fractional edge cover number at most k is
ordered polynomial.

Grohe and Marx proved that enumerating all solutions can be
done in time |I|ρ∗(H(I))+O(1). We generalise this result to arbitrary
ordered polynomial classes.

Proposition 1. Let P = 〈V,D,C〉 be any constraint network with
variable ordering x1 < x2 < . . . < xn such that the induced net-
work P [{x1, . . . , xi}] can be solved in time p(|P [{x1, . . . , xi}]|). All
solutions to P can be enumerated in time p(|P |).|P |2.

Proof. For i = 1, . . . , |V | the algorithm generates a list Li of solutions
to P [{x1, . . . , xi}]. The list L1 contains at most |D| solutions. Since
every solution in Li+1 induces a solution in Li by projection, to find
Li+1 we have only to find those solutions in Li which extend to a
solution of P [{x1, . . . , xi+1}]. Clearly this extension can be done in
time |Li|.|D|.|P [{x1, . . . , xi+1}]|.

Now since |P [{x1, . . . , xi+1}]| ≥ |P [{x1, . . . , xi}]| we can bound
the total running time by |V |.|D|.p(|P |).|P | ≤ p(|P |).|P |2.

However, a network with fractional edge cover number at most
k must include a constraint whose scope includes at least 1/k of all
variables. We would like to find tractable ordered polynomial classes
which do not require such unreasonably large scopes.

3 Functional Constraint Networks

In this section, we begin by studying the class of constraint networks
which have sufficient functional constraints to guarantee backtrack
free search.

Functional constraints have been extensively studied in the case
of binary networks [6, 4, 5]. We extend previous studies to the case
of functional constraints of arbitrary arity and generalise to the case
of incrementally-functional networks.

Definition 3. A constraint 〈σ, ρ〉 is functional on variable i ∈ σ
if ρ contains no two assignments y, z differing only at variable i.

As an example of a functional constraint, let ρ be any relation
such that every pair of tuples in ρ differ on at least two variables.
This is true of all linear relations, such as arbitrary Boolean relations
to which a parity bit has been added. Then the constraint 〈σ, ρ〉 is
functional on every variable i ∈ σ.

Definition 4. A constraint network P is functional if there ex-
ists a variable ordering x1 < x2 < . . . < xn such that, for all
i ∈ {1, . . . , n}, there is some constraint of P [{x1, . . . , xi}] that is
functional on xi.

It is easy to see that a functional network has at most one solu-
tion. Furthermore, it is not difficult to show that functional networks
form a tractable class: they are both identifiable and solvable in poly-
nomial time. We will, in fact, prove this for the much larger class
defined below.

Definition 5. A constraint network P is incrementally func-
tional if there is an ordering x1 < x2 < . . . < xn of its variables
such that for all i ∈ {1, . . . , n− 1}, each solution to P [{x1, . . . , xi}]
extends to at most one solution to P [{x1, . . . , xi+1}].

An incrementally functional constraint network has at most one
solution.

Proposition 2. The number of nodes in the backtracking search tree
of an incrementally functional constraint network is O(n) when the
variables are instantiated according to the correct ordering.

It is possible to determine in polynomial time whether a net-
work P is incrementally functional. This is a corollary of the fol-
lowing result which says that we can determine in polynomial time
the maximum-cardinality subset M ⊆ {1, . . . , n} such that P [M] is
incrementally functional. This provides us with a simple variable-
ordering heuristic: if the variables in M are instantiated in the order
that makes P [M] incrementally functional, then, in the backtracking
search tree, there is no branching at any of the variables of M .

Proposition 3. Given a constraint network P = 〈V,D,C〉, it is
possible to find in polynomial time the maximum-cardinality set M ⊆
V such that P [M] is incrementally functional.

Proof. We initialize M to the empty set and aM to the empty tuple.
We then use a greedy algorithm to repeatedly add variables i to M
if there is at most one value ai for i which is consistent with the
partial assignment aM . If such an ai exists then aM is extended to
include the assignment of ai to i. If aM has no consistent extension
to variables M ∪ {i}, then we halt, returning V (since, in this case,
the conditions of Definition 5 are satisfied on i and so trivially on all
variables not in M ∪ {i}).

Consider the set M returned by this greedy algorithm. Suppose
that P [M ′] is incrementally functional where |M ′| > |M |. Without
loss of generality, we can assume that M ′ = {1, . . . , t} and that the
variable ordering which makes P incrementally functional on M ′ is
the usual ordering of the integers. Let i = min(M ′ \ M) and let
X = {j ∈ M ′ : j < i}. Since i ∈ M ′, all consistent assignments to
the variables P can be extended to at most one consistent assignment
to the variables X ∪ {i}. But, by choice of i, X ⊆M , and hence all
consistent assignments to the variablesM can be extended to at most
one consistent assignment to the variables M ∪ {i}. Thus, i would
have been added to M by our greedy algorithm. This contradiction
completes the proof.

Corollary 1. It is possible to determine in polynomial time whether
a constraint network is incrementally functional.

For the constraint network P = 〈V,D,C〉, if the induced network
P [M] is incrementally functional, then after instantiating the vari-
ables in V −M , P becomes incrementally functional. The converse
is not necessarily true, in the sense that P may be incrementally
functional on all remaining variables after instantiation of the vari-
ables in a proper subset of V −M . This leads us to notions which
are related to strong backdoor sets.

In a SAT instance, given a polynomial-time algorithm A (such as
unit-propagation), a set X of variables is a strong backdoor set
with respect to A if, for any assignment to the variables in X, the
algorithm A determines whether or not this assignment can be ex-
tended to a complete solution. The set of problem instances having
a strong backdoor set of size O(log n) is a hybrid tractable class [17],
but does not provide a polynomial bound on the number of solu-
tions. Szeider [15] showed that when the SAT algorithm A is unit
propagation, pure literal elimination or a combination of both of
these, the detection of a strong backdoor set (with respect to A) of
size bounded by a fixed integer k is W[P]-complete. This means that
it is highly unlikely that smallest backdoor sets can be found more
efficiently than by exhaustive search.

The remainder of this section is devoted to types of backdoor sets,
called root sets, defined in terms of simple forms of functionality.

Definition 6. In a constraint network P = 〈V,D,C〉, a root set is
a subset Q of the variables for which there exists a variable ordering
x1 < x2 < . . . < xn such that, for all i ∈ V − Q, there is some
constraint of P [{x1, . . . , xi}] that is functional on xi.

The existence of a root set Q means that the CSP instance I
will become functional after instantiation of all variables in Q. It is
therefore of interest to find a minimum-cardinality root set. David [5]
showed that this can be achieved in polynomial time in the case of
binary CSPs. Unfortunately, if I contains ternary functional con-
straints, then finding the minimum-cardinality root set is NP-hard,
as we now show.

Theorem 1. The problem of finding a minimum-cardinality root set
in a ternary constraint network is NP-hard, for all d ≥ 2 (where d
is the maximum domain size).

Proof. We demonstrate a polynomial reduction from max clique
(which is known to be NP-complete [12]). Let G be a graph with
n vertices 1, . . . , n and m edges. For simplicity of presentation, we
identify a clique C in G with its vertex set. We will construct a
ternary constraint network PG such that {Xi : i /∈ C} ∪ {X0} is a
minimum-cardinality root set of PG if and only if C is a maximum
clique in G.

We first give an example of a ternary functional constraint which
is functional on only one of its variables. Let R3 denote the relation
{〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 0, 0〉, 〈1, 1, 1〉}. It is easy to verify that R3 is
functional only on its third variable.

The constraint network PG has a “dummy” variable X0 (which,
by construction, must appear in every root set) as well as a variable
Xi corresponding to each of the n vertices of G. Apart from these
variables Xi (i = 0, . . . , n), PG has two other types of variables: non-
edge variables denoted by Yi (1 ≤ i ≤M where M = n

2
(n− 1)−m)

and cascade variables Zi
j (i = 1, . . . , n; 1 ≤ j ≤ N). For each pair

of distinct vertices j, k ∈ {1, . . . , n} which are not connected by
an edge in G, there is a corresponding non-edge variable Yi in PG
together with two ternary functional constraints: 〈〈X0, Xj, Yi〉, R3〉
and 〈〈X0, Xk, Yi〉, R3〉. These constraints are both functional on Yi
and are the only constraints of PG which are functional on Yi.

For each of the Xi variables, there is a cascade of ternary func-
tional constraints from the set of all the non-edge variables Yj (1 ≤
j ≤ M) to Xi. This is illustrated in Fig. 1 which shows a cas-
cade from the variables Y1, . . . , Y8 to the variable Xi via the cas-
cade variables Zi

1, . . . , Z
i
6. Each two-tailed arrow represents a ternary

functional constraint from the two tail variables to the head vari-
able: if U, V are the tail variables and W the head variable, then
there is the constraint 〈〈U, V,W 〉, R3〉 in PG. We require a total of
N = n(2dlog2Me − 2) = O(n3) cascade variables.

For any subset C ⊆ {1, . . . , n} of the vertices of G, denote by
RC the set {Xi : i /∈ C} ∪ {X0}. C is a clique if and only if RC

contains one of Xj, Xk for each non-edge {j, k} in G. We claim that,

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

�
@-

�
@-

�
@-

�
@- Zi

1
@
@

Zi
2
�
�

Zi
3
@
@

Zi
4
�
�

-

- Zi
5
@
@
@
@

Zi
6
�
�
�
�

- Xi

Fig. 1. Example of a cascade of variables from the variables Y1, . . . , Y8 to variable Xi.

by construction of PG, this is a necessary and sufficient condition
for RC to be a root set of PG. For each non-edge {j, k} with cor-
responding variable Yi in PG, the only functional constraints on Yi
are 〈〈X0, Xj, Yi〉, R3〉 and 〈〈X0, Xk, Yi〉, R3〉; hence RC is a root set
only if it contains one of Xj, Xk. If RC contains one of Xj, Xk for
each non-edge {j, k} in G, then any ordering which places the vari-
ables in RC first, then the variables {Yi : 1 ≤ i ≤ M}, then the
variables {Zi

j : 1 ≤ i ≤ n, 1 ≤ j ≤ N} and finally the variables
{Xi : i ≤ i ≤ n} −RC satisfies the conditions of Definition 6.

It is possible to replace some number of the Xi variables (1 ≤
i ≤ n) in the root set RC by some number of the Yj and Zi

k variables
(for example, Xi in Fig. 1 could be replaced by Zi

5, Z
i
6), but, by our

construction, this never reduces the cardinality of the root set. We
can conclude that RC is a minimum-cardinality root set of PG if
and only if C is a maximum clique in G. This reduction from max
clique is clearly polynomial.

4 Turan Sets

In this section, we study conditions which guarantee the existence
of only a polynomial number of solutions, but which are not so re-
strictive as to guarantee the existence of at most one solution. Very
little work appears to have done in this area, although David [4]

showed that constraint networks which have a functional constraints
for every possible arity-k scope are solvable in polynomial time. We
will generalise this result here, but first we show that many weak
constraints are sufficient to control the number of solutions.

Definition 7. For any domain D we define a domain pair arity
function to be a symmetric mapping α : D2 → N+.

The size of α is then defined as |α| =
∑
{a,b}⊆D α(a, b).

For any {a, b} ⊆ D, we define the reduction of α at {a, b} to be

α{a,b}−(x, y) =

{
α(x, y)− 1 if {x, y} = {a, b},
α(x, y) otherwise.

For any domain pair arity function α we say that constraint net-
work P = 〈V,D,C〉 is α-restrictive if

∀{a, b} ⊆ D,U ⊆ V, |U | = α(a, b),∃ 〈σ, ρ〉 ∈ C, σ ∈ U∗and [a, b]|σ| 6⊆ ρ .

Let F (n,D, α) be the maximum number of solutions to any α-
restrictive constraint network with domain D and n variables.

Theorem 2. F (n,D, α) ≤ n|α|.

Proof. Let D be any domain and α be any domain pair arity func-
tion. Choose an n variable α-restrictive constraint network P =
〈V,D,C〉 with F (n,D, α) solutions.

Choose any variable x ∈ V . We say that a pair of solutions to P
are an {a, b}-pair at x if they differ only in their value for variable
x: one having value a, the other value b.

Let S{a,b} be the solutions to P which are in {a, b}-pairs. Let S1

be the solutions to P that are in no {a, b}-pair for any {a, b} ⊆ D.
We get an upper bound on the number of solutions to P , F (n,D, α),

by counting the size of these sets.
First, for any {a, b} where α(a, b) > 1, consider the set S{a,b}.
Choose any U ⊆ V with x ∈ U and |U | = α(a, b).
Since P is α-restrictive there is a constraint 〈σ, ρ〉 ∈ C for which

σ ⊆ U∗ and [a, b]|σ| 6⊆ ρ. Hence the restriction of S{a,b} to U − {x}
cannot contain [a, b]|U |−1.

So, for each such U , we can build a constraint with scope U−{x}
that disallows no solution of S{a,b}, but whose relation does not

contain [a, b]|U |−1. Add all such constraints to the induced network
P [V −{x}] to obtain the α{a,b}−-restrictive network P (a, b). By con-
struction, every solution in S{a,b} restricted to V − {x} is a solution
to P (a, b). Since every element of S{a,b} has value either a or b at x
we know that the number of solutions to P (a, b) is at least half of
the size of S{a,b}.

Now consider the set S1. Each solution to P [V −{x}] extends to
at most one element of S1, so the α-restrictive network P [V − {x}]
has precisely |S1| solutions that extend to an element of S1.

Finally, observe that if α(a, b) = 1 then S{a,b} is empty since there
is a constraint with scope 〈x〉 whose relation does not contain [a, b].

We have shown that:

F (n,D, α) ≤

 ∑
{a,b}⊆D,α(a,b)>1

2F (n− 1, D, α{a,b}−)

+F (n−1, D, α) .

(1)
We can now prove the theorem by induction on |α|.
The base case is when α is identically 1. Here F (n,D, α) = 1

since in the solution set to any α-restrictive constraint network we
can have, for each variable, at most one of each pair of domain values.

For induction, and using inequality (1), we can assume that

F (n,D, α) ≤
(
D

2

)
(n− 1)|α|−1 + (n− 1)|α| .

It remains to show that

n|α| ≥
(
D

2

)
(n− 1)|α|−1 + (n− 1)|α|.

We can rewrite this inequality as:(
1 +

1

n− 1

)|α|
≥

(
D
2

)
(n− 1)

+ 1 .

This equality must hold since |α| ≥
(
D
2

)
.

Given an arbitrary domain pair arity function α it is clear that
if P is α-restrictive then so is every network induced by P on a
subset of its variables. It follows immediately from Theorem 2 and
Proposition 1 that the class of α-restrictive constraint networks is
polynomially solvable for a fixed domain size.

Corollary 2. For any fixed domain D and domain pair arity func-
tion α the class of α-good constraint networks over domain D is
polynomial time solvable.

Now we will need the notion of a Turan set in order to define
classes of α-restrictive networks for a constant function α. This will
allow us not only to give some concrete examples of tractable classes
but also to estimate the minimum number of constraints in an α-
restrictive constraint network.

Definition 8. We say that a subset of variables σ represents an-
other set τ if σ is contained in τ .

An (n, k)-Turan system is a pair 〈χ,B〉 where B is a collection
of subsets of the n-element set χ such that every k-element subset of
χ is represented by some set in B. The size of the system 〈χ,B〉 is
the number of subsets in B.

The restricted notion of a Turan system where every member is
required to have precisely r < k elements has been well-studied in the
mathematics community and, for many set of parameters, minimal
size examples are known [14, 16].

Definition 9. An n-variable constraint network over domain D is
said to be k-Turan if the scopes of the constraints 〈σ, ρ〉 for which:

∀a, b ∈ D, [a, b]|σ| 6⊆ ρ

are an (n, k)-Turan system.

We immediately obtain the following result from Theorem 2.

Theorem 3. For any domain D and fixed k, the class of k-Turan
constraint networks is tractable.

Proof. Let P be any k-Turan constraint network over domain D.
Since every k-set of variables contains the scope 〈σ, ρ〉 of a con-

straint for which:
∀a, b ∈ D, [a, b]|σ| 6⊆ ρ

we immediately get that P is α-restrictive for the constant domain
pair arity function α(a, b) = k, and so the class is polynomially
solvable.

To see that such a class is polynomially recognisable observe that
there are polynomially many subsets of variables of size k and, for
each of these sets we have only to check the relations of constraints
whose scope they contain. That is, one check is required for each
pair of domain elements, for each constraint and for each subset of
size k giving time complexity O(|D|2|P |k+1).

To give a concrete example, the minimum size of a (n, s + 1)-
Turan set of two element subsets is known to be n

2
(n
s
− 1) when

n is a multiple of s. Although this compares well with the number
n
2
(n
2
−1) of size-2 subsets of {1, . . . , n}, it indicates that we may still

require Θ(n2) binary constraints for Theorem 3 to imply a polyno-
mial number of solutions.

It is worth observing that the restriction:

∀a, b ∈ D, [a, b]|σ| 6⊆ ρ

is not very strong. For instance every clause (seen as a constraint
over a Boolean domain) satisfies the restriction. There is just one
domain pair 0, 1 and so we only require there to be at least one
disallowed tuple.

Hence, a direct consequence of Theorem 3 is for the case of k-SAT
(boolean domains, where each constraint is a clause on k-variables).

Corollary 3. The class of k-SAT instances where every k-tuple is
restricted by a k-clause is tractable.

What is more, every functional constraint satisfies this property.

Proposition 4. Let 〈σ, τ〉 be any functional constraint. We have
that:

∀a, b ∈ D, [a, b]|σ| 6⊆ ρ .

Proof. Suppose that 〈σ, τ〉 is functional at x. Choose arbitrary do-
main elements a and b. We know that any assignment of values from
{a, b} to the variables of σ other than x extends to at most one value
at x. So we are done.

The result of David’s [4] cited in the introduction to this section
is therefore another corollary of Theorem 3.

Corollary 4. If a constraint network P has all arity-q constraints
and each of these constraints is functional then we can solve I in
polynomial time

The class of k-Turan constraint networks is quite large. Many
of the well-known global constraints [1] also satisfy the rather weak
restriction, but we have only space to give the (simple) proofs for
functional constraints and Boolean clauses. The k-Turan constraint
networks can be seen as requiring sufficiently many small scopes with
reasonable constraint relations - in contrast to networks of bounded
fractional edge cover number [9] which require sufficient coverage by
quite large scopes.

5 Conclusion

We have defined different classes of constraint networks whose tractabil-
ity stems from the fact that each network has only a polynomial num-
ber of solutions. This means that we can list or count all solutions
or find all optimal solutions (according to any polytime objective
function) in polynomial time.

Incrementally functional constraint networks have a single solu-
tion and a forward-checking search tree is linear when a dynamic
smallest-domain first variable-ordering is used. Finding a maximum-
cardinality subset of the variables on which a network is incremen-
tally functional is polynomial-time. Finding a maximum-cardinality
root set (a set of variables on which all others are functionally de-
pendent) would appear to be NP-hard except in the case that each
variable is functionally dependent on a single previous variable.

We have also presented novel tractable classes of constraint net-
works with no functional constraints which have a polynomial bound
on the number of solutions. These k-Turan networks require many
constraints with small scopes but put only a very weak restriction
on the relations of these constraints. As such this is an interesting
contrast with the (structural) class of networks with small fractional
edge cover number.

An interesting open question is whether there exist other condi-
tions guaranteeing a polynomial number of solutions.

References

1. Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global constraint
catalog. 2nd edition. Technical Report T2010:07, Swedish Institute of Computer
Science, SICS, Isafjordsgatan 22, Box 1263, SE-164 29 Kista, Sweden, November
2010.

2. A.A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Pro-
ceedings 43rd IEEE Symposium on Foundations of Computer Science, FOCS’02,
pages 649–658. IEEE Computer Society, 2002.

3. Martin C. Cooper, Peter G. Jeavons, and András Z. Salamon. Generalizing con-
straint satisfaction on trees: Hybrid tractability and variable elimination. Artif.
Intell., 174(9-10):570–584, 2010.

4. Philippe David. Prise en compte de la sémantique dans les problèmes de satisfac-
tion de contraintes : étude des contraintes fonctionnelles. PhD thesis, LIRMM,
Université Montpellier II, 1994.

5. Philippe David. Using pivot consistency to decompose and solve functional csps.
J. Artif. Intell. Res. (JAIR), 2:447–474, 1995.

6. Yves Deville and Pascal Van Hentenryck. An efficient arc consistency algorithm for
a class of csp problems. In Proceedings of the 12th international joint conference on
Artificial intelligence - Volume 1, pages 325–330, San Francisco, CA, USA, 1991.
Morgan Kaufmann Publishers Inc.

7. T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal of Computing, 28(1):57–104, 1998.

8. M. Grohe. The structure of tractable constraint satisfaction problems. In MFCS,
pages 58–72, 2006.

9. Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In
SODA, pages 289–298. ACM Press, 2006.

10. Peter G. Jeavons, David A. Cohen, and Marc Gyssens. A test for tractability. In
Eugene C. Freuder, editor, CP, volume 1118 of Lecture Notes in Computer Science,
pages 267–281. Springer, 1996.

11. P. Jegou. Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In Proceedings of the 11th National Conference
on Artificial Intelligence, pages 731–736, Menlo Park, CA, USA, jul 1993. AAAI
Press.

12. R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

13. András Z. Salamon and Peter G. Jeavons. Perfect constraints are tractable. In
Proceedings of the 14th International Conference on Principles and Practice of
Constraint Programming, CP 2008, Sydney, Australia, 14–18 September, volume
5202 of Lecture Notes in Computer Science, pages 524–528. Springer, 2008.

14. A. F. Sidorenko. Precise values of turan numbers. Mathematical Notes, 42:913–918,
1987. 10.1007/BF01137440.

15. Stefan Szeider. Backdoor sets for dll subsolvers. J. Autom. Reasoning, 35(1-3):73–
88, 2005.

16. P. Turan. Research problems. Publ. Hung. Acad. Sci., 6:417–423, 1961.
17. Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical case

complexity. In Georg Gottlob and Toby Walsh, editors, IJCAI, pages 1173–1178.
Morgan Kaufmann, 2003.

